1
|
Gassert FG, Kranz J, Gassert FT, Schwaiger BJ, Bogner C, Makowski MR, Glanz L, Stelter J, Baum T, Braren R, Karampinos DC, Gersing AS. Longitudinal MR-based proton-density fat fraction (PDFF) and T2* for the assessment of associations between bone marrow changes and myelotoxic chemotherapy. Eur Radiol 2024; 34:2437-2444. [PMID: 37691079 PMCID: PMC10957695 DOI: 10.1007/s00330-023-10189-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 04/14/2023] [Accepted: 07/07/2023] [Indexed: 09/12/2023]
Abstract
OBJECTIVES MR imaging-based proton density fat fraction (PDFF) and T2* imaging has shown to be useful for the evaluation of degenerative changes in the spine. Therefore, the aim of this study was to investigate the influence of myelotoxic chemotherapy on the PDFF and T2* of the thoracolumbar spine in comparison to changes in bone mineral density (BMD). METHODS In this study, 19 patients were included who had received myelotoxic chemotherapy (MC) and had received a MR imaging scan of the thoracolumbar vertebrates before and after the MC. Every patient was matched for age, sex, and time between the MRI scans to two controls without MC. All patients underwent 3-T MR imaging including the thoracolumbar spine comprising chemical shift encoding-based water-fat imaging to extract PDFF and T2* maps. Moreover, trabecular BMD values were determined before and after chemotherapy. Longitudinal changes in PDFF and T2* were evaluated and compared to changes in BMD. RESULTS Absolute mean differences of PDFF values between scans before and after MC were at 8.7% (p = 0.01) and at -0.5% (p = 0.57) in the control group, resulting in significantly higher changes in PDFF in patients with MC (p = 0.008). BMD and T2* values neither showed significant changes in patients with nor in those without myelotoxic chemotherapy (p = 0.15 and p = 0.47). There was an inverse, yet non-significant correlation between changes in PDFF and BMD found in patients with myelotoxic chemotherapy (r = -0.41, p = 0.12). CONCLUSION Therefore, PDFF could be a useful non-invasive biomarker in order to detect changes in the bone marrow in patients receiving myelotoxic therapy. CLINICAL RELEVANCE STATEMENT Using PDFF as a non-invasive biomarker for early bone marrow changes in oncologic patients undergoing myelotoxic treatment may help enable more targeted countermeasures at commencing states of bone marrow degradation and reduce risks of possible fragility fractures. KEY POINTS Quantifying changes in bone marrow fat fraction, as well as T2* caused by myelotoxic pharmaceuticals using proton density fat fraction, is feasible. Proton density fat fraction could potentially be established as a non-invasive biomarker for early bone marrow changes in oncologic patients undergoing myelotoxic treatment.
Collapse
Affiliation(s)
- Felix G Gassert
- Department of Radiology, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, Ismaninger Strasse 22, 81675, Munich, Germany.
| | - Julia Kranz
- Department of Radiology, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, Ismaninger Strasse 22, 81675, Munich, Germany
| | - Florian T Gassert
- Department of Radiology, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, Ismaninger Strasse 22, 81675, Munich, Germany
| | - Benedikt J Schwaiger
- Department of Radiology, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, Ismaninger Strasse 22, 81675, Munich, Germany
- Department of Neuroradiology, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Christian Bogner
- Department of Oncology, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Marcus R Makowski
- Department of Radiology, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, Ismaninger Strasse 22, 81675, Munich, Germany
| | - Leander Glanz
- Department of Radiology, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, Ismaninger Strasse 22, 81675, Munich, Germany
| | - Jonathan Stelter
- Department of Radiology, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, Ismaninger Strasse 22, 81675, Munich, Germany
| | - Thomas Baum
- Department of Neuroradiology, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Rickmer Braren
- Department of Radiology, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, Ismaninger Strasse 22, 81675, Munich, Germany
| | - Dimitrios C Karampinos
- Department of Radiology, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, Ismaninger Strasse 22, 81675, Munich, Germany
| | - Alexandra S Gersing
- Department of Radiology, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, Ismaninger Strasse 22, 81675, Munich, Germany
- Department of Neuroradiology, University Hospital of Munich, Ludwig-Maximilians University Munich, Munich, Germany
| |
Collapse
|
2
|
Brozovich AA, Lenna S, Brenner C, Serpelloni S, Paradiso F, McCulloch P, Yustein JT, Weiner B, Taraballi F. Systemic Cisplatin Does Not Affect the Bone Regeneration Process in a Critical Size Defect Murine Model. ACS Biomater Sci Eng 2024; 10:1646-1660. [PMID: 38350651 PMCID: PMC10936525 DOI: 10.1021/acsbiomaterials.3c01266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 02/15/2024]
Abstract
Osteosarcoma (OS) is the most common primary malignant bone tumor, and the current standard of care for OS includes neoadjuvant chemotherapy, followed by an R0 surgical resection of the primary tumor, and then postsurgical adjuvant chemotherapy. Bone reconstruction following OS resection is particularly challenging due to the size of the bone voids and because patients are treated with adjuvant and neoadjuvant systemic chemotherapy, which theoretically could impact bone formation. We hypothesized that an osteogenic material could be used in order to induce bone regeneration when adjuvant or neoadjuvant chemotherapy is given. We utilized a biomimetic, biodegradable magnesium-doped hydroxyapatite/type I collagen composite material (MHA/Coll) to promote bone regeneration in the presence of systemic chemotherapy in a murine critical size defect model. We found that in the presence of neoadjuvant or adjuvant chemotherapy, MHA/Coll is able to enhance and increase bone formation in a murine critical size defect model (11.16 ± 2.55 or 13.80 ± 3.18 versus 8.70 ± 0.81 mm3) for pre-op cisplatin + MHA/Coll (p-value = 0.1639) and MHA/Coll + post-op cisplatin (p-value = 0.1538), respectively, at 12 weeks. These findings indicate that neoadjuvant and adjuvant chemotherapy will not affect the ability of a biomimetic scaffold to regenerate bone to repair bone voids in OS patients. This preliminary data demonstrates that bone regeneration can occur in the presence of chemotherapy, suggesting that there may not be a necessity to modify the current standard of care concerning neoadjuvant and adjuvant chemotherapy for the treatment of metastatic sites or micrometastases.
Collapse
Affiliation(s)
- Ava A. Brozovich
- Department
of Orthopedics, Ohio State University, Wexner
Medical Center, 410 W.
10th Avenue, Columbus, Ohio 43210, United States
- Center
for Musculoskeletal Regeneration, Houston
Methodist Research Institute, Houston, Texas 77030, United States
- Houston
Methodist Orthopedics & Sports Medicine, Houston Methodist Hospital, Houston, Texas 77030, United States
| | - Stefania Lenna
- Center
for Musculoskeletal Regeneration, Houston
Methodist Research Institute, Houston, Texas 77030, United States
- Houston
Methodist Orthopedics & Sports Medicine, Houston Methodist Hospital, Houston, Texas 77030, United States
| | - Carson Brenner
- Department
of Orthopedics, Ohio State University, Wexner
Medical Center, 410 W.
10th Avenue, Columbus, Ohio 43210, United States
| | - Stefano Serpelloni
- Center
for Musculoskeletal Regeneration, Houston
Methodist Research Institute, Houston, Texas 77030, United States
- Houston
Methodist Orthopedics & Sports Medicine, Houston Methodist Hospital, Houston, Texas 77030, United States
- Department
of Electronics, Informatics, and Bioengineering (DEIB), Politecnico di Milano, Milan 20133, Italy
| | - Francesca Paradiso
- Center
for Musculoskeletal Regeneration, Houston
Methodist Research Institute, Houston, Texas 77030, United States
- Houston
Methodist Orthopedics & Sports Medicine, Houston Methodist Hospital, Houston, Texas 77030, United States
| | - Patrick McCulloch
- Houston
Methodist Orthopedics & Sports Medicine, Houston Methodist Hospital, Houston, Texas 77030, United States
| | - Jason T. Yustein
- Aflac
Cancer and Blood Disorders Center, Emory
University, Atlanta, Georgia 30322, United States
| | - Bradley Weiner
- Center
for Musculoskeletal Regeneration, Houston
Methodist Research Institute, Houston, Texas 77030, United States
- Houston
Methodist Orthopedics & Sports Medicine, Houston Methodist Hospital, Houston, Texas 77030, United States
| | - Francesca Taraballi
- Center
for Musculoskeletal Regeneration, Houston
Methodist Research Institute, Houston, Texas 77030, United States
- Houston
Methodist Orthopedics & Sports Medicine, Houston Methodist Hospital, Houston, Texas 77030, United States
| |
Collapse
|
3
|
Blitzer GC, Paz C, Glassey A, Ganz OR, Giri J, Pennati A, Meyers RO, Bates AM, Nickel KP, Weiss M, Morris ZS, Mattison RJ, McDowell KA, Croxford E, Chappell RJ, Glazer TA, Rogus-Pulia NM, Galipeau J, Kimple RJ. Functionality of bone marrow mesenchymal stromal cells derived from head and neck cancer patients - A FDA-IND enabling study regarding MSC-based treatments for radiation-induced xerostomia. Radiother Oncol 2024; 192:110093. [PMID: 38224919 PMCID: PMC10922976 DOI: 10.1016/j.radonc.2024.110093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/17/2024]
Abstract
PURPOSE Salivary dysfunction is a significant side effect of radiation therapy for head and neck cancer (HNC). Preliminary data suggests that mesenchymal stromal cells (MSCs) can improve salivary function. Whether MSCs from HNC patients who have completed chemoradiation are functionally similar to those from healthy patients is unknown. We performed a pilot clinical study to determine whether bone marrow-derived MSCs [MSC(M)] from HNC patients could be used for the treatment of RT-induced salivary dysfunction. METHODS An IRB-approved pilot clinical study was undertaken on HNC patients with xerostomia who had completed treatment two or more years prior. Patients underwent iliac crest bone marrow aspirate and MSC(M) were isolated and cultured. Culture-expanded MSC(M) were stimulated with IFNγ and cryopreserved prior to reanimation and profiling for functional markers by flow cytometry and ELISA. MSC(M) were additionally injected into mice with radiation-induced xerostomia and the changes in salivary gland histology and salivary production were examined. RESULTS A total of six subjects were enrolled. MSC(M) from all subjects were culture expanded to > 20 million cells in a median of 15.5 days (range 8-20 days). Flow cytometry confirmed that cultured cells from HNC patients were MSC(M). Functional flow cytometry demonstrated that these IFNγ-stimulated MSC(M) acquired an immunosuppressive phenotype. IFNγ-stimulated MSC(M) from HNC patients were found to express GDNF, WNT1, and R-spondin 1 as well as pro-angiogenesis and immunomodulatory cytokines. In mice, IFNγ-stimulated MSC(M) injection after radiation decreased the loss of acinar cells, decreased the formation of fibrosis, and increased salivary production. CONCLUSIONS MSC (M) from previously treated HNC patients can be expanded for auto-transplantation and are functionally active. Furthermore IFNγ-stimulated MSC(M) express proteins implicated in salivary gland regeneration. This study provides preliminary data supporting the feasibility of using autologous MSC(M) from HNC patients to treat RT-induced salivary dysfunction.
Collapse
Affiliation(s)
- Grace C Blitzer
- Department of Human Oncology, 600 Highland Ave, University of Wisconsin, School of Medicine and Public Health, Madison, WI 53705 USA
| | - Cristina Paz
- Department of Human Oncology, 600 Highland Ave, University of Wisconsin, School of Medicine and Public Health, Madison, WI 53705 USA
| | - Annemarie Glassey
- Department of Human Oncology, 600 Highland Ave, University of Wisconsin, School of Medicine and Public Health, Madison, WI 53705 USA
| | - Olga R Ganz
- Department of Medicine, 600 Highland Ave, University of Wisconsin, School of Medicine and Public Health, Madison, WI 53705 USA
| | - Jayeeta Giri
- Department of Medicine, 600 Highland Ave, University of Wisconsin, School of Medicine and Public Health, Madison, WI 53705 USA
| | - Andrea Pennati
- Department of Medicine, 600 Highland Ave, University of Wisconsin, School of Medicine and Public Health, Madison, WI 53705 USA; UW Carbone Cancer Center, 600 Highland Ave, University of Wisconsin, School of Medicine and Public Health, Madison, WI 53705 USA
| | - Ross O Meyers
- Department of Human Oncology, 600 Highland Ave, University of Wisconsin, School of Medicine and Public Health, Madison, WI 53705 USA; Department of Medicine, 600 Highland Ave, University of Wisconsin, School of Medicine and Public Health, Madison, WI 53705 USA
| | - Amber M Bates
- Department of Human Oncology, 600 Highland Ave, University of Wisconsin, School of Medicine and Public Health, Madison, WI 53705 USA
| | - Kwangok P Nickel
- Department of Human Oncology, 600 Highland Ave, University of Wisconsin, School of Medicine and Public Health, Madison, WI 53705 USA
| | - Marissa Weiss
- Department of Human Oncology, 600 Highland Ave, University of Wisconsin, School of Medicine and Public Health, Madison, WI 53705 USA
| | - Zachary S Morris
- Department of Human Oncology, 600 Highland Ave, University of Wisconsin, School of Medicine and Public Health, Madison, WI 53705 USA
| | - Ryan J Mattison
- Department of Medicine, 600 Highland Ave, University of Wisconsin, School of Medicine and Public Health, Madison, WI 53705 USA; UW Carbone Cancer Center, 600 Highland Ave, University of Wisconsin, School of Medicine and Public Health, Madison, WI 53705 USA
| | - Kimberly A McDowell
- Department of Medicine, 600 Highland Ave, University of Wisconsin, School of Medicine and Public Health, Madison, WI 53705 USA
| | - Emma Croxford
- Department of Biostatistics and Medical Informatics, 610 Walnut Street, University of Wisconsin, School of Medicine and Public Health, Madison, WI 53726 USA
| | - Richard J Chappell
- Department of Biostatistics and Medical Informatics, 610 Walnut Street, University of Wisconsin, School of Medicine and Public Health, Madison, WI 53726 USA; UW Carbone Cancer Center, 600 Highland Ave, University of Wisconsin, School of Medicine and Public Health, Madison, WI 53705 USA
| | - Tiffany A Glazer
- Department of Surgery, 600 Highland Ave, University of Wisconsin, School of Medicine and Public Health, Madison, WI 53705 USA
| | - Nicole M Rogus-Pulia
- Department of Medicine, 600 Highland Ave, University of Wisconsin, School of Medicine and Public Health, Madison, WI 53705 USA; UW Carbone Cancer Center, 600 Highland Ave, University of Wisconsin, School of Medicine and Public Health, Madison, WI 53705 USA; Geriatric Research Education and Clinical Center, 2500 Overlook Terrace, William S. Middleton Memorial Veterans Hospital, Madison, WI 53705 USA
| | - Jacques Galipeau
- Department of Medicine, 600 Highland Ave, University of Wisconsin, School of Medicine and Public Health, Madison, WI 53705 USA; UW Carbone Cancer Center, 600 Highland Ave, University of Wisconsin, School of Medicine and Public Health, Madison, WI 53705 USA
| | - Randall J Kimple
- Department of Human Oncology, 600 Highland Ave, University of Wisconsin, School of Medicine and Public Health, Madison, WI 53705 USA; UW Carbone Cancer Center, 600 Highland Ave, University of Wisconsin, School of Medicine and Public Health, Madison, WI 53705 USA.
| |
Collapse
|
4
|
Peymanfar Y, Su YW, Hassanshahi M, Xian CJ. Methotrexate treatment suppresses osteoblastic differentiation by inducing Notch2 signaling and blockade of Notch2 rescues osteogenesis by preserving Wnt/β-catenin signaling. J Orthop Res 2022; 40:2258-2270. [PMID: 34935186 DOI: 10.1002/jor.25253] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 11/22/2021] [Accepted: 12/19/2021] [Indexed: 02/04/2023]
Abstract
Methotrexate (MTX) is a commonly used antimetabolite in cancer treatment. Its intensive use is linked with skeletal adverse effects such as reduced bone formation and bone loss, and yet little information is available on molecular mechanisms underlying MTX-induced impaired bone formation. This study investigated the effects of MTX treatment at a clinical chemotherapy relevant dose on osteogenic differentiation in MC3T3E1 osteoblastic cells. To investigate the potential mechanisms, the expression of 87 genes regulating osteoblast differentiation and bone homeostasis was screened in MTX-treated versus untreated cells by polymerase chain reaction (PCR) arrays and results illustrated significant upregulation of Notch2 and Notch target genes at both early and late stages of MC3T3E1 differentiation following MTX treatment. To confirm the roles of Notch2 pathway and its potential action mechanisms, MC3T3E1 cells were treated with MTX with an anti-Notch2 neutralizing antibody or control IgG and effects were examined on osteogenesis and activation of the Wnt/β-catenin pathway. Our results demonstrated that induction of Notch2 activity is associated with MTX adverse effects on osteogenic differentiation and blocking Notch2 rescues osteoblast differentiation by preserving activation of the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Yaser Peymanfar
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Yu-Wen Su
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | | | - Cory J Xian
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| |
Collapse
|
5
|
Therapeutic Targeting Notch2 Protects Bone Micro-Vasculatures from Methotrexate Chemotherapy-Induced Adverse Effects in Rats. Cells 2022; 11:cells11152382. [PMID: 35954226 PMCID: PMC9367713 DOI: 10.3390/cells11152382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/22/2022] [Accepted: 07/30/2022] [Indexed: 02/04/2023] Open
Abstract
Intensive cancer chemotherapy is well known to cause bone vasculature disfunction and damage, but the mechanism is poorly understood and there is a lack of treatment. Using a rat model of methotrexate (MTX) chemotherapy (five once-daily dosses at 0.75 mg/kg), this study investigated the roles of the Notch2 signalling pathway in MTX chemotherapy-induced bone micro-vasculature impairment. Gene expression, histological and micro-computed tomography (micro-CT) analyses revealed that MTX-induced micro-vasculature dilation and regression is associated with the induction of Notch2 activity in endothelial cells and increased production of inflammatory cytokine tumour necrosis factor alpha (TNFα) from osteoblasts (bone forming cells) and bone marrow cells. Blockade of Notch2 by a neutralising antibody ameliorated MTX adverse effects on bone micro-vasculature, both directly by supressing Notch2 signalling in endothelial cells and indirectly via reducing TNFα production. Furthermore, in vitro studies using rat bone marrow-derived endothelial cell revealed that MTX treatment induces Notch2/Hey1 pathway and negatively affects their ability in migration and tube formation, and Notch2 blockade can partially protect endothelial cell functions from MTX damage.
Collapse
|
6
|
Plava J, Burikova M, Cihova M, Trnkova L, Smolkova B, Babal P, Krivosikova L, Janega P, Rojikova L, Drahosova S, Bohac M, Danisovic L, Kucerova L, Miklikova S. Chemotherapy-triggered changes in stromal compartment drive tumor invasiveness and progression of breast cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:302. [PMID: 34579743 PMCID: PMC8477536 DOI: 10.1186/s13046-021-02087-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 08/26/2021] [Indexed: 12/19/2022]
Abstract
Background Chemotherapy remains a standard treatment option for breast cancer despite its toxic effects to normal tissues. However, the long-lasting effects of chemotherapy on non-malignant cells may influence tumor cell behavior and response to treatment. Here, we have analyzed the effects of doxorubicin (DOX) and paclitaxel (PAC), commonly used chemotherapeutic agents, on the survival and cellular functions of mesenchymal stromal cells (MSC), which comprise an important part of breast tumor microenvironment. Methods Chemotherapy-exposed MSC (DOX-MSC, PAC-MSC) were co-cultured with three breast cancer cell (BCC) lines differing in molecular characteristics to study chemotherapy-triggered changes in stromal compartment of the breast tissue and its relevance to tumor progression in vitro and in vivo. Conditioned media from co-cultured cells were used to determine the cytokine content. Mixture of BCC and exposed or unexposed MSC were subcutaneously injected into the immunodeficient SCID/Beige mice to analyze invasion into the surrounding tissue and possible metastases. The same mixtures of cells were applied on the chorioallantoic membrane to study angiogenic potential. Results Therapy-educated MSC differed in cytokine production compared to un-exposed MSC and influenced proliferation and secretory phenotype of tumor cells in co-culture. Histochemical tumor xenograft analysis revealed increased invasive potential of tumor cells co-injected with DOX-MSC or PAC-MSC and also the presence of nerve fiber infiltration in tumors. Chemotherapy-exposed MSC have also influenced angiogenic potential in the model of chorioallantoic membrane. Conclusions Data presented in this study suggest that neoadjuvant chemotherapy could possibly alter otherwise healthy stroma in breast tissue into a hostile tumor-promoting and metastasis favoring niche. Understanding of the tumor microenvironment and its complex net of signals brings us closer to the ability to recognize the mechanisms that prevent failure of standard therapy and accomplish the curative purpose. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-021-02087-2.
Collapse
Affiliation(s)
- Jana Plava
- Biomedical Research Center of the Slovak Academy of Sciences, Dubravska cesta 9, 845 05, Bratislava, Slovakia.
| | - Monika Burikova
- Biomedical Research Center of the Slovak Academy of Sciences, Dubravska cesta 9, 845 05, Bratislava, Slovakia
| | - Marina Cihova
- Biomedical Research Center of the Slovak Academy of Sciences, Dubravska cesta 9, 845 05, Bratislava, Slovakia
| | - Lenka Trnkova
- Biomedical Research Center of the Slovak Academy of Sciences, Dubravska cesta 9, 845 05, Bratislava, Slovakia
| | - Bozena Smolkova
- Biomedical Research Center of the Slovak Academy of Sciences, Dubravska cesta 9, 845 05, Bratislava, Slovakia
| | - Pavel Babal
- Department of Pathology, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 4, 811 08, Bratislava, Slovakia
| | - Lucia Krivosikova
- Department of Pathology, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 4, 811 08, Bratislava, Slovakia
| | - Pavol Janega
- Department of Pathology, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 4, 811 08, Bratislava, Slovakia
| | - Lucia Rojikova
- Biomedical Research Center of the Slovak Academy of Sciences, Dubravska cesta 9, 845 05, Bratislava, Slovakia
| | - Slavka Drahosova
- Hermes LabSystems, s.r.o., Puchovska 12, 831 06, Bratislava, Slovakia
| | - Martin Bohac
- 2nd Department of Oncology, Faculty of Medicine, Comenius University, National Cancer Institute, Klenova 1, 833 10, Bratislava, Slovakia.,Department of Oncosurgery, National Cancer Institute, Klenova 1, Bratislava, Slovakia.,Regenmed Ltd, Medena 29, 811 08, Bratislava, Slovakia
| | - Lubos Danisovic
- Regenmed Ltd, Medena 29, 811 08, Bratislava, Slovakia.,Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 4, 811 08, Bratislava, Slovakia
| | - Lucia Kucerova
- Biomedical Research Center of the Slovak Academy of Sciences, Dubravska cesta 9, 845 05, Bratislava, Slovakia
| | - Svetlana Miklikova
- Biomedical Research Center of the Slovak Academy of Sciences, Dubravska cesta 9, 845 05, Bratislava, Slovakia
| |
Collapse
|
7
|
Gynn LE, Anderson E, Robinson G, Wexler SA, Upstill-Goddard G, Cox C, May JE. Primary mesenchymal stromal cells in co-culture with leukaemic HL-60 cells are sensitised to cytarabine-induced genotoxicity, whilst leukaemic cells are protected. Mutagenesis 2021; 36:419-428. [PMID: 34505878 PMCID: PMC8633936 DOI: 10.1093/mutage/geab033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 09/09/2021] [Indexed: 12/27/2022] Open
Abstract
Tumour microenvironments are hallmarked in many cancer types. In haematological malignancies, bone marrow (BM) mesenchymal stromal cells (MSC) protect malignant cells from drug-induced cytotoxicity. However, less is known about malignant impact on supportive stroma. Notably, it is unknown whether these interactions alter long-term genotoxic damage in either direction. The nucleoside analogue cytarabine (ara-C), common in haematological therapies, remains the most effective agent for acute myeloid leukaemia, yet one third of patients develop resistance. This study aimed to evaluate the bidirectional effect of MSC and malignant cell co-culture on ara-C genotoxicity modulation. Primary MSC, isolated from patient BM aspirates for haematological investigations, and malignant haematopoietic cells (leukaemic HL-60) were co-cultured using trans-well inserts, prior to treatment with physiological dose ara-C. Co-culture genotoxic effects were assessed by micronucleus and alkaline comet assays. Patient BM cells from chemotherapy-treated patients had reduced ex vivo survival (P = 0.0049) and increased genotoxicity (P = 0.3172) than untreated patients. It was shown for the first time that HL-60 were protected by MSC from ara-C-induced genotoxicity, with reduced MN incidence in co-culture as compared to mono-culture (P = 0.0068). Comet tail intensity also significantly increased in ara-C-treated MSC with HL-60 influence (P = 0.0308). MSC sensitisation to ara-C genotoxicity was also demonstrated following co-culture with HL60 (P = 0.0116), which showed significantly greater sensitisation when MSC-HL-60 co-cultures were exposed to ara-C (P = 0.0409). This study shows for the first time that malignant HSC and MSC bidirectionally modulate genotoxicity, providing grounding for future research identifying mechanisms of altered genotoxicity in leukaemic microenvironments. MSC retain long-term genotoxic and functional damage following chemotherapy exposure. Understanding the interactions perpetuating such damage may inform modifications to reduce therapy-related complications, such as secondary malignancies and BM failure.
Collapse
Affiliation(s)
- Liana E Gynn
- Centre for Research in Biosciences, University of the West of England, Coldharbour Lane, Bristol, BS16 1QY, UK
| | - Elizabeth Anderson
- Centre for Research in Biosciences, University of the West of England, Coldharbour Lane, Bristol, BS16 1QY, UK
| | - Gareth Robinson
- Centre for Research in Biosciences, University of the West of England, Coldharbour Lane, Bristol, BS16 1QY, UK
| | - Sarah A Wexler
- Centre for Research in Biosciences, University of the West of England, Coldharbour Lane, Bristol, BS16 1QY, UK.,Royal United Hospitals Bath NHS Foundation Trust, Bath, BA1 3NG, UK
| | - Gillian Upstill-Goddard
- Centre for Research in Biosciences, University of the West of England, Coldharbour Lane, Bristol, BS16 1QY, UK.,Royal United Hospitals Bath NHS Foundation Trust, Bath, BA1 3NG, UK
| | - Christine Cox
- Centre for Research in Biosciences, University of the West of England, Coldharbour Lane, Bristol, BS16 1QY, UK.,Royal United Hospitals Bath NHS Foundation Trust, Bath, BA1 3NG, UK
| | - Jennifer E May
- Centre for Research in Biosciences, University of the West of England, Coldharbour Lane, Bristol, BS16 1QY, UK
| |
Collapse
|
8
|
Platoff R, Villalobos MA, Hagaman AR, Liu Y, Matthews M, DiSanto ME, Carpenter JP, Zhang P. Effects of radiation and chemotherapy on adipose stem cells: Implications for use in fat grafting in cancer patients. World J Stem Cells 2021; 13:1084-1093. [PMID: 34567427 PMCID: PMC8422936 DOI: 10.4252/wjsc.v13.i8.1084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/30/2021] [Accepted: 07/29/2021] [Indexed: 02/06/2023] Open
Abstract
Autologous fat transplantation is a versatile tool in reconstructive surgery. Adipose-derived stem cells (ASCs) increase survival of fat grafts and thus are increasingly used for breast reconstruction in breast cancer patients. However, radiation and/or chemotherapy have been proposed to inhibit soft tissue regeneration in wound healing thus suggesting alteration in stem cell pathways. Therefore, elucidating effects of radiation and chemotherapy on ASCs is critical if one desires to enhance the survival of fat grafts in patients. This review outlines our work evaluating the function and recoverability of ASCs from radiation or chemotherapy patients, focusing specifically on their availability as a source of autologous stem cells for fat grafting and breast reconstruction in cancer patients. Even though evidence suggests radiation and chemotherapy negatively influence ASCs at the cellular level, the efficiency of the isolation and differentiation capacity did not appear influenced in patients after receiving chemotherapy treatment, although fat from radiated patients exhibited significantly altered ASC differentiation into endothelial-like cells. Further, the in vitro growth rates of patient’s ASCs do not differ significantly before or after treatment. Taken together, these studies suggest ASCs as an important new tool for grafting and reconstruction even when radiation and chemotherapy treatment are involved.
Collapse
Affiliation(s)
- Rebecca Platoff
- Department of Surgery, Cooper University Health Care, Camden, NJ 08103, United States
| | - Miguel A Villalobos
- Department of Surgery, Cooper University Health Care, Camden, NJ 08103, United States
| | - Ashleigh Rapp Hagaman
- Department of Surgery, Cooper University Health Care, Camden, NJ 08103, United States
| | - Yuan Liu
- Department of Surgery, Cooper University Health Care, Camden, NJ 08103, United States
- Department of Surgery, Cooper Medical School of Rowan University, Camden, NJ 08103, United States
| | - Martha Matthews
- Department of Surgery, Cooper University Health Care, Camden, NJ 08103, United States
- Department of Surgery, Cooper Medical School of Rowan University, Camden, NJ 08103, United States
| | - Michael E DiSanto
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ 08103, United States
| | - Jeffrey P Carpenter
- Department of Surgery, Cooper University Health Care, Camden, NJ 08103, United States
- Department of Surgery, Cooper Medical School of Rowan University, Camden, NJ 08103, United States
| | - Ping Zhang
- Department of Surgery, Cooper University Health Care, Camden, NJ 08103, United States
- Department of Surgery, Cooper Medical School of Rowan University, Camden, NJ 08103, United States
| |
Collapse
|
9
|
Kuca-Warnawin E, Janicka I, Szczęsny P, Olesińska M, Bonek K, Głuszko P, Kontny E. Modulation of T-Cell Activation Markers Expression by the Adipose Tissue-Derived Mesenchymal Stem Cells of Patients with Rheumatic Diseases. Cell Transplant 2021; 29:963689720945682. [PMID: 32878464 PMCID: PMC7784571 DOI: 10.1177/0963689720945682] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Background: Activated T lymphocytes play an important role in the pathogenesis of rheumatic diseases (RD). Mesenchymal stem cells (MSCs) possess immunoregulatory activities but such functions of MSCs from bone marrow of systemic lupus erythematosus (SLE), systemic sclerosis (SSc), and ankylosing spondylitis (AS) patients are impaired. Adipose tissue–derived MSCs (ASCs) are an optional pool of therapeutically useful MSCs, but biology of these cells in RD is poorly known. This study aimed at investigating the effect of ASCs from RD patients and healthy donors (HD) on the expression of the key T-cell activation markers. Methods: ASCs were isolated from subcutaneous abdominal fat from SLE (n = 16), SSc (n = 18), and AS (n = 16) patients, while five human ASCs lines from HD were used as a control. Untreated and cytokine (tumor necrosis factor α + interferon γ)-treated ASCs were co-cultured with allogenic, mitogen (phytohemagglutinin)-stimulated peripheral blood mononuclear cells (PBMCs) or purified anti-CD3/CD28-activated CD4+ T lymphocytes. Contacting and noncontacting ASCs-PBMCs co-cultures were performed. RD/ASCs were analyzed in co-cultures with both allogeneic and autologous PBMCs. Flow cytometry analysis was used to evaluate expression of CD25, HLA-DR, and CD69 molecules on CD4+ and CD8+ cells. Results: In co-cultures with allogeneic, activated CD4+ T cells and PBMCs, HD/ASCs and RD/ASCs downregulated CD25 and HLA-DR, while upregulated CD69 molecules expression on both CD4+ and CD8+ cells with comparable potency. This modulatory effect was similar in contacting and noncontacting co-cultures. RD/ASCs exerted weaker inhibitory effect on CD25 expression on autologous than allogeneic CD4+ and CD8+ T cells. Conclusion: RD/ASCs retain normal capability to regulate expression of activation markers on allogeneic T cells. Both HD/ASCs and RD/ASCs exert this effect independently of their activation status, mostly through the indirect pathway and soluble factors. However, autologous CD4+ and CD8+ T cells are partially resistant to RD/ASCs inhibition of CD25 expression, suggesting weaker control of T-cell activation in vivo.
Collapse
Affiliation(s)
- Ewa Kuca-Warnawin
- Department of Pathophysiology and Immunology, 49552National Institute of Geriatrics, Rheumatology and Rehabilitation, Warsaw, Poland
| | - Iwona Janicka
- Department of Pathophysiology and Immunology, 49552National Institute of Geriatrics, Rheumatology and Rehabilitation, Warsaw, Poland
| | - Piotr Szczęsny
- Clinic of Connective Tissue Diseases, 49552National Institute of Geriatrics, Rheumatology and Rehabilitation, Warsaw, Poland
| | - Marzena Olesińska
- Clinic of Connective Tissue Diseases, 49552National Institute of Geriatrics, Rheumatology and Rehabilitation, Warsaw, Poland
| | - Krzysztof Bonek
- Department of Rheumatology, 49552National Institute of Geriatrics, Rheumatology and Rehabilitation, Warsaw, Poland
| | - Piotr Głuszko
- Department of Rheumatology, 49552National Institute of Geriatrics, Rheumatology and Rehabilitation, Warsaw, Poland
| | - Ewa Kontny
- Department of Pathophysiology and Immunology, 49552National Institute of Geriatrics, Rheumatology and Rehabilitation, Warsaw, Poland
| |
Collapse
|
10
|
Bone marrow/bone pre-metastatic niche for breast cancer cells colonization: The role of mesenchymal stromal cells. Crit Rev Oncol Hematol 2021; 164:103416. [PMID: 34237436 DOI: 10.1016/j.critrevonc.2021.103416] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 06/17/2021] [Accepted: 07/04/2021] [Indexed: 02/07/2023] Open
Abstract
Breast cancer is one of the most common oncological pathologies in women worldwide. While its early diagnosis has considerably improved, about 70 % of advanced patients develop bone metastases with a high mortality rate. Several authors demonstrated that primary breast cancer cells prepare their future metastatic niche -known as the pre-metastatic niche- to turn it into an "optimal soil" for colonization. The role of the different cellular components of the bone marrow/bone niche in bone metastasis has been well described. However, studying the changes that occur in this microenvironment before tumor cells arrival has become a novel research field. Therefore, the purpose of this review is to describe the current knowledge about the modulation of the normal bone marrow/bone niche by the primary breast tumor, in particular, highlighting the role of mesenchymal stem/stromal cells in transforming this soil into a pre-metastatic niche for breast cancer cells colonization.
Collapse
|
11
|
Abstract
Research examining bone marrow adipose tissue (BMAT) has rapidly expanded during the last two decades, leading to advances in knowledge on the role of BMAT in the pathogenesis of bone loss and endocrine disorders. Clinical imaging has played a crucial role for the in vivo assessment of BMAT, allowing non-invasive quantification and evaluation of BMAT composition. In the present work, we review different imaging methods for assessing properties of BMAT. Our aim is to review conventional magnetic resonance imaging (MRI), water-fat imaging, and single-voxel proton magnetic resonance spectroscopy (1H-MRS), as well as computed tomography (CT)-based techniques, including single energy and dual energy CT. We will also discuss the clinical applications of these methods in type 2 diabetes mellitus, obesity and anorexia nervosa.
Collapse
Affiliation(s)
- Mohamed Jarraya
- Massachusetts General Hospital, Department of Radiology, Harvard Medical School, Boston, MA, USA.
| | - Miriam A Bredella
- Massachusetts General Hospital, Department of Radiology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
12
|
Synergistic Effect of the Long-Term Overexpression of Bcl-2 and BDNF Lentiviral in Cell Protecting against Death and Generating TH Positive and CHAT Positive Cells from MSC. Int J Mol Sci 2021; 22:ijms22137086. [PMID: 34209365 PMCID: PMC8268627 DOI: 10.3390/ijms22137086] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 06/15/2021] [Accepted: 06/28/2021] [Indexed: 01/01/2023] Open
Abstract
Mesenchymal stem cells (MSC) are potentially a good material for transplantation in many diseases, including neurodegenerative diseases. The main problem with using them is the low percentage of surviving cells after the transplant procedure and the naturally poor ability of MSC to spontaneously differentiate into certain types of cells, which results in their poor integration with the host cells. The aim and the novelty of this work consists in the synergistic overexpression of two genes, BCL2 and BDNF, using lentiviral vectors. According to our hypothesis, the overexpression of the BCL2 gene is aimed at increasing the resistance of cells to stressors and toxic factors. In turn, the overexpression of the BDNF gene is suspected to direct the MSC into the neural differentiation pathway. As a result, it was shown that the overexpression of both genes and the overproduction of proteins is permanent and persists for at least 60 days. The synergistically transduced MSC were significantly more resistant to the action of staurosporine; 12 days after transduction, the synergistically transduced MSC had a six-times greater survival rate. The overexpression of the Bcl-2 and BDNF proteins was sufficient to stimulate a significant overexpression of the CHAT gene, and under specific conditions, the TH, TPH1, and SYP genes were also overexpressed. Modified MSC are able to differentiate into cholinergic and dopaminergic neurons, and the release of acetylcholine and dopamine may indicate their functionality.
Collapse
|
13
|
El-Jawhari JJ, Ganguly P, Jones E, Giannoudis PV. Bone Marrow Multipotent Mesenchymal Stromal Cells as Autologous Therapy for Osteonecrosis: Effects of Age and Underlying Causes. Bioengineering (Basel) 2021; 8:69. [PMID: 34067727 PMCID: PMC8156020 DOI: 10.3390/bioengineering8050069] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 04/29/2021] [Accepted: 05/13/2021] [Indexed: 12/21/2022] Open
Abstract
Bone marrow (BM) is a reliable source of multipotent mesenchymal stromal cells (MSCs), which have been successfully used for treating osteonecrosis. Considering the functional advantages of BM-MSCs as bone and cartilage reparatory cells and supporting angiogenesis, several donor-related factors are also essential to consider when autologous BM-MSCs are used for such regenerative therapies. Aging is one of several factors contributing to the donor-related variability and found to be associated with a reduction of BM-MSC numbers. However, even within the same age group, other factors affecting MSC quantity and function remain incompletely understood. For patients with osteonecrosis, several underlying factors have been linked to the decrease of the proliferation of BM-MSCs as well as the impairment of their differentiation, migration, angiogenesis-support and immunoregulatory functions. This review discusses the quality and quantity of BM-MSCs in relation to the etiological conditions of osteonecrosis such as sickle cell disease, Gaucher disease, alcohol, corticosteroids, Systemic Lupus Erythematosus, diabetes, chronic renal disease and chemotherapy. A clear understanding of the regenerative potential of BM-MSCs is essential to optimize the cellular therapy of osteonecrosis and other bone damage conditions.
Collapse
Affiliation(s)
- Jehan J El-Jawhari
- Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK
- Clinical Pathology Department, Mansoura University, Mansoura 35516, Egypt
| | - Payal Ganguly
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, School of Medicine, University of Leeds, Leeds LS2 9JT, UK; (P.G.); (E.J.); (P.V.G.)
| | - Elena Jones
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, School of Medicine, University of Leeds, Leeds LS2 9JT, UK; (P.G.); (E.J.); (P.V.G.)
| | - Peter V Giannoudis
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, School of Medicine, University of Leeds, Leeds LS2 9JT, UK; (P.G.); (E.J.); (P.V.G.)
- Academic Department of Trauma and Orthopedic, School of Medicine, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
14
|
Caron MMJ, van Rietbergen B, Castermans TMR, Haartmans MJJ, van Rhijn LW, Welting TJM, Witlox AMA. Evaluation of impaired growth plate development of long bones in skeletally immature mice by antirheumatic agents. J Orthop Res 2021; 39:553-564. [PMID: 32740982 PMCID: PMC7984053 DOI: 10.1002/jor.24819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 06/05/2020] [Accepted: 07/13/2020] [Indexed: 02/04/2023]
Abstract
Restriction of physical growth and development is a known problem in patients with juvenile idiopathic arthritis (JIA). However, the effect of medical treatment for JIA on skeletal growth in affected children has not been properly investigated. We, therefore, hypothesize that naproxen and methotrexate (MTX) affect endochondral ossification and will lead to reduced skeletal development. Treatment of ATDC5 cells, an in vitro model for endochondral ossification, with naproxen or MTX resulted in increased chondrogenic but decreased hypertrophic differentiation. In vivo, healthy growing C57BL/6 mice were treated with naproxen, MTX, or placebo for 10 weeks. At 15 weeks postnatal, both the length of the tibia and the length of the femur were significantly reduced in the naproxen- and MTX-treated mice compared to their controls. Growth plate analysis revealed a significantly thicker proliferative zone, while the hypertrophic zone was significantly thinner in both experimental groups compared to their controls, comparable to the in vitro results. Micro-computed tomography analysis of the subchondral bone region directly below the growth disc showed significantly altered bone microarchitecture in naproxen and MTX groups. In addition, the involvement of the PTHrP-Ihh loop in naproxen- and MTX-treated cells was shown. Overall, these results demonstrate that naproxen and MTX have a profound effect on endochondral ossification during growth plate development, abnormal subchondral bone morphology, and reduced bone length. A better understanding of how medication influences the development of the growth plate will improve understanding of endochondral ossification and reveal possibilities to improve the treatment of pediatric patients.
Collapse
Affiliation(s)
- Marjolein M. J. Caron
- Department of Orthopaedic Surgery, CAPHRI Care and Public Health Research InstituteMaastricht University Medical CenterMaastrichtThe Netherlands
| | - Bert van Rietbergen
- Department of Orthopaedic Surgery, CAPHRI Care and Public Health Research InstituteMaastricht University Medical CenterMaastrichtThe Netherlands
- Orthopaedic Biomechanics, Department of Biomedical EngineeringEindhoven University of TechnologyEindhovenThe Netherlands
| | | | - Mirella J. J. Haartmans
- Department of Orthopaedic Surgery, CAPHRI Care and Public Health Research InstituteMaastricht University Medical CenterMaastrichtThe Netherlands
| | - Lodewijk W. van Rhijn
- Department of Orthopaedic Surgery, CAPHRI Care and Public Health Research InstituteMaastricht University Medical CenterMaastrichtThe Netherlands
| | - Tim J. M. Welting
- Department of Orthopaedic Surgery, CAPHRI Care and Public Health Research InstituteMaastricht University Medical CenterMaastrichtThe Netherlands
| | - Adhiambo M. A. Witlox
- Department of Orthopaedic Surgery, CAPHRI Care and Public Health Research InstituteMaastricht University Medical CenterMaastrichtThe Netherlands
| |
Collapse
|
15
|
Su YW, Fan J, Fan CM, Peymanfar Y, Zhang YL, Xian CJ. Roles of apoptotic chondrocyte-derived CXCL12 in the enhanced chondroclast recruitment following methotrexate and/or dexamethasone treatment. J Cell Physiol 2021; 236:5966-5979. [PMID: 33438203 DOI: 10.1002/jcp.30278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 12/09/2020] [Accepted: 01/04/2021] [Indexed: 11/08/2022]
Abstract
Intensive use of methotrexate (MTX) and/or dexamethasone (DEX) for treating childhood malignancies is known to cause chondrocyte apoptosis and growth plate dysfunction leading to bone growth impairments. However, mechanisms remain vague and it is unclear whether MTX and DEX combination treatment could have additive effects in the growth plate defects. In this study, significant cell apoptosis was induced in mature ATDC5 chondrocytes after treatment for 48 h with 10-5 M MTX and/or 10-6 M DEX treatment. PCR array assays with treated cells plus messenger RNA and protein expression confirmation analyses identified chemokine CXCL12 having the most prominent induction in each treatment group. Conditioned medium from treated chondrocytes stimulated migration of RAW264.7 osteoclast precursor cells and formation of osteoclasts, and these stimulating effects were inhibited by the neutralizing antibody for CXCL12. Additionally, while MTX and DEX combination treatment showed some additive effects on apoptosis induction, it did not have additive or counteractive effects on CXCL12 expression and its functions in enhancing osteoclastic recruitment and formation. In young rats treated acutely with MTX, there was increased expression of CXCL12 in the tibial growth plate, and more resorbing chondroclasts were found present at the border between the hypertrophic growth plate and metaphysis bone. Thus, the present study showed an association between induced chondrocyte apoptosis and stimulated osteoclastic migration and formation following MTX and/or DEX treatment, which could be potentially or at least partially linked molecularly by CXCL12 induction. This finding may contribute to an enhanced mechanistic understanding of bone growth impairments following MTX and/or DEX therapy.
Collapse
Affiliation(s)
- Yu-Wen Su
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Jian Fan
- Department of Orthopedics, Tongji Hospital, Tongji University, Shanghai, China
| | - Chia-Ming Fan
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Yaser Peymanfar
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Ya-Li Zhang
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Cory J Xian
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, Australia.,Department of Orthopedics, Tongji Hospital, Tongji University, Shanghai, China
| |
Collapse
|
16
|
Zohni K, Lopez L, Mander P, Szaraz P, Filice M, Wyse BA, Garcia M, Gat I, Glass K, Gauthier-Fisher A, Librach CL. Human umbilical cord perivascular cells maintain regenerative traits following exposure to cyclophosphamide. Cancer Lett 2020; 501:133-146. [PMID: 33387641 DOI: 10.1016/j.canlet.2020.12.035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/15/2020] [Accepted: 12/21/2020] [Indexed: 11/19/2022]
Abstract
Chemotherapies can cause germ cell depletion and gonadal failure. When injected post-chemotherapy, mesenchymal stromal cells (MSCs) from various sources have been shown to have regenerative effects in rodent models of chemotherapy-induced gonadal injury. Here, we evaluated two properties of a novel source of MSC, first trimester (FTM) human umbilical cord perivascular cells (HUCPVCs) (with increased regenerative potential compared to older sources), that may render them a promising candidate for chemotherapeutic gonadal injury prevention. Firstly, their ability to resist the cytotoxic effects of cyclophosphamide (CTX) in vitro, as compared to term HUCPVCs and bone marrow cells (BMSCs); and secondly, whether they prevent gonadal dysfunction if delivered prior to gonadotoxic therapy in vivo. BMSC, FTM HUCPVC, term HUCPVC, and control NTERA2 cells were treated with moderate (150 μmol/L) and high (300 μmol/L) doses of CTX in vitro. Viability, proliferative capacity, mesenchymal cell lineage markers and differentiation capacity, immunogenicity, and paracrine gene expression were assessed. CTX was administered to Wistar rats 2 days following an intra-ovarian injection of FTM HUCPVC. HUCPVC survival and ovarian follicle numbers were assessed using histological methods. We conclude that FTM HUCPVC maintain key regenerative properties following chemotherapy exposure and that pre-treatment with these cells may prevent CTX-induced ovarian damage in vivo. Therefore, HUCPVCs are promising candidates for fertility preservation.
Collapse
Affiliation(s)
- Khaled Zohni
- CReATe Fertility Centre, Toronto, Ontario, Canada; Department of Obstetrics & Gynecology, University of Toronto, Toronto, Canada; Department of Obstetrics and Gynecology, University of Manitoba, Winnipeg, Canada; Heartland Fertility and Gynecology Clinic, Winnipeg, Manitoba, Canada
| | - Lianet Lopez
- CReATe Fertility Centre, Toronto, Ontario, Canada
| | | | - Peter Szaraz
- CReATe Fertility Centre, Toronto, Ontario, Canada
| | | | | | | | - Itai Gat
- CReATe Fertility Centre, Toronto, Ontario, Canada; Pinchas Borenstein Talpiot Medical Leadership Program, Sheba Medical Center, Tel HaShomer, Ramat Gan, Affiliated to Sackler Medical School, University of Tel Aviv, Israel
| | - Karen Glass
- CReATe Fertility Centre, Toronto, Ontario, Canada; Department of Obstetrics & Gynecology, University of Toronto, Toronto, Canada
| | | | - Clifford L Librach
- CReATe Fertility Centre, Toronto, Ontario, Canada; Department of Obstetrics & Gynecology, University of Toronto, Toronto, Canada; Institute of Medical Sciences, University of Toronto, Toronto, Canada; Department of Physiology, University of Toronto, Toronto, Canada; Department of Gynecology, Women's College Hospital, Toronto, ON, Canada.
| |
Collapse
|
17
|
Li CW, Lau YT, Lam KL, Chan BP. Mechanically induced formation and maturation of 3D-matrix adhesions (3DMAs) in human mesenchymal stem cells. Biomaterials 2020; 258:120292. [DOI: 10.1016/j.biomaterials.2020.120292] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 06/15/2020] [Accepted: 08/01/2020] [Indexed: 11/26/2022]
|
18
|
Effect of Breast Cancer and Adjuvant Therapy on Adipose-Derived Stromal Cells: Implications for the Role of ADSCs in Regenerative Strategies for Breast Reconstruction. Stem Cell Rev Rep 2020; 17:523-538. [PMID: 32929604 DOI: 10.1007/s12015-020-10038-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2020] [Indexed: 12/14/2022]
Abstract
Tissue engineering using Adipose Derived Stromal Cells (ADSCs) has emerged as a novel regenerative medicine approach to replace and reconstruct soft tissue damaged or lost as a result of disease process or therapeutic surgical resection. ADSCs are an attractive cell source for soft tissue regeneration due to the fact that they are easily accessible, multipotent, non-immunogenic and pro-angiogenic. ADSC based regenerative strategies have been successfully translated to the clinical setting for the treatment of Crohn's fistulae, musculoskeletal pathologies, wound healing, and cosmetic breast augmentation (fat grafting). ADSCs are particularly attractive as a source for adipose tissue engineering as they exhibit preferential differentiation to adipocytes and support maintenance of mature adipose graft volume. The potential for reconstruction with an autologous tissue sources and a natural appearance and texture is particularly appealing in the setting of breast cancer; up to 40% of patients require mastectomy for locoregional control and current approaches to post-mastectomy breast reconstruction (PMBR) are limited by the potential for complications at the donor and reconstruction sites. Despite their potential, the use of ADSCs in breast cancer patients is controversial due to concerns regarding oncological safety. These concerns relate to the regeneration of tissue at a site where a malignancy has been treated and the impact this may have on stimulating local disease recurrence or dissemination. Pre-clinical data suggest that ADSCs exhibit pro-oncogenic characteristics and are involved in stimulating progression, and growth of tumour cells. However, there have been conflicting reports on the oncologic outcome, in terms of locoregional recurrence, for breast cancer patients in whom ADSC enhanced fat grafting was utilised as an alternative to reconstruction for small volume defects. A further consideration which may impact the successful translation of ADSC based regenerative strategies for post cancer reconstruction is the potential effects of cancer therapy. This review aims to address the effect of malignant cells, adjuvant therapies and patient-specific factors that may influence the success of regenerative strategies using ADSCs for post cancer tissue regeneration.
Collapse
|
19
|
Radadiya A, Zhu W, Coricello A, Alcaro S, Richards NGJ. Improving the Treatment of Acute Lymphoblastic Leukemia. Biochemistry 2020; 59:3193-3200. [PMID: 32786406 PMCID: PMC7497903 DOI: 10.1021/acs.biochem.0c00354] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
l-Asparaginase (EC 3.5.1.1) was first used as a component of combination drug therapies to treat acute lymphoblastic leukemia (ALL), a cancer of the blood and bone marrow, almost 50 years ago. Administering this enzyme to reduce asparagine levels in the blood is a cornerstone of modern clinical protocols for ALL; indeed, this remains the only successful example of a therapy targeted against a specific metabolic weakness in any form of cancer. Three problems, however, constrain the clinical use of l-asparaginase. First, a type II bacterial variant of l-asparaginase is administered to patients, the majority of whom are children, which produces an immune response thereby limiting the time over which the enzyme can be tolerated. Second, l-asparaginase is subject to proteolytic degradation in the blood. Third, toxic side effects are observed, which may be correlated with the l-glutaminase activity of the enzyme. This Perspective will outline how asparagine depletion negatively impacts the growth of leukemic blasts, discuss the structure and mechanism of l-asparaginase, and briefly describe the clinical use of chemically modified forms of clinically useful l-asparaginases, such as Asparlas, which was recently given FDA approval for use in children (babies to young adults) as part of multidrug treatments for ALL. Finally, we review ongoing efforts to engineer l-asparaginase variants with improved therapeutic properties and briefly detail emerging, alternate strategies for the treatment of forms of ALL that are resistant to asparagine depletion.
Collapse
Affiliation(s)
- Ashish Radadiya
- School of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT, U.K
| | - Wen Zhu
- Department of Chemistry and California Institute for Quantitative Biosciences, University of California, Berkeley, California 94720, United States
| | - Adriana Coricello
- School of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT, U.K.,Dipartimento di Scienze della Salute, Università "Magna Græcia" di Catanzaro, 88100 Catanzaro, Italy
| | - Stefano Alcaro
- Dipartimento di Scienze della Salute, Università "Magna Græcia" di Catanzaro, 88100 Catanzaro, Italy.,Net4Science, Università "Magna Græcia" di Catanzaro, 88100 Catanzaro, Italy
| | - Nigel G J Richards
- School of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT, U.K.,Foundation for Applied Molecular Evolution, 13079 Progress Boulevard, Alachua, Florida 32615, United States
| |
Collapse
|
20
|
The Therapeutic Potential of Mesenchymal Stromal Cells in the Treatment of Chemotherapy-Induced Tissue Damage. Stem Cell Rev Rep 2020; 15:356-373. [PMID: 30937640 DOI: 10.1007/s12015-019-09886-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Chemotherapy constitutes one of the key treatment modalities for solid and hematological malignancies. Albeit being an effective treatment, chemotherapy application is often limited by its damage to healthy tissues, and curative treatment options for chemotherapy-related side effects are largely missing. As mesenchymal stromal cells (MSCs) are known to exhibit regenerative capacity mainly by supporting a beneficial microenvironment for tissue repair, MSC-based therapies may attenuate chemotherapy-induced tissue injuries. An increasing number of animal studies shows favorable effects of MSC-based treatments; however, clinical trials for MSC therapies in the context of chemotherapy-related side effects are rare. In this concise review, we summarize the current knowledge of the effects of MSCs on chemotherapy-induced tissue toxicities. Both preclinical and early clinical trials investigating MSC-based treatments for chemotherapy-related side reactions are presented, and mechanistic explanations about the regenerative effects of MSCs in the context of chemotherapy-induced tissue damage are discussed. Furthermore, challenges of MSC-based treatments are outlined that need closer investigations before these multipotent cells can be safely applied to cancer patients. As any pro-tumorigenicity of MSCs needs to be ruled out prior to clinical utilization of these cells for cancer patients, the pro- and anti-tumorigenic activities of MSCs are discussed in detail.
Collapse
|
21
|
Kang KW, Lee SJ, Kim JH, Lee BH, Kim SJ, Park Y, Kim BS. Etoposide-mediated interleukin-8 secretion from bone marrow stromal cells induces hematopoietic stem cell mobilization. BMC Cancer 2020; 20:619. [PMID: 32615949 PMCID: PMC7330970 DOI: 10.1186/s12885-020-07102-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 06/23/2020] [Indexed: 12/25/2022] Open
Abstract
Background We assessed the mechanism of hematopoietic stem cell (HSC) mobilization using etoposide with granulocyte-colony stimulating factor (G-CSF), and determined how this mechanism differs from that induced by cyclophosphamide with G-CSF or G-CSF alone. Methods We compared the clinical features of 173 non-Hodgkin’s lymphoma patients who underwent autologous peripheral blood stem cell transplantation (auto-PBSCT). Additionally, we performed in vitro experiments to assess the changes in human bone marrow stromal cells (hBMSCs), which support the HSCs in the bone marrow (BM) niche, following cyclophosphamide or etoposide exposure. We also performed animal studies under standardized conditions to ensure the following: exclude confounding factors, mimic the conditions in clinical practice, and identify the changes in the BM niche caused by etoposide-induced chemo-mobilization or other mobilization methods. Results Retrospective analysis of the clinical data revealed that the etoposide with G-CSF mobilization group showed the highest yield of CD34+ cells and the lowest change in white blood cell counts during mobilization. In in vitro experiments, etoposide triggered interleukin (IL)-8 secretion from the BMSCs and caused long-term BMSC toxicity. To investigate the manner in which the hBMSC-released IL-8 affects hHSCs in the BM niche, we cultured hHSCs with or without IL-8, and found that the number of total, CD34+, and CD34+/CD45- cells in IL-8-treated cells was significantly higher than the respective number in hHSCs cultured without IL-8 (p = 0.014, 0.020, and 0.039, respectively). Additionally, the relative expression of CXCR2 (an IL-8 receptor), and mTOR and c-MYC (components of IL-8-related signaling pathways) increased 1 h after IL-8 treatment. In animal studies, the etoposide with G-CSF mobilization group presented higher IL-8-related cytokine and MMP9 expression and lower SDF-1 expression in the BM, compared to the groups not treated with etoposide. Conclusion Collectively, the unique mechanism of etoposide with G-CSF-induced mobilization is associated with IL-8 secretion from the BMSCs, which is responsible for the enhanced proliferation and mobilization of HSCs in the bone marrow; this was not observed with mobilization using cyclophosphamide with G-CSF or G-CSF alone. However, the long-term toxicity of etoposide toward BMSCs emphasizes the need for the development of more efficient and safe chemo-mobilization strategies.
Collapse
Affiliation(s)
- Ka-Won Kang
- Division of Hematology-Oncology, Department of Internal Medicine, Korea University School of Medicine, 73, Goryeodae-ro, Seongbuk-gu, Seoul, 02841, South Korea
| | - Seung-Jin Lee
- Institute of Stem Cell Research, Korea University, Seoul, South Korea.,Department of Biomedical and Science, Graduate School of Medicine, Korea University, Seoul, South Korea
| | - Ji Hye Kim
- Institute of Stem Cell Research, Korea University, Seoul, South Korea.,Department of Biomedical and Science, Graduate School of Medicine, Korea University, Seoul, South Korea
| | - Byung-Hyun Lee
- Division of Hematology-Oncology, Department of Internal Medicine, Korea University School of Medicine, 73, Goryeodae-ro, Seongbuk-gu, Seoul, 02841, South Korea
| | - Seok Jin Kim
- Division of Hematology-Oncology, Department of Internal Medicine, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Yong Park
- Division of Hematology-Oncology, Department of Internal Medicine, Korea University School of Medicine, 73, Goryeodae-ro, Seongbuk-gu, Seoul, 02841, South Korea
| | - Byung Soo Kim
- Division of Hematology-Oncology, Department of Internal Medicine, Korea University School of Medicine, 73, Goryeodae-ro, Seongbuk-gu, Seoul, 02841, South Korea. .,Institute of Stem Cell Research, Korea University, Seoul, South Korea. .,Department of Biomedical and Science, Graduate School of Medicine, Korea University, Seoul, South Korea.
| |
Collapse
|
22
|
Hagaman AR, Zhang P, Koko KR, Nolan RS, Fromer MW, Gaughan J, Matthews M. Isolation and identification of adipose-derived stromal/stem cells from breast cancer patients after exposure neoadjuvant chemotherapy. World J Exp Med 2020; 10:26-40. [PMID: 32399395 PMCID: PMC7203539 DOI: 10.5493/wjem.v10.i3.26] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/04/2020] [Accepted: 03/28/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND With recent research advances, adipose-derived stromal/stem cells (ASCs) have been demonstrated to facilitate the survival of fat grafts and thus are increasingly used for reconstructive procedures following surgery for breast cancer. Unfortunately, in patients, following radiation and chemotherapy for breast cancer suggest that these cancer treatment therapies may limit stem cell cellular functions important for soft tissue wound healing. For clinical translation to patients that have undergone cancer treatment, it is necessary to understand the effects of these therapies on the ASC's ability to improve fat graft survival in clinical practice. AIM To investigate whether the impact on ASCs function capacity and recovery in cancer patients may be due to the chemotherapy. METHODS ASCs were isolated from the cancerous side and noncancerous side of the breast from the same patients with receiving neoadjuvant chemotherapy (NAC) or not-receiving NAC. ASCs were in vitro treated with 5-fluorouracil (5-FU), doxorubicin (DXR), and cyclophosphamide (Cytoxan) at various concentrations. The stem cells yield, cell viability, and proliferation rates were measured by growth curves and MTT assays. Differentiation capacity for adipogenesis was determined by qPCR analysis of the specific gene markers and histological staining. RESULTS No significant differences were observed between the yield of ASCs in patients receiving NAC treatment and not-receiving NAC. ASCs yield from the cancerous side of the breast showed lower than the noncancerous side of the breast in both patients receiving NAC and not-receiving NAC. The proliferation rates of ASCs from patients didn't differ much before and after NAC upon in vitro culture, and these cells appeared to retain the capacity to acquire adipocyte traits simile to the ASCs from patients not-receiving NAC. After cessation and washout of the drugs for another a week of culturing, ASCs showed a slow recovery of cell growth capacity in 5-FU-treated groups but was not observed in ASCs treated with DXR groups. CONCLUSION Neoadjuvant therapies do not affect the functioning capacity of ASCs. ASCs may hold great potential to serve as a cell source for fat grafting and reconstruction in patients undergoing chemotherapy.
Collapse
Affiliation(s)
| | - Ping Zhang
- Department of Surgery, Cooper University Hospital, Camden, NJ 08103, United States
- Cooper Medical School of Rowan University, Camden, NJ 08103, United States
| | - Kiavash R Koko
- Department of Surgery, Cooper University Hospital, Camden, NJ 08103, United States
| | - Ryan S Nolan
- Department of Surgery, Cooper University Hospital, Camden, NJ 08103, United States
| | - Marc W Fromer
- Department of Surgery, Cooper University Hospital, Camden, NJ 08103, United States
| | - John Gaughan
- Department of Surgery, Cooper University Hospital, Camden, NJ 08103, United States
- Cooper Medical School of Rowan University, Camden, NJ 08103, United States
| | - Martha Matthews
- Department of Surgery, Cooper University Hospital, Camden, NJ 08103, United States
- Cooper Medical School of Rowan University, Camden, NJ 08103, United States
| |
Collapse
|
23
|
Black L, Zorina T. Cell-based immunomodulatory therapy approaches for type 1 diabetes mellitus. Drug Discov Today 2020; 25:380-391. [DOI: 10.1016/j.drudis.2019.11.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 11/11/2019] [Accepted: 11/30/2019] [Indexed: 12/14/2022]
|
24
|
First Results from a Screening of 300 Naturally Occurring Compounds: 4,6-dibromo-2-(2',4'-dibromophenoxy)phenol, 4,5,6-tribromo-2-(2',4'-dibromophenoxy)phenol, and 5-epi-nakijinone Q as Substances with the Potential for Anticancer Therapy. Mar Drugs 2019; 17:md17090521. [PMID: 31491907 PMCID: PMC6780284 DOI: 10.3390/md17090521] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 09/02/2019] [Indexed: 12/17/2022] Open
Abstract
There is a variety of antineoplastic drugs that are based on natural compounds from ecological niches with high evolutionary pressure. We used two cell lines (Jurkat J16 and Ramos) in a screening to assess 300 different naturally occurring compounds with regard to their antineoplastic activity. The results of the compounds 4,6-dibromo-2-(2′,4′-dibromophenoxy)phenol (P01F03), 4,5,6-tribromo-2-(2′,4′-dibromophenoxy)phenol (P01F08), and 5-epi-nakijinone Q (P03F03) prompted us to perform further research. Using viability and apoptosis assays on the cell lines of primary human leukemic and normal hematopoietic cells, we found that P01F08 induced apoptosis in the cell lines at IC50 values between 1.61 and 2.95 μM after 72 h. IC50 values of peripheral blood mononuclear cells (PBMNCs) from healthy donors were higher, demonstrating that the cytotoxicity in the cell lines reached 50%, while normal PBMNCs were hardly affected. The colony-forming unit assay showed that the hematopoietic progenitor cells were not significantly affected in their growth by P01F08 at a concentration of 3 μM. P01F08 showed a 3.2-fold lower IC50 value in primary leukemic cells [acute myeloid leukemia (AML)] compared to the PBMNC of healthy donors. We could confirm the antineoplastic effect of 5-epi-nakijinone Q (P03F03) on the cell lines via the induction of apoptosis but noted a similarly strong cytotoxic effect on normal PBMNCs.
Collapse
|
25
|
Amino acid metabolism in hematologic malignancies and the era of targeted therapy. Blood 2019; 134:1014-1023. [PMID: 31416801 DOI: 10.1182/blood.2019001034] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 08/03/2019] [Indexed: 02/07/2023] Open
Abstract
Tumor cells rewire metabolic pathways to adapt to their increased nutritional demands for energy, reducing equivalents, and cellular biosynthesis. Alternations in amino acid metabolism are 1 modality for satisfying those demands. Amino acids are not only components of proteins but also intermediate metabolites fueling multiple biosynthetic pathways. Amino acid-depletion therapies target amino acid uptake and catabolism using heterologous enzymes or recombinant or engineered human enzymes. Notably, such therapies have minimal effect on normal cells due to their lower demand for amino acids compared with tumor cells and their ability to synthesize the targeted amino acids under conditions of nutrient stress. Here, we review novel aspects of amino acid metabolism in hematologic malignancies and deprivation strategies, focusing on 4 key amino acids: arginine, asparagine, glutamine, and cysteine. We also present the roles of amino acid metabolism in the immunosuppressive tumor microenvironment and in drug resistance. This summary also offers an argument for the reclassification of amino acid-depleting enzymes as targeted therapeutic agents.
Collapse
|
26
|
Park Y, Kim DS, Jeon MJ, Lee B, Yu ES, Kang K, Lee SR, Sung HJ, Nam M, Yoon S, Choi CW, Kang E, Cho D, Kim K, Kim BS, Kim D, Kim SJ. Single‐dose etoposide is an effective and safe protocol for stem cell mobilization in patients with multiple myeloma. J Clin Apher 2019; 34:579-588. [DOI: 10.1002/jca.21734] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 06/20/2019] [Accepted: 06/26/2019] [Indexed: 01/24/2023]
Affiliation(s)
- Yong Park
- Division of Hematology‐Oncology, Department of Internal MedicineAnam Hospital, Korea University School of Medicine Seoul South Korea
| | - Dae Sik Kim
- Division of Hematology‐Oncology, Department of Internal MedicineGuro Hospital, Korea University School of Medicine Seoul South Korea
| | - Min Ji Jeon
- Division of Hematology‐Oncology, Department of Internal MedicineGuro Hospital, Korea University School of Medicine Seoul South Korea
| | - Byung‐Hyun Lee
- Division of Hematology‐Oncology, Department of Internal MedicineAnam Hospital, Korea University School of Medicine Seoul South Korea
| | - Eun Sang Yu
- Division of Hematology‐Oncology, Department of Internal MedicineGuro Hospital, Korea University School of Medicine Seoul South Korea
| | - Ka‐Won Kang
- Division of Hematology‐Oncology, Department of Internal MedicineAnam Hospital, Korea University School of Medicine Seoul South Korea
| | - Se Ryeon Lee
- Division of Hematology‐Oncology, Department of Internal MedicineAnsan Hospital, Korea University School of Medicine Seoul South Korea
| | - Hwa Jung Sung
- Division of Hematology‐Oncology, Department of Internal MedicineAnsan Hospital, Korea University School of Medicine Seoul South Korea
| | - Myung‐Hyun Nam
- Division of Hematology‐Oncology, Department of Laboratory MedicineAnsan Hospital, Korea University School of Medicine Seoul South Korea
| | - Soo‐Young Yoon
- Department of Laboratory Medicine, Guro HospitalKorea University School of Medicine Seoul South Korea
| | - Chul Won Choi
- Division of Hematology‐Oncology, Department of Internal MedicineGuro Hospital, Korea University School of Medicine Seoul South Korea
| | - Eun‐Suk Kang
- Department of Laboratory Medicine and Genetics, Samsung Medical CenterSungkyunkwan University School of Medicine Seoul South Korea
| | - Duck Cho
- Department of Laboratory Medicine and Genetics, Samsung Medical CenterSungkyunkwan University School of Medicine Seoul South Korea
| | - Kihyun Kim
- Division of Hematology‐Oncology, Department of Medicine, Samsung Medical CenterSungkyunkwan University School of Medicine Seoul South Korea
| | - Byung Soo Kim
- Division of Hematology‐Oncology, Department of Internal MedicineAnam Hospital, Korea University School of Medicine Seoul South Korea
| | - Dae‐Won Kim
- Department of Laboratory MedicineAnam Hospital, Korea University School of Medicine Seoul South Korea
| | - Seok Jin Kim
- Division of Hematology‐Oncology, Department of Medicine, Samsung Medical CenterSungkyunkwan University School of Medicine Seoul South Korea
- Department of Health Sciences and TechnologySAIHST, Sungkyunkwan University Seoul 06351 South Korea
| |
Collapse
|
27
|
Pan Y, Zhao A, Zhong Z, Pan X, Cai S. Ganoderma spore lipid protects mouse bone marrow mesenchymal stem cells and hematopoiesis from the cytotoxicity of the chemotherapeutic agent. Biotechnol Prog 2019; 35:e2869. [PMID: 31207156 DOI: 10.1002/btpr.2869] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/02/2019] [Accepted: 06/04/2019] [Indexed: 12/25/2022]
Abstract
Cancer chemotherapeutic agents are frequently toxic to bone marrow and impair bone marrow functions. It is unclear whether ganoderma spore lipid (GSL) can protect bone marrow cells from the cytotoxicity of chemotherapy. To investigate the protective effects of GSL on bone marrow mesenchymal stem cells (MSCs) and hematopoiesis, we examined the effects of GSL on MSCs in vitro and hematopoiesis in vivo after treatment with the chemotherapeutic agent cyclophosphamide. MSCs and peripheral blood cells were isolated and counted from the bone marrow of normal mice were pre-treated with GSL before CTX treatment or co-treated with GSL and CTX, followed by examining the changes in phenotype, morphology, proliferation, apoptosis, and differentiation potentials. The results showed that GSL could reduce the CTX-induced changes in the phenotype of MSCs and maintain the elongated fibroblast-like morphology. MTT and annexin V/propidium iodide (PI) analyses found that GSL pre-treatment and co-treatment increased the proliferation and decreased the apoptosis in CTX-treated MSCs. Furthermore, GSL improved the osteogenic and adipogenic differentiation potentials of CTX-treated MSCs. In vivo, GSL treatment increased the number of peripheral blood cells including white blood cells (WBC) and platelets (PLT) in the CTX-treated mice and enhanced the in vitro formation of hematopoietic lineage colonies (erythrocyte colony forming unit, CFU-E; erythroid burst-forming units, BFU-E; and granulocyte macrophage colony-forming units, CFU-GM) from bone marrow cells in these mice. These findings suggest GSL could protect MSCs and hematopoiesis from the cytotoxicity of CTX and might become an effective adjuvant to attenuate side effects of chemotherapy during cancer treatment.
Collapse
Affiliation(s)
- Yu Pan
- Department of Trauma and Orthopedics, The 2nd Affiliated Hospital of Shenzhen University, Shenzhen Baoan Hospital, Health Science Center, Shenzhen University, Shenzhen, China
| | - Andong Zhao
- Department of Trauma and Orthopedics, The 2nd Affiliated Hospital of Shenzhen University, Shenzhen Baoan Hospital, Health Science Center, Shenzhen University, Shenzhen, China
| | - Zhiqiang Zhong
- Department of Oncology, The 1st Affiliate Hospital of Dalian Medical University, Dalian, China
| | - Xiaohua Pan
- Department of Trauma and Orthopedics, The 2nd Affiliated Hospital of Shenzhen University, Shenzhen Baoan Hospital, Health Science Center, Shenzhen University, Shenzhen, China
| | - Sa Cai
- Department of Trauma and Orthopedics, The 2nd Affiliated Hospital of Shenzhen University, Shenzhen Baoan Hospital, Health Science Center, Shenzhen University, Shenzhen, China
| |
Collapse
|
28
|
Redox-cycling and intercalating properties of novel mixed copper(II) complexes with non-steroidal anti-inflammatory drugs tolfenamic, mefenamic and flufenamic acids and phenanthroline functionality: Structure, SOD-mimetic activity, interaction with albumin, DNA damage study and anticancer activity. J Inorg Biochem 2019; 194:97-113. [DOI: 10.1016/j.jinorgbio.2019.02.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 02/15/2019] [Accepted: 02/18/2019] [Indexed: 12/21/2022]
|
29
|
Koo BS, Song Y, Shin JH, Lee S, Kim T. Evaluation of disease chronicity by bone marrow fat fraction using sacroiliac joint magnetic resonance imaging in patients with spondyloarthritis: A retrospective study. Int J Rheum Dis 2019; 22:734-741. [PMID: 30740910 DOI: 10.1111/1756-185x.13485] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 12/01/2018] [Accepted: 12/30/2018] [Indexed: 02/01/2023]
Affiliation(s)
- Bon San Koo
- Department of Internal Medicine, Inje University Seoul Paik Hospital Inje University College of Medicine Seoul Korea
| | - Yoonah Song
- Department of Radiology Hanyang University Hospital for Rheumatic Diseases Seoul Korea
| | - Ji Hui Shin
- Department of Rheumatology Hanyang University Hospital for Rheumatic Diseases Seoul Korea
| | - Seunghun Lee
- Department of Radiology Hanyang University Hospital for Rheumatic Diseases Seoul Korea
| | - Tae‐Hwan Kim
- Department of Rheumatology Hanyang University Hospital for Rheumatic Diseases Seoul Korea
| |
Collapse
|
30
|
Abstract
Bone strength is affected not only by bone mineral density (BMD) and bone microarchitecture but also its microenvironment. Recent studies have focused on the role of marrow adipose tissue (MAT) in the pathogenesis of bone loss. Osteoblasts and adipocytes arise from a common mesenchymal stem cell within bone marrow and many osteoporotic states, including aging, medication use, immobility, over - and undernutrition are associated with increased marrow adiposity. Advancements in imaging technology allow the non-invasive quantification of MAT. This article will review magnetic resonance imaging (MRI)- and computed tomography (CT)-based imaging technologies to assess the amount and composition of MAT. The techniques that will be discussed are anatomic T1-weighted MRI, water-fat imaging, proton MR spectroscopy, single energy CT and dual energy CT. Clinical applications of MRI and CT techniques to determine the role of MAT in patients with obesity, anorexia nervosa, and type 2 diabetes will be reviewed.
Collapse
Affiliation(s)
- Vibha Singhal
- Pediatric Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, United States
| | - Miriam A Bredella
- Department of Radiology, Musculoskeletal Imaging and Interventions, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, United States.
| |
Collapse
|
31
|
Rühle A, Huber PE, Saffrich R, Lopez Perez R, Nicolay NH. The current understanding of mesenchymal stem cells as potential attenuators of chemotherapy-induced toxicity. Int J Cancer 2018; 143:2628-2639. [PMID: 29931767 DOI: 10.1002/ijc.31619] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 05/18/2018] [Accepted: 05/22/2018] [Indexed: 12/18/2022]
Abstract
Chemotherapeutic agents are part of the standard treatment algorithms for many malignancies; however, their application and dosage are limited by their toxic effects to normal tissues. Chemotherapy-induced toxicities can be long-lasting and may be incompletely reversible; therefore, causative therapies for chemotherapy-dependent side effects are needed, especially considering the increasing survival rates of treated cancer patients. Mesenchymal stem cells (MSCs) have been shown to exhibit regenerative abilities for various forms of tissue damage. Preclinical data suggest that MSCs may also help to alleviate tissue lesions caused by chemotherapeutic agents, mainly by establishing a protective microenvironment for functional cells. Due to the systemic administration of most anticancer agents, the effects of these drugs on the MSCs themselves are of crucial importance to use stem cell-based approaches for the treatment of chemotherapy-induced tissue toxicities. Here, we present a concise review of the published data regarding the influence of various classes of chemotherapeutic agents on the survival, stem cell characteristics and physiological functions of MSCs. Molecular mechanisms underlying the effects are outlined, and resulting challenges of MSC-based treatments for chemotherapy-induced tissue injuries are discussed.
Collapse
Affiliation(s)
- Alexander Rühle
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,Department of Molecular and Radiation Oncology, German Cancer Research Center (dkfz), Heidelberg, Germany
| | - Peter E Huber
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,Department of Molecular and Radiation Oncology, German Cancer Research Center (dkfz), Heidelberg, Germany
| | - Rainer Saffrich
- Medical Faculty Mannheim, Institute of Transfusion Medicine and Immunology, German Red Cross Blood Service Baden-Württemberg-Hessen, Mannheim, Germany
| | - Ramon Lopez Perez
- Department of Molecular and Radiation Oncology, German Cancer Research Center (dkfz), Heidelberg, Germany
| | - Nils H Nicolay
- Department of Molecular and Radiation Oncology, German Cancer Research Center (dkfz), Heidelberg, Germany.,Department of Radiation Oncology, Medical Center, Faculty of Medicine, University of Freiburg, German Cancer Consortium (DKTK) Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
32
|
Baxter-Holland M, Dass CR. Doxorubicin, mesenchymal stem cell toxicity and antitumour activity: implications for clinical use. ACTA ACUST UNITED AC 2018; 70:320-327. [PMID: 29355940 DOI: 10.1111/jphp.12869] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 11/25/2017] [Indexed: 12/12/2022]
Abstract
OBJECTIVES The use of doxorubicin, an antineoplastic medication used for the treatment of cancers via mechanisms that prevent replication of cells or lead to their death, can result in damage to healthy cells as well as malignant. Among the affected cells are mesenchymal stem cells (MSCs), which are involved in the maintenance and repair of tissues in the body. This review explores the mechanisms of biological effects and damage attributed to doxorubicin on MSCs. The PubMed database was used as a source of literature for this review. KEY FINDINGS Doxorubicin has the potential to lead to significant and irreversible damage to the human bone marrow environment, including MSCs. The primary known mechanism of these changes is through free radical damage and activation of apoptotic pathways. The presence of MSCs in culture or in vivo appears to either suppress or promote tumour growth. Interactions between doxorubicin and MSCs have the potential to increase chemotherapy resistance. SUMMARY Doxorubicin-induced damage to MSCs is of concern clinically. However, MSCs also have been associated with resistance of tumour cells to drugs including doxorubicin. Further studies, particularly in vivo, are needed to provide consistent results of how the doxorubicin-induced changes to MSCs affect treatment and patient health.
Collapse
Affiliation(s)
- Mia Baxter-Holland
- School of Pharmacy and Biomedical Science, Curtin University, Perth, WA, Australia
| | - Crispin R Dass
- School of Pharmacy and Biomedical Science, Curtin University, Perth, WA, Australia.,Curtin Health Innovation Research Institute, Perth, WA, Australia
| |
Collapse
|
33
|
Somaiah C, Kumar A, Sharma R, Sharma A, Anand T, Bhattacharyya J, Das D, Deka Talukdar S, Jaganathan BG. Mesenchymal stem cells show functional defect and decreased anti-cancer effect after exposure to chemotherapeutic drugs. J Biomed Sci 2018; 25:5. [PMID: 29351753 PMCID: PMC5774172 DOI: 10.1186/s12929-018-0407-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 01/08/2018] [Indexed: 01/17/2023] Open
Abstract
Background Mesenchymal stem cells (MSC) are used for several therapeutic applications to improve the functions of bone, cardiac, nervous tissue as well as to facilitate the repopulation of hematopoietic stem cells. MSC give rise to the non-hematopoietic stromal cells of the bone marrow and are important for the maintenance of normal hematopoiesis. Chemotherapeutic drugs used for treatment of leukemia extensively damage the stromal cells and alter their gene expression profiles. Methods We determined the changes in adipogenic, osteogenic differentiation, phenotypic and gene expression in MSC during treatment with chemotherapeutic drugs cytarabine, daunorubicin and vincristine. We also tested anti-cancer effects of drug treated MSC on leukemia cells. Results Treatment with the chemotherapeutic drugs resulted in functional defects in MSC, leading to reduced proliferation, osteogenic and adipogenic differentiation. The drug treated MSC also showed decreased expression of cell surface receptors, and the changes in proliferation, phenotype and differentiation defect was partially reversible after withdrawing the drugs from the cells. The drug treated MSC showed increased expression of cytokines, IL6, FGF2 and TNFA but reduced levels of differentiation markers SOX9 and ACTC1. Drug treated MSC also contributed to reduced anti-cancer effects in leukemia cells. Conclusions Chemotherapeutic drug treatment altered the phenotype, osteogenic and adipogenic differentiation potential of MSC and modified the gene expression profile of the cells to render them more chemoprotective of the leukemic cells. Thus, additional therapeutic efforts to target the stromal cell population will help in preventing chemoresistance, disease relapse in leukemia and to maintain a healthy bone marrow stroma. Electronic supplementary material The online version of this article (10.1186/s12929-018-0407-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chinnapaka Somaiah
- Stem Cell and Cancer Biology Group, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India
| | - Atul Kumar
- Stem Cell and Cancer Biology Group, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India
| | - Renu Sharma
- Stem Cell and Cancer Biology Group, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India
| | - Amit Sharma
- Stem Cell and Cancer Biology Group, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India
| | - Trishna Anand
- Stem Cell and Cancer Biology Group, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India
| | - Jina Bhattacharyya
- Department of Hematology, Gauhati Medical College and Hospital, Guwahati, India
| | - Damodar Das
- Department of Hematology, Gauhati Medical College and Hospital, Guwahati, India
| | | | - Bithiah Grace Jaganathan
- Stem Cell and Cancer Biology Group, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India.
| |
Collapse
|
34
|
Münz F, Lopez Perez R, Trinh T, Sisombath S, Weber KJ, Wuchter P, Debus J, Saffrich R, Huber PE, Nicolay NH. Human mesenchymal stem cells lose their functional properties after paclitaxel treatment. Sci Rep 2018; 8:312. [PMID: 29321693 PMCID: PMC5762916 DOI: 10.1038/s41598-017-18862-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 12/18/2017] [Indexed: 01/05/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are an integral part of the bone marrow niche and aid in the protection, regeneration and proliferation of hematopoietic stem cells after exposure to myelotoxic taxane anti-cancer agents, but the influence of taxane compounds on MSCs themselves remains incompletely understood. Here, we show that bone marrow-derived MSCs are highly sensitive even to low concentrations of the prototypical taxane compound paclitaxel. While MSCs remained metabolically viable, they were strongly impaired regarding both their proliferation and their functional capabilities after exposure to paclitaxel. Paclitaxel treatment resulted in reduced cell migration, delays in cellular adhesion and significant dose-dependent inhibition of the stem cells’ characteristic multi-lineage differentiation potential. Cellular morphology and expression of the defining surface markers remained largely unaltered. Paclitaxel only marginally increased apoptosis in MSCs, but strongly induced premature senescence in these stem cells, thereby explaining the preservation of the metabolic activity of functionally inactivated MSCs. The reported sensitivity of MSC function to paclitaxel treatment may help to explain the severe bone marrow toxicities commonly caused by taxane-based anti-cancer treatments.
Collapse
Affiliation(s)
- Franziska Münz
- Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology, Neuenheimer Feld 280, 69120, Heidelberg, Germany.,Department of Molecular and Radiation Oncology, German Cancer Research Center (dkfz), Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Ramon Lopez Perez
- Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology, Neuenheimer Feld 280, 69120, Heidelberg, Germany.,Department of Molecular and Radiation Oncology, German Cancer Research Center (dkfz), Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Thuy Trinh
- Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology, Neuenheimer Feld 280, 69120, Heidelberg, Germany.,Department of Radiation Oncology, Heidelberg University Hospital, Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Sonevisay Sisombath
- Department of Molecular and Radiation Oncology, German Cancer Research Center (dkfz), Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Klaus-Josef Weber
- Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology, Neuenheimer Feld 280, 69120, Heidelberg, Germany.,Department of Radiation Oncology, Heidelberg University Hospital, Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Patrick Wuchter
- Institute of Transfusion Medicine and Immunology, German Red Cross Blood Service Baden-Württemberg - Hessen, Medical Faculty Mannheim, Friedrich-Ebert-Str. 107, 68167, Mannheim, Germany
| | - Jürgen Debus
- Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology, Neuenheimer Feld 280, 69120, Heidelberg, Germany.,Department of Radiation Oncology, Heidelberg University Hospital, Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Rainer Saffrich
- Institute of Transfusion Medicine and Immunology, German Red Cross Blood Service Baden-Württemberg - Hessen, Medical Faculty Mannheim, Friedrich-Ebert-Str. 107, 68167, Mannheim, Germany.,Department of Hematology and Oncology, Heidelberg University Hospital, Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Peter E Huber
- Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology, Neuenheimer Feld 280, 69120, Heidelberg, Germany.,Department of Molecular and Radiation Oncology, German Cancer Research Center (dkfz), Neuenheimer Feld 280, 69120, Heidelberg, Germany.,Department of Radiation Oncology, Heidelberg University Hospital, Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Nils H Nicolay
- Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology, Neuenheimer Feld 280, 69120, Heidelberg, Germany. .,Department of Molecular and Radiation Oncology, German Cancer Research Center (dkfz), Neuenheimer Feld 280, 69120, Heidelberg, Germany. .,Department of Radiation Oncology, Heidelberg University Hospital, Neuenheimer Feld 400, 69120, Heidelberg, Germany.
| |
Collapse
|
35
|
Abstract
Methotrexate (MTX) is a commonly used chemotherapeutic agent that kills cancer cells by binding dihydrofolate reductase (DHFR) as a competitive inhibitor. Due to its non-selectivity, MTX also impairs normal (non-cancerous) cell function and causes long-term damage to healthy tissue. These consequences have been investigated extensively in bone-derived cells due to their sensitivity to the drug. While DHFR likely plays a role in normal cell response to MTX, research in this area is limited. Moreover, how MTX sensitivity differs among cell types responsible for maintaining connective tissues is unknown. The goal of this study was to investigate the role of DHFR and subsequent nucleotide synthesis in normal cell response to MTX. We also sought to compare adverse effects of MTX among normal cell types to identify sensitive populations and resistant cell sources for regenerative procedures targeting patients undergoing chemotherapy. DHFR overexpression or exogenous amino acid + nucleoside delivery rescued normal cells from adverse MTX effects. Conversely, DHFR knockdown impaired MTX-treated adipose-derived stem cell (ASC) osteogenesis. Proliferation of ASCs and bone marrow stem cells was more resistant to MTX than that of terminally differentiated osteoblasts. However, stem cells became susceptible to the drug after beginning differentiation. These results suggest that the ability of stem cells to survive and to maintain their surrounding tissues likely depends on whether they are in a "stem" state when exposed to MTX. Therapeutic strategies that delay the differentiation of stem cells until clearance of the drug may produce more favorable outcomes in the long-term health of treated tissues.
Collapse
|
36
|
Kucerova L, Durinikova E, Toro L, Cihova M, Miklikova S, Poturnajova M, Kozovska Z, Matuskova M. Targeted antitumor therapy mediated by prodrug-activating mesenchymal stromal cells. Cancer Lett 2017; 408:1-9. [PMID: 28838843 DOI: 10.1016/j.canlet.2017.08.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 08/09/2017] [Accepted: 08/11/2017] [Indexed: 12/14/2022]
Abstract
Mesenchymal stromal cells (MSCs) were introduced as tumor-targeted vehicles suitable for delivery of the gene-directed enzyme/prodrug therapy more than 10 years ago. Over these years key properties of tumor cells and MSCs, which are crucial for the treatment efficiency, were examined; and there are some critical issues to be considered for the maximum antitumor effect. Moreover, engineered MSCs expressing enzymes capable of activating non-toxic prodrugs achieved long-term curative effect even in metastatic and hard-to-treat tumor types in pre-clinical scenario(s). These gene-modified MSCs are termed prodrug-activating MSCs throughout the text and represent promising approach for further clinical application. This review summarizes major determinants to be considered for the application of the prodrug-activating MSCs in antitumor therapy in order to maximize therapeutic efficiency.
Collapse
Affiliation(s)
- Lucia Kucerova
- Laboratory of Molecular Oncology, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia.
| | - Erika Durinikova
- Laboratory of Molecular Oncology, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia
| | - Lenka Toro
- Laboratory of Molecular Oncology, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia
| | - Marina Cihova
- Laboratory of Molecular Oncology, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia
| | - Svetlana Miklikova
- Laboratory of Molecular Oncology, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia
| | - Martina Poturnajova
- Laboratory of Molecular Oncology, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia
| | - Zuzana Kozovska
- Laboratory of Molecular Oncology, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia
| | - Miroslava Matuskova
- Laboratory of Molecular Oncology, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia
| |
Collapse
|
37
|
Schmidt A, Steinritz D, Rothmiller S, Thiermann H, Scherer AM. Effects of sulfur mustard on mesenchymal stem cells. Toxicol Lett 2017; 293:98-104. [PMID: 28818580 DOI: 10.1016/j.toxlet.2017.08.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 08/07/2017] [Accepted: 08/09/2017] [Indexed: 12/11/2022]
Abstract
Chronic wound healing disorders that occur as a result of a sulfur mustard (SM) exposure present a particular challenge. These chronic wounds are similar to other chronic wounds. In the past, it has been shown that mesenchymal stem cells (MSC) play an important role in the healing of chronic wounds. An important property to support wound healing is their ability to migrate. However, we were able to show that SM leads to a reduction in MSC migration even at low concentrations. Currently, exposed MSCs are still able to differentiate. Further alterations are not known. The current investigation therefore focused onto the question how SM affects MSC. MATERIAL & METHODS The effect of SM on MSC was investigated. Here, the alkylation of DNA was considered, and DNA adducts were quantified over a period of 48h. The modification of the nuclei under the influence of SM was analyzed as well as proliferation of the cells by immunohistochemical staining with Ki-67 and quantification. For the quantification of the apoptosis rate, antibodies against cleaved Caspase-3, 8, and apoptosis inducing factor (AIF) were used. The senescence analysis was performed after histological staining against β-galactosidase. Quantifications were carried out by using the TissueQuest System and the software TissueFAX. RESULTS SM exposure of MSC results in a dose dependent formation of nuclear DNA adducts. 4h after exposure the cells display a decreasing concentration of DNA adducts. This process is accompanied by a change of nuclei shape but without an increase of apoptosis induction. In parallel the number of cells undergoing senescence increases as a function of the SM concentration. DISCUSSION SM exposure of MSC leads to adduct formation on chromosomal DNA. These DNA adducts can be reduced without MSC are undergoing apoptosis. This indicates an active DNA damage response (DDR) pathway in combination with the formation of persistent nuclear DNA damage foci. This process is accompanied by a reduced capability of proliferation and a transition into the senescent state.
Collapse
Affiliation(s)
- Annette Schmidt
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstraße 11, 80937 Munich, Germany; Universität der Bundeswehr, Fakultät für Humanwissenschaften, Department für Sportwissenschaft, Werner-Heisenberg-Weg 39, 85577 Neubiberg, Germany.
| | - Dirk Steinritz
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstraße 11, 80937 Munich, Germany; Walther-Straub-Institute of Pharmacology and Toxicology, University of Munich, Goethestr. 33, 80336 Munich, Germany
| | - Simone Rothmiller
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstraße 11, 80937 Munich, Germany
| | - Horst Thiermann
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstraße 11, 80937 Munich, Germany
| | - A Michael Scherer
- Department of Traumatology and Orthopedics, HELIOS Amper Clinics, Krankenhausstrasse 15, 85221 Dachau, Germany
| |
Collapse
|
38
|
Fung MKL, Chan GCF. Drug-induced amino acid deprivation as strategy for cancer therapy. J Hematol Oncol 2017; 10:144. [PMID: 28750681 PMCID: PMC5530962 DOI: 10.1186/s13045-017-0509-9] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 07/10/2017] [Indexed: 12/21/2022] Open
Abstract
Cancer is caused by uncontrollable growth of neoplastic cells, leading to invasion of adjacent and distant tissues resulting in death. Cancer cells have specific nutrient(s) auxotrophy and have a much higher nutrient demand compared to normal tissues. Therefore, different metabolic inhibitors or nutrient-depleting enzymes have been tested for their anti-cancer activities. We review recent available laboratory and clinical data on using various specific amino acid metabolic pathways inhibitors in treating cancers. Our focus is on glutamine, asparagine, and arginine starvation. These three amino acids are chosen due to their better scientific evidence compared to other related approaches in cancer treatment. Amino acid-specific depleting enzymes have been adopted in different standard chemotherapy protocols. Glutamine starvation by glutaminase inhibitior, transporter inhibitor, or glutamine depletion has shown to have significant anti-cancer effect in pre-clinical studies. Currently, glutaminase inhibitor is under clinical trial for testing anti-cancer efficacy. Clinical data suggests that asparagine depletion is effective in treating hematologic malignancies even as a single agent. On the other hand, arginine depletion has lower toxicity profile and can effectively reduce the level of pro-cancer biochemicals in patients as shown by ours and others’ data. This supports the clinical use of arginine depletion as anti-cancer therapy but its exact efficacy in various cancers requires further investigation. However, clinical application of these enzymes is usually hindered by common problems including allergy to these foreign proteins, off-target cytotoxicity, short half-life and rapidly emerging chemoresistance. There have been efforts to overcome these problems by modifying the drugs in different ways to circumvent these hindrance such as (1) isolate human native enzymes to reduce allergy, (2) isolate enzyme isoforms with higher specificities and efficiencies, (3) pegylate the enzymes to reduce allergy and prolong the half-lives, and (4) design drug combinations protocols to enhance the efficacy of chemotherapy by drug synergy and minimizing resistance. These improvements can potentially lead to the development of more effective anti-cancer treatment with less adverse effects and higher therapeutic efficacy.
Collapse
Affiliation(s)
- Marcus Kwong Lam Fung
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Godfrey Chi-Fung Chan
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong.
| |
Collapse
|
39
|
Abstract
INTRODUCTION Methotrexate (MTX) is one of the most commonly used disease modifying drugs administered for wide spectrum of conditions. Through the expansion of the indications of MTX use, an increasing number of patients nowadays attend orthopaedic departments receiving this pharmacological agent. The aim of this manuscript is to present our current understanding on the effect of MTX on bone and wound healing. Areas covered: The authors offer a comprehensive review of the existing literature on the experimental and clinical studies analysing the effect of MTX on bone and wound healing. The authors also analyse the available literature and describe the incidence of complications after elective orthopaedic surgery in patients receiving MTX. Expert opinion: The available experimental data and clinical evidence are rather inadequate to allow any safe scientific conclusions on the effect of MTX on bone healing. Regarding wound healing, in vitro and experimental animal studies suggest that MTX can adversely affect wound healing, whilst the clinical studies show that lose-dose MTX is safe and does not affect the incidence of postoperative wound complications.
Collapse
Affiliation(s)
- Ippokratis Pountos
- a Academic Department of Trauma & Orthopaedics, School of Medicine , University of Leeds , Leeds , United Kingdom
| | - Peter V Giannoudis
- a Academic Department of Trauma & Orthopaedics, School of Medicine , University of Leeds , Leeds , United Kingdom.,b NIHR Leeds Biomedical Research Unit , Chapel Allerton Hospital , Leeds , UK
| |
Collapse
|
40
|
Zhang W, Kong C, Tong M, Chooi W, Huang N, Li R, Chan B. Maturation of human embryonic stem cell-derived cardiomyocytes (hESC-CMs) in 3D collagen matrix: Effects of niche cell supplementation and mechanical stimulation. Acta Biomater 2017; 49:204-217. [PMID: 27890729 DOI: 10.1016/j.actbio.2016.11.058] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 11/18/2016] [Accepted: 11/23/2016] [Indexed: 12/11/2022]
Abstract
Cardiomyocytes derived from human embryonic stem cells (hESC-CMs) are regarded as a promising source for regenerative medicine, drug testing and disease modeling. Nevertheless, cardiomyocytes are immature in terms of their contractile structure, metabolism and electrophysiological properties. Here, we fabricate cardiac muscle strips by encapsulating hESC-CMs in collagen-based biomaterials. Supplementation of niche cells at 3% to the number of hESC-CMs enhance the maturation of the hESC-CMs in 3D tissue matrix. The benefits of adding mesenchymal stem cells (MSCs) are comparable to that of adding fibroblasts. These two cell types demonstrate similar effects in promoting the compaction and cell spreading, as well as expression of maturation markers at both gene and protein levels. Mechanical loading, particularly cyclic stretch, produces engineered cardiac tissues with higher maturity in terms of twitch force, elastic modulus, sarcomere length and molecular signature, when comparing to static stretch or non-stretched controls. The current study demonstrates that the application of niche cells and mechanical stretch both stimulate the maturation of hESC-CMs in 3D architecture. Our results therefore suggest that this 3D model can be used for in vitro cardiac maturation study. STATEMENT OF SIGNIFICANCE Cardiomyocytes derived from human embryonic stem cells (hESC-CMs) are regarded as being a promising source of cells for regenerative medicine, drug testing and disease modeling. Nevertheless, cardiomyocytes are immature in terms of their contractile structure, metabolism and electrophysiological properties. In the current study, we have fabricated cardiac muscle strips by encapsulating hESC-CMs in collagen-based biomaterials and demonstrated that supplementation of mesenchymal niche cells as well as provision of mechanical loading particularly stretching have significantly promoted the maturation of the cardiomyocytes and hence improved the mechanical functional characteristics of the tissue strips. Specifically, with 3% niche cells including both fibroblasts and mesenchymal stem cells, a more mature hESC-CMs derived cardiac strip was resulted, in terms of compaction and spreading of cells, and upregulation of molecular signature in both gene and protein expression of maturation. Mechanical loading, particularly cyclic stretch, produces engineered cardiac tissues with higher maturity in terms of molecular signature markers and functional parameters including twitch force, elastic modulus and sarcomere length, when comparing with static stretch or non-stretched controls. The current study demonstrates that the application of niche cells and mechanical stretch both stimulate the maturation of hESC-CMs in 3D architecture, resulting in more mature cardiac strips. Our results contribute to bioengineering of functional heart tissue strips for drug screening and disease modeling.
Collapse
|
41
|
Resistance for Genotoxic Damage in Mesenchymal Stromal Cells Is Increased by Hypoxia but Not Generally Dependent on p53-Regulated Cell Cycle Arrest. PLoS One 2017; 12:e0169921. [PMID: 28081228 PMCID: PMC5231334 DOI: 10.1371/journal.pone.0169921] [Citation(s) in RCA: 249] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 12/23/2016] [Indexed: 11/19/2022] Open
Abstract
Adult stem cells including multipotent mesenchymal stromal cells (MSC) acquire a high amount of DNA-damage due to their prolonged lifespan. MSC may exert specific mechanisms of resistance to avoid loss of functional activity. We have previously shown that resistance of MSC is associated with an induction of p53 and proliferation arrest upon genotoxic damage. Hypoxia may also contribute to resistance in MSC due to the low oxygen tension in the niche. In this study we characterized the role of p53 and contribution of hypoxia in resistance of MSC to genotoxic damage. MSC exhibited increased resistance to cisplatin induced DNA-damage. This resistance was associated with a temporary G2/M cell cycle arrest, induction of p53- and p21-expression and reduced cyclin B / cdk1-levels upon subapoptotic damage. Resistance of MSC to cisplatin was increased at hypoxic conditions i. e. oxygen <0.5%. However, upon hypoxia the cisplatin-induced cell cycle arrest and expression of p53 and p21 were abrogated. MSC with shRNA-mediated p53 knock-down showed a reduced cell cycle arrest and increased cyclin B / cdk1 expression. However, this functional p53 knock down did not alter the resistance to cisplatin. In contrast to cisplatin, functional p53-knock-down increased the resistance of MSC to etoposide. We conclude that resistance of MSC to genotoxic damage is influenced by oxygen tension but is not generally dependent on p53. Thus, p53-dependent and p53-independent mechanisms of resistance are likely to contribute to the life-long functional activity of MSC in vivo. These findings indicate that hypoxia and different resistance pathways contribute to the phenotype that enables the prolonged lifespan of MSC.
Collapse
|
42
|
Harris WM, Zhang P, Plastini M, Ortiz T, Kappy N, Benites J, Alexeev E, Chang S, Brockunier R, Carpenter JP, Brown SA. Evaluation of function and recovery of adipose-derived stem cells after exposure to paclitaxel. Cytotherapy 2016; 19:211-221. [PMID: 27887867 DOI: 10.1016/j.jcyt.2016.10.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 09/28/2016] [Accepted: 10/19/2016] [Indexed: 12/22/2022]
Abstract
BACKGROUND AIMS Adipose-derived stem cells (ASCs) are considered to play a positive role in wound healing as evidenced by their increasing use in breast reconstructive procedures. After chemotherapy for breast cancer, poor soft tissue wound healing is a major problem. In the present study, the functional capabilities and recovery of ASCs after exposure to chemotherapeutic agent paclitaxel (PTX) using in vitro and ex vivo models were demonstrated. METHODS Human ASCs were isolated from periumbilical fat tissue and treated with PTX at various concentrations. Adult Sprague-Dawley rats were given intravenous injections with PTX. Two and four weeks after the initial PTX treatment, ASCs were isolated from rat adipose tissue. Proliferation, cell viability, apoptosis and cell migration rates were measured by growth curves, MTT assays, flow cytometry and scratch assays. ASCs were cultured in derivative-specific differentiation media with or without PTX for 3 weeks. Adipogenic, osteogenic and endothelial differentiation levels were measured by quantitative reverse transcriptase polymerase chain reaction and histological staining. RESULTS PTX induced apoptosis, decreased the proliferation and cell migration rates of ASCs and inhibited ASCs multipotent differentiation in both in vitro human ASC populations and ex vivo rat ASC populations with PTX treatment. Furthermore, after cessation of PTX, ASCs exhibited recovery potential of differentiation capacity in both in vitro and animal studies. CONCLUSIONS Our results provide insight into poor soft tissue wound healing and promote further understanding of the potential capability of ASCs to serve as a cell source for fat grafting and reconstruction in cancer patients undergoing chemotherapy treatment.
Collapse
Affiliation(s)
- William M Harris
- Department of Surgery, Cooper University Hospital, Camden, New Jersey, USA
| | - Ping Zhang
- Department of Surgery, Cooper University Hospital, Camden, New Jersey, USA.
| | - Michael Plastini
- Department of Surgery, Cooper University Hospital, Camden, New Jersey, USA
| | - Telisha Ortiz
- Department of Surgery, Cooper University Hospital, Camden, New Jersey, USA
| | - Nikolas Kappy
- Department of Surgery, Cooper University Hospital, Camden, New Jersey, USA
| | - Jefferson Benites
- Department of Surgery, Cooper University Hospital, Camden, New Jersey, USA
| | - Edward Alexeev
- Department of Surgery, Cooper University Hospital, Camden, New Jersey, USA
| | - Shaohua Chang
- Department of Surgery, Cooper University Hospital, Camden, New Jersey, USA
| | - Ross Brockunier
- Department of Surgery, Cooper University Hospital, Camden, New Jersey, USA
| | | | - Spencer A Brown
- Department of Surgery, Cooper University Hospital, Camden, New Jersey, USA
| |
Collapse
|
43
|
Senescence in Human Mesenchymal Stem Cells: Functional Changes and Implications in Stem Cell-Based Therapy. Int J Mol Sci 2016; 17:ijms17071164. [PMID: 27447618 PMCID: PMC4964536 DOI: 10.3390/ijms17071164] [Citation(s) in RCA: 334] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 07/04/2016] [Accepted: 07/14/2016] [Indexed: 12/19/2022] Open
Abstract
Regenerative medicine is extensively interested in developing cell therapies using mesenchymal stem cells (MSCs), with applications to several aging-associated diseases. For successful therapies, a substantial number of cells are needed, requiring extensive ex vivo cell expansion. However, MSC proliferation is limited and it is quite likely that long-term culture evokes continuous changes in MSCs. Therefore, a substantial proportion of cells may undergo senescence. In the present review, we will first present the phenotypic characterization of senescent human MSCs (hMSCs) and their possible consequent functional alterations. The accumulation of oxidative stress and dysregulation of key differentiation regulatory factors determine decreased differentiation potential of senescent hMSCs. Senescent hMSCs also show a marked impairment in their migratory and homing ability. Finally, many factors present in the secretome of senescent hMSCs are able to exacerbate the inflammatory response at a systemic level, decreasing the immune modulation activity of hMSCs and promoting either proliferation or migration of cancer cells. Considering the deleterious effects that these changes could evoke, it would appear of primary importance to monitor the occurrence of senescent phenotype in clinically expanded hMSCs and to evaluate possible ways to prevent in vitro MSC senescence. An updated critical presentation of the possible strategies for in vitro senescence monitoring and prevention constitutes the second part of this review. Understanding the mechanisms that drive toward hMSC growth arrest and evaluating how to counteract these for preserving a functional stem cell pool is of fundamental importance for the development of efficient cell-based therapeutic approaches.
Collapse
|
44
|
Mesenchymal stem cells are sensitive to bleomycin treatment. Sci Rep 2016; 6:26645. [PMID: 27215195 PMCID: PMC4877675 DOI: 10.1038/srep26645] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 05/06/2016] [Indexed: 12/31/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have been shown to attenuate pulmonary damage induced by bleomycin-based anticancer treatments, but the influence of bleomycin on the stem cells themselves remains largely unknown. Here, we demonstrate that human bone marrow-derived MSCs are relatively sensitive to bleomycin exposure compared to adult fibroblasts. MSCs revealed increased levels of apoptosis after bleomycin treatment, while cellular morphology, stem cell surface marker expression and the ability for adhesion and migration remained unchanged. Bleomycin treatment also resulted in a reduced adipogenic differentiation potential of these stem cells. MSCs were found to efficiently repair DNA double strand breaks induced by bleomycin, mostly through non-homologous end joining repair. Low mRNA and protein expression levels of the inactivating enzyme bleomycin hydrolase were detected in MSCs that may contribute to the observed bleomycin-sensitive phenotype of these cells. The sensitivity of MSCs against bleomycin needs to be taken into consideration for ongoing and future treatment protocols investigating these stem cells as a potential treatment option for bleomycin-induced pulmonary damage in the clinic.
Collapse
|
45
|
Bellagamba BC, Abreu BRRD, Grivicich I, Markarian CF, Chem E, Camassola M, Nardi NB, Dihl RR. Human mesenchymal stem cells are resistant to cytotoxic and genotoxic effects of cisplatin in vitro. Genet Mol Biol 2016; 39:129-34. [PMID: 27007906 PMCID: PMC4807379 DOI: 10.1590/1678-4685-gmb-2015-0057] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Accepted: 08/11/2015] [Indexed: 11/22/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are known for their important properties involving multilineage differentiation potential., trophic factor secretion and localization along various organs and tissues. On the dark side, MSCs play a distinguished role in tumor microenvironments by differentiating into tumor-associated fibroblasts or supporting tumor growth via distinct mechanisms. Cisplatin (CIS) is a drug widely applied in the treatment of a large number of cancers and is known for its cytotoxic and genotoxic effects, both in vitro and in vivo. Here we assessed the effects of CIS on MSCs and the ovarian cancer cell line OVCAR-3, by MTT and comet assays. Our results demonstrated the resistance of MSCs to cell death and DNA damage induction by CIS, which was not observed when OVCAR-3 cells were exposed to this drug.
Collapse
Affiliation(s)
| | | | | | | | - Eduardo Chem
- Complexo Hospitalar Santa Casa de Porto Alegre, Porto Alegre, RS, Brazil
| | | | | | | |
Collapse
|
46
|
Mesenchymal stem cells maintain their defining stem cell characteristics after treatment with cisplatin. Sci Rep 2016; 6:20035. [PMID: 26805490 PMCID: PMC4726328 DOI: 10.1038/srep20035] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 12/23/2015] [Indexed: 12/11/2022] Open
Abstract
Mesenchymal stem cells (MSCs) aid the regeneration of tissues damaged by treatment with cisplatin. However, the effects of this cytotoxic drug on the stem cells have been largely unknown. Here we demonstrate that human bone marrow-derived MSCs are relatively resistant to cisplatin treatment and show resistance levels comparable to these of differentiated fibroblasts. Cisplatin did not affect cellular morphology, adhesion or induction of apoptosis in MSCs. The potential for differentiation was preserved after exposure to cisplatin, and established MSC surface markers were observed to be stably expressed irrespective of cisplatin treatment. Cytoskeletal rearrangements and high expression levels of individual heat shock proteins were detected in MSCs and may be partly responsible for the observed cisplatin resistance. The cisplatin-resistant phenotype of human MSCs supports the concept of further investigating these stem cells as a potential treatment option for cisplatin-induced tissue damage.
Collapse
|
47
|
Han S, Li YY, Chan BP. Extracellular Protease Inhibition Alters the Phenotype of Chondrogenically Differentiating Human Mesenchymal Stem Cells (MSCs) in 3D Collagen Microspheres. PLoS One 2016; 11:e0146928. [PMID: 26760956 PMCID: PMC4711899 DOI: 10.1371/journal.pone.0146928] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 12/22/2015] [Indexed: 11/18/2022] Open
Abstract
Matrix remodeling of cells is highly regulated by proteases and their inhibitors. Nevertheless, how would the chondrogenesis of mesenchymal stem cells (MSCs) be affected, when the balance of the matrix remodeling is disturbed by inhibiting matrix proteases, is incompletely known. Using a previously developed collagen microencapsulation platform, we investigated whether exposing chondrogenically differentiating MSCs to intracellular and extracellular protease inhibitors will affect the extracellular matrix remodeling and hence the outcomes of chondrogenesis. Results showed that inhibition of matrix proteases particularly the extracellular ones favors the phenotype of fibrocartilage rather than hyaline cartilage in chondrogenically differentiating hMSCs by upregulating type I collagen protein deposition and type II collagen gene expression without significantly altering the hypertrophic markers at gene level. This study suggests the potential of manipulating extracellular proteases to alter the outcomes of hMSC chondrogenesis, contributing to future development of differentiation protocols for fibrocartilage tissues for intervertebral disc and meniscus tissue engineering.
Collapse
Affiliation(s)
- Sejin Han
- Tissue Engineering Laboratory, Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region, China
| | - Yuk Yin Li
- Tissue Engineering Laboratory, Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region, China
| | - Barbara Pui Chan
- Tissue Engineering Laboratory, Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region, China
- * E-mail:
| |
Collapse
|
48
|
Yu JL, Deng R, Chung SK, Chan GCF. Epac Activation Regulates Human Mesenchymal Stem Cells Migration and Adhesion. Stem Cells 2016; 34:948-59. [PMID: 26727165 DOI: 10.1002/stem.2264] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 11/03/2015] [Accepted: 11/30/2015] [Indexed: 01/13/2023]
Abstract
How to enhance the homing of human mesenchymal stem cells (hMSCs) to the target tissues remains a clinical challenge nowadays. To overcome this barrier, the mechanism responsible for the hMSCs migration and engraftment has to be defined. Currently, the exact mechanism involved in migration and adhesion of hMSCs remains unknown. Exchange protein directly activated by cAMP (Epac), a novel protein discovered in cAMP signaling pathway, may have a potential role in regulating cells adhesion and migration by triggering the downstream Rap family signaling cascades. However, the exact role of Epac in cells homing is elusive. Our study evaluated the role of Epac in the homing of hMSCs. We confirmed that hMSCs expressed functional Epac and its activation enhanced the migration and adhesion of hMSCs significantly. The Epac activation was further found to be contributed directly to the chemotactic responses induced by stromal cell derived factor-1 (SDF-1) which is a known chemokine in regulating hMSCs homing. These findings suggested Epac is connected to the SDF-1 signaling cascades. In conclusion, our study revealed that Epac plays a role in hMSCs homing by promoting adhesion and migration. Appropriate manipulation of Epac may enhance the homing of hMSCs and facilitate their future clinical applications.
Collapse
Affiliation(s)
- Jiao-Le Yu
- Department of Pediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong Special Administration Region, People's Republic of China.,Beijing Children's Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Ruixia Deng
- Department of Pediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong Special Administration Region, People's Republic of China
| | - Sookja K Chung
- Department of Ophthalmology, School of Biomedical Sciences, The University of Hong Kong, Hong Kong Special Administration Region, People's Republic of China.,State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong Special Administration Region, People's Republic of China
| | - Godfrey Chi-Fung Chan
- Department of Pediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong Special Administration Region, People's Republic of China.,Center for Cancer Research, The University of Hong Kong, Hong Kong Special Administration Region, People's Republic of China.,Stem Cell & Regenerative Medicine Consortium, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administration Region, People's Republic of China
| |
Collapse
|
49
|
Yeung P, Sin HS, Chan S, Chan GCF, Chan BP. Microencapsulation of Neuroblastoma Cells and Mesenchymal Stromal Cells in Collagen Microspheres: A 3D Model for Cancer Cell Niche Study. PLoS One 2015; 10:e0144139. [PMID: 26657086 PMCID: PMC4682120 DOI: 10.1371/journal.pone.0144139] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 11/14/2015] [Indexed: 12/18/2022] Open
Abstract
There is a growing trend for researchers to use in vitro 3D models in cancer studies, as they can better recapitulate the complex in vivo situation. And the fact that the progression and development of tumor are closely associated to its stromal microenvironment has been increasingly recognized. The establishment of such tumor supportive niche is vital in understanding tumor progress and metastasis. The mesenchymal origin of many cells residing in the cancer niche provides the rationale to include MSCs in mimicking the niche in neuroblastoma. Here we co-encapsulate and co-culture NBCs and MSCs in a 3D in vitro model and investigate the morphology, growth kinetics and matrix remodeling in the reconstituted stromal environment. Results showed that the incorporation of MSCs in the model lead to accelerated growth of cancer cells as well as recapitulation of at least partially the tumor microenvironment in vivo. The current study therefore demonstrates the feasibility for the collagen microsphere to act as a 3D in vitro cancer model for various topics in cancer studies.
Collapse
Affiliation(s)
- Pan Yeung
- Tissue Engineering Laboratory, Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region, China
| | - Hoi Shun Sin
- Tissue Engineering Laboratory, Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region, China
| | - Shing Chan
- Department of Adolescence Medicine and Paediatrics, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Godfrey Chi Fung Chan
- Department of Adolescence Medicine and Paediatrics, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Barbara Pui Chan
- Tissue Engineering Laboratory, Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region, China
- * E-mail:
| |
Collapse
|
50
|
Protease inhibitors enhance extracellular collagen fibril deposition in human mesenchymal stem cells. Stem Cell Res Ther 2015; 6:197. [PMID: 26466582 PMCID: PMC4606504 DOI: 10.1186/s13287-015-0191-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 08/20/2015] [Accepted: 09/22/2015] [Indexed: 11/10/2022] Open
Abstract
INTRODUCTION Collagen is a widely used naturally occurring biomaterial for scaffolding, whereas mesenchymal stem cells (MSCs) represent a promising cell source in tissue engineering and regenerative medicine. It is generally known that cells are able to remodel their environment by simultaneous degradation of the scaffolds and deposition of newly synthesized extracellular matrix. Nevertheless, the interactions between MSCs and collagen biomaterials are poorly known, and the strategies enhancing the extracellular matrix deposition are yet to be defined. In this study, we aim to investigate the fate of collagen when it is in contact with MSCs and hypothesize that protease inhibition will enhance their extracellular deposition of collagen fibrils. METHODS Specifically, human MSCs (hMSCs) were exposed to fluorescence-labeled collagen with and without intracellular or extracellular protease inhibitors (or both) before tracing the collagen at both intracellular and extracellular spaces. RESULTS Collagen were internalized by hMSCs and degraded intracellularly in lysosomes. In the presence of protease inhibitors, both intracellular collagen fibril growth and extracellular deposition of collagen fibrils were enhanced. Moreover, protease inhibitors work synergistically with ascorbic acid, a well-known matrix deposition-enhancing reagent, in further enhancing collagen fibril deposition at the extracellular space. CONCLUSION These findings provide a better understanding of the interactions between hMSCs and collagen biomaterials and suggest a method to manipulate matrix remodeling and deposition of hMSCs, contributing to better scaffolding for tissue engineering and regenerative medicine.
Collapse
|