1
|
Pradhan-Sundd T, Gudapati S, Kaminski TW, Ragni MV. Exploring the Complex Role of Coagulation Factor VIII in Chronic Liver Disease. Cell Mol Gastroenterol Hepatol 2021; 12:1061-1072. [PMID: 33705963 PMCID: PMC8342958 DOI: 10.1016/j.jcmgh.2021.02.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 02/25/2021] [Accepted: 02/25/2021] [Indexed: 12/22/2022]
Abstract
Chronic liver disease is one of the leading causes of death in the United States. Coagulopathy is often a sequela of chronic liver disease, however, the role and regulation of coagulation components in chronic liver injury remain poorly understood. Clinical and experimental evidence indicate that misexpression of the procoagulant factor VIII (FVIII) is associated with chronic liver disease. Nevertheless, the molecular mechanism of FVIII-induced chronic liver injury progression remains unknown. This review provides evidence supporting a pathologic role for FVIII in the development of chronic liver disease using both experimental and clinical models.
Collapse
Affiliation(s)
- Tirthadipa Pradhan-Sundd
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, Pittsburgh, Pennsylvania; Division of Hematology/Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.
| | - Shweta Gudapati
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, Pittsburgh, Pennsylvania
| | - Tomasz W Kaminski
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, Pittsburgh, Pennsylvania
| | - Margaret V Ragni
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, Pittsburgh, Pennsylvania; Division of Hematology/Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Hemophilia Center of Western Pennsylvania, Pittsburgh, Pennsylvania
| |
Collapse
|
2
|
FVIII expression by its native promoter sustains long-term correction avoiding immune response in hemophilic mice. Blood Adv 2020; 3:825-838. [PMID: 30862611 DOI: 10.1182/bloodadvances.2018027979] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 02/04/2019] [Indexed: 12/20/2022] Open
Abstract
Here we describe a successful gene therapy approach for hemophilia A (HA), using the natural F8 promoter (pF8) to direct gene replacement to factor VIII (FVIII)-secreting cells. The promoter sequence and the regulatory elements involved in the modulation of F8 expression are still poorly characterized and biased by the historical assumption that FVIII expression is mainly in hepatocytes. Bioinformatic analyses have highlighted an underestimated complexity in gene expression at this locus, suggesting an activation of pF8 in more cell types than those previously expected. C57Bl/6 mice injected with a lentiviral vector expressing green fluorescent protein (GFP) under the pF8 (lentiviral vector [LV].pF8.GFP) confirm the predominant GFP expression in liver sinusoidal endothelial cells, with a few positive cells detectable also in hematopoietic organs. Therapeutic gene delivery (LV.pF8.FVIII) in hemophilic C57/Bl6 and 129-Bl6 mice successfully corrected the bleeding phenotype, rescuing up to 25% FVIII activity, using a codon-optimized FVIII, with sustained activity for the duration of the experiment (1 year) without inhibitor formation. Of note, LV.pF8.FVIII delivery in FVIII-immunized HA mice resulted in the complete reversion of the inhibitor titer with the recovery of therapeutic FVIII activity. Depletion of regulatory T cells (Tregs) in LV-treated mice allowed the formation of anti-FVIII antibodies, indicating a role for Tregs in immune tolerance induction. The significant blood loss reduction observed in all LV.pF8.FVIII-treated mice 1 year after injection confirmed the achievement of a long-term phenotypic correction. Altogether, our results highlight the potency of pF8-driven transgene expression to correct the bleeding phenotype in HA, as well as potentially in other diseases in which an endothelial-specific expression is required.
Collapse
|
3
|
Cohen CT, Turner NA, Moake JL. Production and control of coagulation proteins for factor X activation in human endothelial cells and fibroblasts. Sci Rep 2020; 10:2005. [PMID: 32029851 PMCID: PMC7005260 DOI: 10.1038/s41598-020-59058-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 01/23/2020] [Indexed: 11/09/2022] Open
Abstract
Human endothelial cells (ECs) synthesize, store, and secrete von Willebrand factor multimeric strings and coagulation factor (F) VIII. It is not currently known if ECs produce other coagulation factors for active participation in coagulation. We found that 3 different types of human ECs in primary culture produce clotting factors necessary for FX activation via the intrinsic (FVIII-FIX) and extrinsic (tissue factor [TF]-FVII) coagulation pathways, as well as prothrombin. Human dermal fibroblasts were used as comparator cells. TF, FVII, FIX, FX, and prothrombin were detected in ECs, and TF, FVII, FIX, and FX were detected in fibroblasts. In addition, FVII, FIX, FX, and prothrombin were detected by fluorescent microscopy in EC cytoplasm (associated with endoplasmic reticulum and Golgi proteins). FX activation occurred on human umbilical vein EC surfaces without the addition of external coagulation proteins, proteolytic enzymes, or phospholipids. Tumour necrosis factor, which suppresses the generation of activated protein C and increases TF, augmented FX activation. Fibroblasts also produced TF, but (in contrast to ECs) were incapable of activating FX without the exogenous addition of FX and had a marked increase in FX activation following the addition of both FX and FVII. We conclude that human ECs produce their own coagulation factors that can activate cell surface FX without the addition of exogenous proteins or phospholipids.
Collapse
Affiliation(s)
- Clay T Cohen
- Department of Pediatrics, Section of Hematology-Oncology, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, USA.
| | - Nancy A Turner
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Joel L Moake
- Department of Bioengineering, Rice University, Houston, TX, USA
| |
Collapse
|
4
|
Zhang RR, Zheng YW, Li B, Nie YZ, Ueno Y, Tsuchida T, Taniguchi H. Hepatic stem cells with self-renewal and liver repopulation potential are harbored in CDCP1-positive subpopulations of human fetal liver cells. Stem Cell Res Ther 2018; 9:29. [PMID: 29402311 PMCID: PMC5800061 DOI: 10.1186/s13287-017-0747-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 12/08/2017] [Accepted: 12/12/2017] [Indexed: 01/11/2023] Open
Abstract
Background Mature human hepatocytes are critical in preclinical research and therapy for liver disease, but are difficult to manipulate and expand in vitro. Hepatic stem cells (HpSCs) may be an alternative source of functional hepatocytes for cell therapy and disease modeling. Since these cells play an import role in regenerative medicine, the precise characterization that determines specific markers used to isolate these cells as well as whether they contribute to liver regeneration still remain to be shown. Method In this study, human HpSCs were isolated from human primary fetal liver cells (FLCs) by flow cytometry using CDCP1, CD90, and CD66 antibodies. The isolated CDCP1+CD90+CD66– HpSCs were cultured on dishes coated with type IV collagen in DMEM nutrient mixture F-12 Ham supplemented with FBS, human γ-insulin, nicotinamide, dexamethasone, and l-glutamine for at least 2 weeks, and were characterized by transcriptomic profiling, quantitative real-time PCR, immunocytochemistry, and in-vivo transplantation. Results The purified CDCP1+CD90+CD66– subpopulation exhibited clonal expansion and self-renewal capability, and bipotential capacity was further identified in single cell-derived colonies containing distinct hepatocytes and cholangiocytes. Moreover, in-vivo liver repopulation assays demonstrated that human CDCP1+CD90+CD66– HpSCs repopulated over 90% of the mouse liver and differentiated into functional hepatocytes with drug metabolism activity. Conclusions We identified a human hepatic stem/progenitor population in the CDCP1+CD90+CD66– subpopulation in human FLCs, indicating CDCP1 marker could potentially be utilized to identify and isolate HpSCs for further cytotherapy of liver disease. Electronic supplementary material The online version of this article (doi:10.1186/s13287-017-0747-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ran-Ran Zhang
- Department of Regenerative Medicine, Graduate School of Medicine, Yokohama City University, 3-9 Fuku-ura, Kanazawa-ku, Yokohama, Kanagawa, 236-0004, Japan.,Department of Gastroenterology, Hepatology & Nutrition, Developmental Biology and Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA
| | - Yun-Wen Zheng
- Department of Regenerative Medicine, Graduate School of Medicine, Yokohama City University, 3-9 Fuku-ura, Kanazawa-ku, Yokohama, Kanagawa, 236-0004, Japan. .,Department of Advanced Gastroenterological Surgical Science and Technology, Faculty of Medicine, University of Tsukuba, Tsukuba, 305-8575, Japan. .,Research Center of Stem Cells and Regenerative Medicine, Jiangsu University Hospital, Zhenjiang, Jiangsu, 212001, China.
| | - Bin Li
- Oregon Stem Cell Center, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Yun-Zhong Nie
- Department of Regenerative Medicine, Graduate School of Medicine, Yokohama City University, 3-9 Fuku-ura, Kanazawa-ku, Yokohama, Kanagawa, 236-0004, Japan
| | - Yasuharu Ueno
- Department of Regenerative Medicine, Graduate School of Medicine, Yokohama City University, 3-9 Fuku-ura, Kanazawa-ku, Yokohama, Kanagawa, 236-0004, Japan
| | - Tomonori Tsuchida
- Department of Regenerative Medicine, Graduate School of Medicine, Yokohama City University, 3-9 Fuku-ura, Kanazawa-ku, Yokohama, Kanagawa, 236-0004, Japan
| | - Hideki Taniguchi
- Department of Regenerative Medicine, Graduate School of Medicine, Yokohama City University, 3-9 Fuku-ura, Kanazawa-ku, Yokohama, Kanagawa, 236-0004, Japan. .,Advanced Medical Research Center, Yokohama City University, 3-9 Fuku-ura, Kanazawa-ku, Yokohama, Kanagawa, 236-0004, Japan.
| |
Collapse
|
5
|
Duret C, Moreno D, Balasiddaiah A, Roux S, Briolotti P, Raulet E, Herrero A, Ramet H, Biron-Andreani C, Gerbal-Chaloin S, Ramos J, Navarro F, Hardwigsen J, Maurel P, Aldabe R, Daujat-Chavanieu M. Cold Preservation of Human Adult Hepatocytes for Liver Cell Therapy. Cell Transplant 2015; 24:2541-55. [PMID: 25622096 DOI: 10.3727/096368915x687020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Hepatocyte transplantation is a promising alternative therapy for the treatment of hepatic failure, hepatocellular deficiency, and genetic metabolic disorders. Hypothermic preservation of isolated human hepatocytes is potentially a simple and convenient strategy to provide on-demand hepatocytes in sufficient quantity and of the quality required for biotherapy. In this study, first we assessed how cold storage in three clinically safe preservative solutions (UW, HTS-FRS, and IGL-1) affects the viability and in vitro functionality of human hepatocytes. Then we evaluated whether such cold-preserved human hepatocytes could engraft and repopulate damaged livers in a mouse model of liver failure. Human hepatocytes showed comparable viabilities after cold preservation in the three solutions. The ability of fresh and cold-stored hepatocytes to attach to a collagen substratum and to synthesize and secrete albumin, coagulation factor VII, and urea in the medium after 3 days in culture was also equally preserved. Cold-stored hepatocytes were then transplanted in the spleen of immunodeficient mice previously infected with adenoviruses containing a thymidine kinase construct and treated with a single dose of ganciclovir to induce liver injury. Engraftment and liver repopulation were monitored over time by measuring the blood level of human albumin and by assessing the expression of specific human hepatic mRNAs and proteins in the recipient livers by RT-PCR and immunohistochemistry, respectively. Our findings show that cold-stored human hepatocytes in IGL-1 and HTS-FRS preservative solutions can survive, engraft, and proliferate in a damaged mouse liver. These results demonstrate the usefulness of human hepatocyte hypothermic preservation for cell transplantation.
Collapse
Affiliation(s)
- Cedric Duret
- INSERM, U1040, Institut de Recherche en Biothérapie, F-34295 Montpellier, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Abstract
Hemophilia is an X-linked inherited bleeding disorder consisting of two classifications, hemophilia A and hemophilia B, depending on the underlying mutation. Although the disease is currently treatable with intravenous delivery of replacement recombinant clotting factor, this approach represents a significant cost both monetarily and in terms of quality of life. Gene therapy is an attractive alternative approach to the treatment of hemophilia that would ideally provide life-long correction of clotting activity with a single injection. In this review, we will discuss the multitude of approaches that have been explored for the treatment of both hemophilia A and B, including both in vivo and ex vivo approaches with viral and nonviral delivery vectors.
Collapse
Affiliation(s)
- Geoffrey L Rogers
- University of Florida, Department of Pediatrics, Division of Cellular and Molecular Therapy, Gainesville, FL 32610
| | - Roland W Herzog
- University of Florida, Department of Pediatrics, Division of Cellular and Molecular Therapy, Gainesville, FL 32610
| |
Collapse
|
7
|
Stroka D, Keogh A, Vu D, Fort A, Stoffel MH, Kühni-Boghenbor K, Furer C, Banz V, Demarmels Biasiutti F, Lämmle B, Candinas D, Neerman-Arbez M. In vitro rescue of FGA deletion by lentiviral transduction of an afibrinogenemic patient's hepatocytes. J Thromb Haemost 2014; 12:1874-9. [PMID: 25163824 DOI: 10.1111/jth.12714] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 08/06/2014] [Indexed: 11/29/2022]
Abstract
BACKGROUND Congenital afibrinogenemia is a rare inherited autosomal recessive disorder in which a mutation in one of three genes coding for the fibrinogen polypeptide chains Aα, Bβ and γ results in the absence of a functional coagulation protein. A patient with congenital afibrinogenemia, resulting from an FGA homozygous gene deletion, underwent an orthotopic liver transplant that resulted in complete restoration of normal hemostasis. The patient's explanted liver provided a unique opportunity to further investigate a potential novel treatment modality. OBJECTIVE To explore a targeted gene therapy approach for patients with congenital afibrinogenemia. METHODS AND RESULTS At the time of transplant, the patient's FGA-deficient hepatocytes were isolated and transduced with lentiviral vectors encoding the human fibrinogen Aα-chain. FGA-transduced hepatocytes produced fully functional fibrinogen in vitro. CONCLUSIONS Orthotopic liver transplantation is a possible rescue treatment for failure of on-demand fibrinogen replacement therapy. In addition, we provide evidence that hepatocytes homozygous for a large FGA deletion can be genetically modified to restore Aα-chain protein expression and secrete a functional fibrinogen hexamer.
Collapse
Affiliation(s)
- D Stroka
- Clinic for Visceral Surgery and Medicine, Department of Clinical Research, Bern University Hospital, University of Bern, Bern, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Shahani T, Covens K, Lavend'homme R, Jazouli N, Sokal E, Peerlinck K, Jacquemin M. Human liver sinusoidal endothelial cells but not hepatocytes contain factor VIII. J Thromb Haemost 2014; 12:36-42. [PMID: 24118899 DOI: 10.1111/jth.12412] [Citation(s) in RCA: 135] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Indexed: 01/06/2023]
Abstract
BACKGROUND Although the liver is the major site of coagulation factor VIII (FVIII) synthesis, the type of cells producing FVIII within the liver is still unclear. OBJECTIVES To measure FVIII in extracts of primary liver sinusoidal endothelial cells (LSECs) and hepatocytes, thereby preventing potential bias resulting from the modifications of the cell phenotype that can take place during in vitro culture. METHODS LSECs were purified by flow cytometry cell sorting on the basis of their coexpression of Tie2 and CD32b. The purity of the cells was controlled by RNA sequencing. FVIII activity (FVIII:C) in extracts of purified cells was measured with a sensitive FVIII chromogenic assay, in which the specificity of the reaction is controlled by neutralization of FVIII activity with specific inhibitor antibodies. RESULTS The FVIII:C concentration in purified LSECs ranged from 0.3 to 2.8 nU per cell. In contrast, FVIII:C was undetectable in hepatocytes. The intracellular FVIII:C concentrations are therefore at least 10-100-fold higher in LSECs than in hepatocytes. CONCLUSIONS Our data demonstrate that LSECs, but not hepatocytes, contain measurable amounts of FVIII:C, and suggest that the former are the main cells producing FVIII in the human liver.
Collapse
Affiliation(s)
- T Shahani
- Department of Genetics and Molecular Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | | | | | | | | | | | | |
Collapse
|
9
|
Gerbal-Chaloin S, Funakoshi N, Caillaud A, Gondeau C, Champon B, Si-Tayeb K. Human induced pluripotent stem cells in hepatology: beyond the proof of concept. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 184:332-47. [PMID: 24269594 DOI: 10.1016/j.ajpath.2013.09.026] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 09/20/2013] [Accepted: 09/26/2013] [Indexed: 02/08/2023]
Abstract
The discovery of the wide plasticity of most cell types means that it is now possible to produce virtually any cell type in vitro. This concept, developed because of the possibility of reprogramming somatic cells toward induced pluripotent stem cells, provides the opportunity to produce specialized cells that harbor multiple phenotypical traits, thus integrating genetic interindividual variability. The field of hepatology has exploited this concept, and hepatocyte-like cells can now be differentiated from induced pluripotent stem cells. This review discusses the choice of somatic cells to be reprogrammed by emergent new and nonintegrative strategies, as well as the application of differentiated human induced pluripotent stem cells in hepatology, including liver development, disease modeling, host-pathogen interactions, and drug metabolism and toxicity. The actual consensus is that hepatocyte-like cells generated in vitro present an immature phenotype. Currently, developed strategies used to resolve this problem, such as overexpression of transcription factors, mimicking liver neonatal and postnatal modifications, and re-creating the three-dimensional hepatocyte environment in vitro and in vivo, are also discussed.
Collapse
Affiliation(s)
- Sabine Gerbal-Chaloin
- INSERM, U1087, Montpellier, France; UMR 1040, Université Montpellier 1, Montpellier, France
| | - Natalie Funakoshi
- INSERM, U1087, Montpellier, France; UMR 1040, Université Montpellier 1, Montpellier, France; Hepato-Gastroenterology Service B, Saint Eloi Hospital, CHU Montpellier, Montpellier, France
| | - Amandine Caillaud
- INSERM, UMR 1087, the Institute of the Thorax, Nantes, France; CNRS, UMR 6291, Nantes, France; School of Medicine, University of Nantes, Nantes, France
| | - Claire Gondeau
- INSERM, U1087, Montpellier, France; UMR 1040, Université Montpellier 1, Montpellier, France
| | - Benoite Champon
- INSERM, UMR 1087, the Institute of the Thorax, Nantes, France; CNRS, UMR 6291, Nantes, France; School of Medicine, University of Nantes, Nantes, France
| | - Karim Si-Tayeb
- INSERM, UMR 1087, the Institute of the Thorax, Nantes, France; CNRS, UMR 6291, Nantes, France; School of Medicine, University of Nantes, Nantes, France.
| |
Collapse
|
10
|
Association of hepatitis C with markers of hemostasis in HIV-infected and uninfected women in the women's interagency HIV study (WIHS). J Acquir Immune Defic Syndr 2013; 62:301-10. [PMID: 23221984 DOI: 10.1097/qai.0b013e31827fdd61] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Coinfection with HIV and hepatitis C virus (HCV) is common. HIV infection and treatment are associated with hypercoagulability; thrombosis in HCV is underinvestigated. Proposed markers of hemostasis in HIV include higher D-dimer, Factor VIII%, and plasminogen activator inhibitor-1 (PAI-1) antigen and lower total Protein S% (TPS) but have not been examined in HCV. We assessed the independent association of HCV with these 4 measures of hemostasis in a multicenter, prospective study of HIV: the Women's Interagency HIV Study. METHODS We randomly selected 450 HCV-infected (anti-HCV+ with detectable plasma HCV RNA) and 450 HCV-uninfected (anti-HCV-) women. HCV was the main exposure of interest in regression models. RESULTS Four hundred forty-three HCV+ and 425 HCV- women were included. HCV+ women had higher Factor VIII% (124.4% ± 3.9% vs. 101.8% ± 3.7%, P < 0.001) and lower TPS (75.7% ± 1.1% vs. 84.3% ± 1.1%, <0.001) than HCV- women, independent of HIV infection and viral load; there was little difference in PAI-1 or log10 D-dimer. After adjustment for confounders, these inferences remained. HIV infection was independently associated with higher Factor VIII% and log10 D-dimer and lower TPS. CONCLUSIONS HCV was independently associated with higher Factor VIII% and lower TPS consistent with hypercoagulability. Higher Factor VIII% and D-dimer and lower TPS were also strongly associated with HIV infection and levels of HIV viremia, independent of HCV infection. Further investigation is needed to determine if there is increased thrombotic risk from HCV. Studies examining hemostasis markers in HIV infection must also assess the contribution of HCV infection.
Collapse
|
11
|
Tatsumi K, Ohashi K, Tateno C, Yoshizato K, Yoshioka A, Shima M, Okano T. Human hepatocyte propagation system in the mouse livers: functional maintenance of the production of coagulation and anticoagulation factors. Cell Transplant 2012; 21:437-45. [PMID: 22793051 DOI: 10.3727/096368911x605349] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
We previously reported that cell-based therapies using isolated hepatocytes including hepatocyte transplantation and liver tissue engineering approaches provide therapeutic benefits to hemophilia. For clinical application of these approaches, it is important to establish an active hepatocyte proliferation system that enables providing a sufficient number of hepatocytes. We also reported that human hepatocytes, which were transplanted into the liver of urokinase-type plasminogen activator transgenic severe combined immunodeficiency (uPA/SCID) mice, were able to proliferate while retaining their ability to produce coagulation factor IX. The objective of this study was to explore the functionalities of other coagulation and anticoagulation factors of the propagated human hepatocytes in uPA/SCID mice. Human hepatocytes were transplanted into the liver of uPA/SCID mice, and the propagation status of human hepatocytes in the mice was monitored by the increase in serum human albumin levels and immunohistochemical evaluation on the liver sections. Using uPA/SCID livers with various stages of human hepatocyte propagation, we analyzed the gene expression levels of coagulation factors (prothrombin, factor VII, factor X, and factor VIII) and anticoagulation factors (protein C and protein S) by real-time polymerase chain reaction (PCR) using human-specific primers. As a result, the total amount of raw messenger RNA expression levels increased in all genes analyzed according to the progress of hepatocyte propagation and proliferation. Except for factor VIII, the gene expression levels of the highly repopulated uPA/SCID mouse livers with human hepatocyte showed higher levels than those of normal human livers, indicating that propagated human hepatocytes in the uPA/SCID system possess full functions to produce most of the coagulation-related factors. The current work demonstrated that human hepatocytes can be propagated in experimental animals while maintaining normal gene expression levels of coagulation-related factors. It could be speculated that the propagated cells serve as a cell source for the treatment of various types of coagulation factor deficiencies.
Collapse
Affiliation(s)
- Kohei Tatsumi
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, Shinjuku-ku, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
12
|
Regulation of coagulation factors during liver regeneration in mice: Mechanism of factor VIII elevation in plasma. Thromb Res 2011; 128:54-61. [DOI: 10.1016/j.thromres.2011.01.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Revised: 12/09/2010] [Accepted: 01/13/2011] [Indexed: 11/18/2022]
|
13
|
McKay TR, Rahim AA, Buckley SM, Ward NJ, Chan JK, Howe SJ, Waddington SN. Perinatal gene transfer to the liver. Curr Pharm Des 2011; 17:2528-41. [PMID: 21774770 PMCID: PMC3182410 DOI: 10.2174/138161211797247541] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Accepted: 06/28/2011] [Indexed: 01/08/2023]
Abstract
The liver acts as a host to many functions hence raising the possibility that any one may be compromised by a single gene defect. Inherited or de novo mutations in these genes may result in relatively mild diseases or be so devastating that death within the first weeks or months of life is inevitable. Some diseases can be managed using conventional medicines whereas others are, as yet, untreatable. In this review we consider the application of early intervention gene therapy in neonatal and fetal preclinical studies. We appraise the tools of this technology, including lentivirus, adenovirus and adeno-associated virus (AAV)-based vectors. We highlight the application of these for a range of diseases including hemophilia, urea cycle disorders such as ornithine transcarbamylase deficiency, organic acidemias, lysosomal storage diseases including mucopolysaccharidoses, glycogen storage diseases and bile metabolism. We conclude by assessing the advantages and disadvantages associated with fetal and neonatal liver gene transfer.
Collapse
Affiliation(s)
- Tristan R McKay
- William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Ahad A Rahim
- Institute for Women’s Health, University College London, London, UK
| | | | - Natalie J Ward
- Institute for Women’s Health, University College London, London, UK
| | - Jerry K.Y Chan
- Experimental Fetal Medicine Group, National University of Singapore, Singapore
| | - Steven J Howe
- Institute of Child Health, University College London, London, UK
| | | |
Collapse
|
14
|
Abdelhafez OM, Amin KM, Batran RZ, Maher TJ, Nada SA, Sethumadhavan S. Synthesis, anticoagulant and PIVKA-II induced by new 4-hydroxycoumarin derivatives. Bioorg Med Chem 2010; 18:3371-8. [PMID: 20435480 DOI: 10.1016/j.bmc.2010.04.009] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Revised: 04/01/2010] [Accepted: 04/02/2010] [Indexed: 10/19/2022]
|
15
|
Biron-Andréani C, Raulet E, Pichard-Garcia L, Maurel P. Use of human hepatocytes to investigate blood coagulation factor. Methods Mol Biol 2010; 640:431-45. [PMID: 20645066 DOI: 10.1007/978-1-60761-688-7_23] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Coagulation is the complex process by which activation of plasmatic haemostasis proteins ends up with the generation of fibrin. Most of the plasma coagulation proteins are synthesized in hepatocytes. The aim of this chapter is to describe experimental procedures allowing to measure the secretion by primary human hepatocytes and functional activity (including production of fibrillar material from extracellular medium) of haemostasis proteins including factors II, V, VII, VIII, PIVKA-II (protein induced by vitK 1 absence or antagonist II), antithrombin and protein S. In addition, we show how treatments of hepatocyte cultures with vitamin K and/or warfarin affect the secretion of haemostasis proteins. The results demonstrate that primary cultures of human hepatocytes constitute an invaluable model for investigating haemostasis protein expression and activity and therapeutic strategies targeting these proteins.
Collapse
|
16
|
Gerbal-Chaloin S, Duret C, Raulet E, Navarro F, Blanc P, Ramos J, Maurel P, Daujat-Chavanieu M. Isolation and culture of adult human liver progenitor cells: in vitro differentiation to hepatocyte-like cells. Methods Mol Biol 2010; 640:247-260. [PMID: 20645055 DOI: 10.1007/978-1-60761-688-7_12] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Highly differentiated normal human hepatocytes represent the gold standard cellular model for basic and applied research in liver physiopathology, pharmacology, toxicology, virology, and liver biotherapy. Nowadays, although livers from organ donors or medically required resections represent the current sources of hepatocytes, the possibility to generate hepatocytes from the differentiation of adult and embryonic stem cells represents a promising opportunity. The aim of this chapter is to describe our experience with the isolation from adult human liver and culture of non-parenchymal epithelial cells. Under appropriate conditions, these cells differentiate in vitro in hepatocyte-like cells and therefore appear to behave as liver progenitor cells.
Collapse
|
17
|
Tatsumi K, Ohashi K, Taminishi S, Takagi S, Utoh R, Yoshioka A, Shima M, Okano T. Effects on coagulation factor production following primary hepatomitogen-induced direct hyperplasia. World J Gastroenterol 2009; 15:5307-15. [PMID: 19908339 PMCID: PMC2776858 DOI: 10.3748/wjg.15.5307] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the molecular mechanisms involved in coagulation factor expression and/or function during direct hyperplasia (DH)-mediated liver regeneration.
METHODS: Direct hyperplasia-mediated liver regeneration was induced in female C57BL/6 mice by administering 1,4-bis[2-(3,5-dichloropyridyloxy)] benzene (TCPOBOP), a representative hepatomitogen. Mice were weighed and sacrificed at various time points [Day 0 (D0: prior to injection), 3 h, D1, D2, D3, and D10] after TCPOBOP administration to obtain liver and blood samples. Using the RNA samples extracted from the liver, a comprehensive analysis was performed on the hepatic gene expression profiling of coagulation-related factors by real-time RT-PCR (fibrinogen, prothrombin, factors V, VII, VIII, IX, X, XI, XII, XIIIβ, plasminogen, antithrombin, protein C, protein S, ADAMTS13, and VWF). The corresponding plasma levels of coagulation factors (fibrinogen, prothrombin, factors V, VII, VIII, IX, X, XI, XII, XIII, and VWF) were also analyzed and compared with their mRNA levels.
RESULTS: Gavage administration of TCPOBOP (3 mg/kg body weight) resulted in a marked and gradual increase in the weight of the mouse livers relative to the total body weight to 220% by D10 relative to the D0 (control) ratios. At the peak of liver regeneration (D1 and D2), the gene expression levels for most of the coagulation-related factors (fibrinogen, prothrombin, factors V, VII, VIII, IX, XI, XII, XIIIβ, plasminogen, antithrombin, protein C, ADAMTS13, VWF) were found to be down-regulated in a time-dependent manner, and gradually recovered by D10 to the basal levels. Only mRNA levels of factor X and protein S failed to show any decrease during the regenerative phase. As for the plasma levels, 5 clotting factors (prothrombin, factors VIII, IX, XI, and XII) demonstrated a significant decrease (P < 0.05) during the regeneration phase compared with D0. Among these 5 factors, factor IX and factor XI showed the most dramatic decline in their activities by about 50% at D2 compared to the basal levels, and these reductions in plasma activity for both factors were consistent with our RT-PCR findings. In contrast, the plasma activities of the other coagulation factors (fibrinogen, factors V, VII, XIII, and VWF) were not significantly reduced, despite the reduction in the liver mRNA levels. Unlike the other factors, FX showed a temporal increase in its plasma activity, with significant increases (P < 0.05) detected at D1.
CONCLUSION: Investigating the coagulation cascade protein profiles during liver regeneration by DH may help to better understand the basic biology of the liver under normal and pathological conditions.
Collapse
|
18
|
Serum-derived hepatitis C virus infection of primary human hepatocytes is tetraspanin CD81 dependent. J Virol 2007; 82:569-74. [PMID: 17942559 DOI: 10.1128/jvi.01443-07] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hepatitis C virus-positive serum (HCVser, genotypes 1a to 3a) or HCV cell culture (JFH1/HCVcc) infection of primary normal human hepatocytes was assessed by measuring intracellular HCV RNA strands. Anti-CD81 antibodies and siRNA-CD81 silencing markedly inhibited (>90%) HCVser infection irrespective of HCV genotype, viral load, or liver donor, while hCD81-large intracellular loop (LEL) had no effect. However, JFH1/HCVcc infection of hepatocytes was modestly inhibited (40 to 60%) by both hCD81-LEL and anti-CD81 antibodies. In conclusion, CD81 is involved in HCVser infection of human hepatocytes, and comparative studies of HCVser versus JFH1/HCVcc infection of human hepatocytes and Huh-7.5 cells revealed that the cell-virion combination is determinant of the entry process.
Collapse
|
19
|
Boost KA, Auth MKH, Woitaschek D, Kim HS, Hilgard P, Nadalin S, Blaheta RA. Long-term production of major coagulation factors and inhibitors by primary human hepatocytes in vitro: perspectives for clinical application. Liver Int 2007; 27:832-44. [PMID: 17617127 DOI: 10.1111/j.1478-3231.2007.01472.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND/AIMS Patients with coagulation factor disorders require lifelong symptomatic treatment. This is associated with limited efficacy and transmission risks. From a clinical point of view, hepatocyte transplantation offers a rational alternative but is currently being hampered by lack of functional stability of engrafted cells. It was the aim of our study to devise culture conditions providing stable cell polarity, attachment and growth factor stimulation to improve longevity and coagulation factor production. METHODS Human hepatocytes (HC) were plated on different extracellular matrices, inside collagen gel or Matrigel. HC were grown inside growth factor-enriched serum-free medium (SFM) or exposed to media switching from differentiation (DM) to dedifferentiation (DeDM). RESULTS Over more than 30 days in vitro human HC synthesized coagulation factors (factors VII, VIII, IX, fibrinogen) and coagulation inhibitors (antithrombin III, protein C). Protein synthesis was augmented when HC were grown inside a 3D collagen type I matrix, while Matrigel showed no additional benefit. Soluble growth factors improved coagulation factor production when applied in SFM or in sequential DM/DeDM. Coagulation factor levels ranged from 3% to 12% in the first week to 2.5-5% after 4 weeks, reaching biologically relevant levels. CONCLUSION Preserved synthesis and secretion of coagulation factors in balanced proportion by human HC in this model may offer new perspectives for HC transplantation in coagulation defects of patients.
Collapse
Affiliation(s)
- Kim A Boost
- Department of Anesthesiology, Intensive Care and Pain Therapy, Johann Wolfgang Goethe-University, Frankfurt am Main, Germany
| | | | | | | | | | | | | |
Collapse
|
20
|
Molina S, Castet V, Fournier-Wirth C, Pichard-Garcia L, Avner R, Harats D, Roitelman J, Barbaras R, Graber P, Ghersa P, Smolarsky M, Funaro A, Malavasi F, Larrey D, Coste J, Fabre JM, Sa-Cunha A, Maurel P. The low-density lipoprotein receptor plays a role in the infection of primary human hepatocytes by hepatitis C virus. J Hepatol 2007; 46:411-9. [PMID: 17156886 DOI: 10.1016/j.jhep.2006.09.024] [Citation(s) in RCA: 214] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2006] [Revised: 09/26/2006] [Accepted: 09/29/2006] [Indexed: 12/20/2022]
Abstract
BACKGROUND/AIMS The direct implication of low-density lipoprotein receptor (LDLR) in hepatitis C virus (HCV) infection of human hepatocyte has not been demonstrated. Normal primary human hepatocytes infected by serum HCV were used to document this point. METHODS Expression and activity of LDLR were assessed by RT-PCR and LDL entry, in the absence or presence of squalestatin or 25-hydroxycholesterol that up- or down-regulates LDLR expression, respectively. Infection was performed in the absence or presence of LDL, HDL, recombinant soluble LDLR peptides encompassing full-length (r-shLDLR4-292) or truncated (r-shLDLR4-166) LDL-binding domain, monoclonal antibodies against r-shLDLR4-292, squalestatin or 25-hydroxycholesterol. Intracellular amounts of replicative and genomic HCV RNA strands used as end point of infection were assessed by RT-PCR. RESULTS r-shLDLR4-292, antibodies against r-shLDLR4-292 and LDL inhibited viral RNA accumulation, irrespective of genotype, viral load or liver donor. Inhibition was greatest when r-shLDLR4-292 was present at the time of inoculation and gradually decreased as the delay between inoculation and r-shLDLR4-292 treatment increased. In hepatocytes pre-treated with squalestatin or 25-hydroxycholesterol before infection, viral RNA accumulation increased or decreased in parallel with LDLR mRNA expression and LDL entry. CONCLUSIONS LDLR is involved at an early stage in infection of normal human hepatocytes by serum-derived HCV virions.
Collapse
MESH Headings
- Adolescent
- Adult
- Aged
- Antibodies/physiology
- Anticholesteremic Agents/pharmacology
- Bridged Bicyclo Compounds, Heterocyclic/pharmacology
- CD18 Antigens/physiology
- Cells, Cultured
- Female
- Gene Expression Regulation/drug effects
- Hepacivirus/genetics
- Hepacivirus/pathogenicity
- Hepacivirus/physiology
- Hepatitis C/pathology
- Hepatitis C/physiopathology
- Hepatocytes/pathology
- Hepatocytes/virology
- Humans
- Hydroxycholesterols/pharmacology
- Lipoproteins, HDL/physiology
- Lipoproteins, LDL/physiology
- Male
- Middle Aged
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Receptors, LDL/genetics
- Receptors, LDL/immunology
- Receptors, LDL/physiology
- Scavenger Receptors, Class B/physiology
- Tricarboxylic Acids/pharmacology
- Viral Load
- Virion
Collapse
Affiliation(s)
- Sonia Molina
- Inserm, U632, Hepatic Physiopathology, 1919 route de Mende, 34293 Montpellier Cedex 5, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Lawley WJ, Charlton AJA, Hughson EJ, Grundy HH, Brown PM, Jones A. Development of a cell culture/ELISA assay to detect anticoagulant rodenticides and its application to analysis of rodenticide treated grain. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2006; 54:1588-93. [PMID: 16506805 DOI: 10.1021/jf052656n] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
This study describes a generic biological screening assay designed to detect anticoagulant rodenticides based on their inhibitory action on the vitamin K epoxide reductase protein complex, resulting in an accumulation of under-carboxylated prothrombin or proteins induced by vitamin K antagonism (PIVKA-II). A combined cell culture/ELISA assay was optimized to measure PIVKA-II production by the human hepatoma HepG2 cell line cultured in the presence of anticoagulant rodenticides. The specificity and sensitivity of the assay was validated using 41 grain extracts containing representative concentrations of rodenticide or appropriate nonrodenticide control compounds. In all cases, PIVKA-II produced by HepG2 cells in response to grain extracts spiked with rodenticides was detected by ELISA, while PIVKA-II was not detected in supernatants collected from cells exposed to nonrodenticide controls. This represents a novel, class-specific biological assay for the detection of anticoagulant rodenticides present in contaminated grain.
Collapse
Affiliation(s)
- Wendy J Lawley
- Food Science Group, Central Science Laboratory, Sand Hutton, York YO41 1LZ United Kingdom.
| | | | | | | | | | | |
Collapse
|
22
|
Kumaran V, Benten D, Follenzi A, Joseph B, Sarkar R, Gupta S. Transplantation of endothelial cells corrects the phenotype in hemophilia A mice. J Thromb Haemost 2005; 3:2022-31. [PMID: 16102109 DOI: 10.1111/j.1538-7836.2005.01508.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND The deficiency of factor VIII, a co-factor in the intrinsic coagulation pathway results in hemophilia A. Although FVIII is synthesized largely in the liver, the specific liver cell type(s) responsible for FVIII production is controversial. OBJECTIVE This study aimed to determine the cellular origin of FVIII synthesis and release in mouse models. METHODS We transplanted cells into the peritoneal cavity of hemophilia A knockout mice. Plasma FVIII activity was measured using a Chromogenix assay 2-7 days after cell transplantation, and phenotypic correction was determined with tail-clip challenge 7 days following cell transplantation. Transplanted cells were identified by histologic and molecular assays. RESULTS Untreated hemophilia A mice, as well as mice treated with the hepatocyte-enriched fraction, showed extensive mortality following tail-clip challenge. In contrast, recipients of unfractionated liver cells (mixture of hepatocytes, liver sinusoidal endothelial cells (LSEC), Kupffer cells, and hepatic stellate cells) or of the cell fraction enriched in LSECs survived tail-clip challenge (P < 0.001). FVIII was secreted in the blood stream in recipients of unfractionated liver cells, LSECs and pancreatic islet-derived MILE SVEN 1 (MS1) endothelial cells. Although transplanted hepatocytes maintained functional integrity in the peritoneal cavity, these cells did not produce detectable plasma FVIII activity. CONCLUSIONS The assay of cell transplantation in the peritoneal cavity showed that endothelial cells but not hepatocytes produced phenotypic correction in hemophilia A mice. Therefore, endothelial cells should be suitable additional targets for cell and gene therapy in hemophilia A.
Collapse
Affiliation(s)
- V Kumaran
- Marion Bessin Liver Research Center, Departments of Medicine and Pathology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | | | | | |
Collapse
|
23
|
Edwards S, Lalor PF, Nash GB, Rainger GE, Adams DH. Lymphocyte traffic through sinusoidal endothelial cells is regulated by hepatocytes. Hepatology 2005; 41:451-9. [PMID: 15723297 DOI: 10.1002/hep.20585] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Crosstalk between hepatic sinusoidal ECs and closely juxtaposed hepatocytes via vascular endothelial growth factor is essential for the maintenance of sinusoidal endothelial growth and differentiation. We propose that paracrine interactions between endothelial cells and hepatocytes also may be responsible for the unique complement of adhesion receptors expressed on sinusoidal endothelium that regulate the recruitment of lymphocytes into the liver. To address this hypothesis, we developed an in vitro model of the hepatic sinusoid in which flowing lymphocytes could interact with hepatic endothelium conditioned by the presence of hepatocytes. Human hepatic sinusoidal endothelial cells cocultured with hepatocytes were activated so that they supported the adhesion of lymphocytes at levels equivalent to those seen on endothelium stimulated with the inflammatory cytokine tumour necrosis factor-beta. Lymphocyte adhesion was supported by intracellular adhesion molecule 1, vascular cell adhesion molecule 1, and E-selectin, with an additional contribution from the novel adhesion receptor VAP-1. In conclusion, we show that interactions between hepatocytes and endothelial cells amplify leukocyte recruitment through the sinusoids by regulating the expression and function of endothelial adhesion molecules. These paracrine interactions may be responsible for the induction of the adhesion molecules that support constitutive lymphocyte recruitment to the liver as well as contributing significantly to the patterns of leukocyte adhesion seen during episodes of hepatic inflammation.
Collapse
Affiliation(s)
- Sarah Edwards
- Liver Research Group, Institute for Biomedical Science, Edgbaston, Birmingham, United Kingdom
| | | | | | | | | |
Collapse
|