1
|
Vong P, Messaoudi K, Jankovsky N, Gomilla C, Demont Y, Caulier A, Jedraszak G, Demagny J, Djordjevic S, Boyer T, Marolleau JP, Rochette J, Ouled‐Haddou H, Garçon L. HDAC6 regulates human erythroid differentiation through modulation of JAK2 signalling. J Cell Mol Med 2022; 27:174-188. [PMID: 36578217 PMCID: PMC9843532 DOI: 10.1111/jcmm.17559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 08/25/2022] [Accepted: 09/05/2022] [Indexed: 12/30/2022] Open
Abstract
Among histone deacetylases, HDAC6 is unusual in its cytoplasmic localization. Its inhibition leads to hyperacetylation of non-histone proteins, inhibiting cell cycle, proliferation and apoptosis. Ricolinostat (ACY-1215) is a selective inhibitor of the histone deacetylase HDAC6 with proven efficacy in the treatment of malignant diseases, but anaemia is one of the most frequent side effects. We investigated here the underlying mechanisms of this erythroid toxicity. We first confirmed that HDAC6 was strongly expressed at both RNA and protein levels in CD34+ -cells-derived erythroid progenitors. ACY-1215 exposure on CD34+ -cells driven in vitro towards the erythroid lineage led to a decreased cell count, an increased apoptotic rate and a delayed erythroid differentiation with accumulation of weakly hemoglobinized immature erythroblasts. This was accompanied by drastic changes in the transcriptomic profile of primary cells as shown by RNAseq. In erythroid cells, ACY-1215 and shRNA-mediated HDAC6 knockdown inhibited the EPO-dependent JAK2 phosphorylation. Using acetylome, we identified 14-3-3ζ, known to interact directly with the JAK2 negative regulator LNK, as a potential HDAC6 target in erythroid cells. We confirmed that 14-3-3ζ was hyperacetylated after ACY-1215 exposure, which decreased the 14-3-3ζ/LNK interaction while increased LNK ability to interact with JAK2. Thus, in addition to its previously described role in the enucleation of mouse fetal liver erythroblasts, we identified here a new mechanism of HDAC6-dependent control of erythropoiesis through 14-3-3ζ acetylation level, LNK availability and finally JAK2 activation in response to EPO, which is crucial downstream of EPO-R activation for human erythroid cell survival, proliferation and differentiation.
Collapse
Affiliation(s)
- Pascal Vong
- HEMATIM UR4666Université Picardie Jules VerneAmiensFrance
| | | | | | - Cathy Gomilla
- HEMATIM UR4666Université Picardie Jules VerneAmiensFrance
| | - Yohann Demont
- Service d'Hématologie BiologiqueCentre Hospitalier UniversitaireAmiensFrance
| | - Alexis Caulier
- HEMATIM UR4666Université Picardie Jules VerneAmiensFrance,Service des Maladies du SangCentre Hospitalier UniversitaireAmiensFrance
| | - Guillaume Jedraszak
- HEMATIM UR4666Université Picardie Jules VerneAmiensFrance,Laboratoire de Génétique ConstitutionnelleCentre Hospitalier UniversitaireAmiensFrance
| | - Julien Demagny
- HEMATIM UR4666Université Picardie Jules VerneAmiensFrance,Service d'Hématologie BiologiqueCentre Hospitalier UniversitaireAmiensFrance
| | | | - Thomas Boyer
- HEMATIM UR4666Université Picardie Jules VerneAmiensFrance,Service d'Hématologie BiologiqueCentre Hospitalier UniversitaireAmiensFrance
| | - Jean Pierre Marolleau
- HEMATIM UR4666Université Picardie Jules VerneAmiensFrance,Service des Maladies du SangCentre Hospitalier UniversitaireAmiensFrance
| | | | | | - Loïc Garçon
- HEMATIM UR4666Université Picardie Jules VerneAmiensFrance,Service d'Hématologie BiologiqueCentre Hospitalier UniversitaireAmiensFrance
| |
Collapse
|
2
|
Vong P, Ouled-Haddou H, Garçon L. Histone Deacetylases Function in the Control of Early Hematopoiesis and Erythropoiesis. Int J Mol Sci 2022; 23:9790. [PMID: 36077192 PMCID: PMC9456231 DOI: 10.3390/ijms23179790] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 11/17/2022] Open
Abstract
Numerous studies have highlighted the role of post-translational modifications in the regulation of cell proliferation, differentiation and death. Among these modifications, acetylation modifies the physicochemical properties of proteins and modulates their activity, stability, localization and affinity for partner proteins. Through the deacetylation of a wide variety of functional and structural, nuclear and cytoplasmic proteins, histone deacetylases (HDACs) modulate important cellular processes, including hematopoiesis, during which different HDACs, by controlling gene expression or by regulating non-histone protein functions, act sequentially to provide a fine regulation of the differentiation process both in early hematopoietic stem cells and in more mature progenitors. Considering that HDAC inhibitors represent promising targets in cancer treatment, it is necessary to decipher the role of HDACs during hematopoiesis which could be impacted by these therapies. This review will highlight the main mechanisms by which HDACs control the hematopoietic stem cell fate, particularly in the erythroid lineage.
Collapse
Affiliation(s)
- Pascal Vong
- Université Picardie Jules Verne, HEMATIM UR4666, 80000 Amiens, France
| | | | - Loïc Garçon
- Université Picardie Jules Verne, HEMATIM UR4666, 80000 Amiens, France
- Service d’Hématologie Biologique, Centre Hospitalier Universitaire, CEDEX 1, 80054 Amiens, France
- Laboratoire de Génétique Constitutionnelle, Centre Hospitalier Universitaire, CEDEX 1, 80054 Amiens, France
| |
Collapse
|
3
|
Li T, Wu H, Wang P, Kim AM, Jia J, Nolta JA, Zhou P. HDACs regulate the differentiation of endothelial cells from human iPSCs. Cell Biochem Funct 2022; 40:589-599. [PMID: 35789099 PMCID: PMC9391285 DOI: 10.1002/cbf.3729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 05/18/2022] [Accepted: 06/20/2022] [Indexed: 11/08/2022]
Abstract
Human induced pluripotent stem cells (hiPSCs) possess the potential to differentiate toward vascular cells including endothelial cells (ECs), pericytes, and smooth muscle cells. Epigenetic mechanisms including DNA methylation and histone modification play a crucial role in regulating lineage differentiation and specification. Herein, we utilized a three-stage protocol to induce differentiation of mesoderm, vascular progenitors, and ECs from hiPSCs and investigated the regulatory effects of histone acetylation on the differentiation processes. We found that the expression of several histone deacetylases (HDACs), including HDAC1, HDAC5, and HDAC7, were greatly upregulated at the second stage and downregulated at the third stage. Interestingly, although HDAC1 remained in the nucleus during the EC differentiation, HDAC5 and HDAC7 displayed cytosol/nuclear translocation during the differentiation process. Inhibition of HDACs with sodium butyrate (NaBt) or BML210 could hinder the differentiation of vascular progenitors at the second stage and facilitate EC induction at the third stage. Further investigation revealed that HDAC may modulate the stepwise EC differentiation via regulating the expression of endothelial transcription factors ERG, ETS1, and MEF2C. Opposite to the expression of EC markers, the smooth muscle/pericyte marker ACTA2 was upregulated at the second stage and downregulated at the third stage by NaBt. The stage-specific regulation of ACTA2 by HDAC inhibition was likely through regulating the expression of TGFβ2 and PDGFB. This study suggests that HDACs play different roles at different stages of EC induction by promoting the commitment of vascular progenitors and impeding the later stage differentiation of ECs.
Collapse
Affiliation(s)
- Tao Li
- Department of Medical Laboratory, School of Medicine, Hunan Normal University, Changsha, Hunan, China.,Stem Cell Program, University of California Davis Medical Center, Sacramento, California, USA
| | - Haopeng Wu
- Department of Medical Laboratory, School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Pingping Wang
- Department of Medical Laboratory, School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Amy M Kim
- Stem Cell Program, University of California Davis Medical Center, Sacramento, California, USA
| | - Junjing Jia
- Stem Cell Program, University of California Davis Medical Center, Sacramento, California, USA
| | - Jan A Nolta
- Stem Cell Program, University of California Davis Medical Center, Sacramento, California, USA.,Department of Internal Medicine, Unversity of California Davis Medical Center, Sacramento, California, USA.,University of California Davis Gene Therapy Center, Sacramento, California, USA
| | - Ping Zhou
- Stem Cell Program, University of California Davis Medical Center, Sacramento, California, USA.,Department of Internal Medicine, Unversity of California Davis Medical Center, Sacramento, California, USA.,University of California Davis Gene Therapy Center, Sacramento, California, USA
| |
Collapse
|
4
|
Mehrpouri M, Pourbagheri-Sigaroodi A, Bashash D. The contributory roles of histone deacetylases (HDACs) in hematopoiesis regulation and possibilities for pharmacologic interventions in hematologic malignancies. Int Immunopharmacol 2021; 100:108114. [PMID: 34492531 DOI: 10.1016/j.intimp.2021.108114] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/27/2021] [Accepted: 08/28/2021] [Indexed: 12/17/2022]
Abstract
Although the definitive role of epigenetic modulations in a wide range of hematologic malignancies, spanning from leukemia to lymphoma and multiple myeloma, has been evidenced, few articles reviewed the task. Given the high accessibility of histone deacetylase (HDACs) to necessary transcription factors involved in hematopoiesis, this review aims to outline physiologic impacts of these enzymes in normal hematopoiesis, and also to outline the original data obtained from international research laboratories on their regulatory role in the differentiation and maturation of different hematopoietic lineages. Questions on how aberrant expression of HDACs contributes to the formation of hematologic malignancies are also responded, because these classes of enzymes have a respectable share in the development, progression, and recurrence of leukemia, lymphoma, and multiple myeloma. The last section provides a special focus on the therapeutic perspectiveof HDACs inhibitors, either as single agents or in a combined-modal strategy, in these neoplasms. In conclusion, optimizing the dose and the design of more patient-tailored inhibitors, while maintaining low toxicity against normal cells, will help improve clinical outcomes of HDAC inhibitors in hematologic malignancies.
Collapse
Affiliation(s)
- Mahdieh Mehrpouri
- Department of Laboratory Sciences, School of Allied Medical Sciences, Alborz University of Medical Sciences, Karaj, Iran
| | - Atieh Pourbagheri-Sigaroodi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Impairment of human terminal erythroid differentiation by histone deacetylase 5 deficiency. Blood 2021; 138:1615-1627. [PMID: 34036344 DOI: 10.1182/blood.2020007401] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 04/22/2021] [Indexed: 11/20/2022] Open
Abstract
Histone deacetylases (HDACs) are a group of enzymes catalyzing the removal of acetyl groups from histone and non-histone proteins. HDACs have been shown to play diverse functions in a wide range of biological processes. However, their roles in mammalian erythropoiesis remain to be fully defined. We show here that of the eleven classic HDAC family members, six of them (HDAC 1,2,3 and HDAC 5,6,7) are expressed in human erythroid cells with HDAC5 most significantly up regulated during terminal erythroid differentiation. Knockdown of HDAC5 by either shRNA or siRNA in human CD34+ cells followed by erythroid cell culture led to increased apoptosis, decreased chromatin condensation, and impaired enucleation of erythroblasts. Biochemical analyses revealed that HDAC5 deficiency resulted in activation of p53 in association with increased acetylation of p53. Furthermore, while acetylation of histone 4 (H4) is decreased during normal terminal erythroid differentiation, HDAC5 deficiency led to increased acetylation of H4 (K12) in late stage erythroblasts. This increased acetylation was accompanied by decreased chromatin condensation, implying a role for H4 (K12) deacetylation in chromatin condensation. ATAC-seq and RNA-seq analyses revealed that HDAC5 knockdown leads to increased chromatin accessibility genome wide and global changes in gene expression. Moreover, pharmacological inhibition of HDAC5 by the inhibitor LMK235 also led to increased H4 acetylation, impaired chromatin condensation and enucleation. Taken together, our findings have uncovered previously unrecognized roles and molecular mechanisms of action for HDAC5 in human erythropoiesis. These results may provide insights into understanding the anemia associated with HDAC inhibitor treatment.
Collapse
|
6
|
Regulating the Regulators: The Role of Histone Deacetylase 1 (HDAC1) in Erythropoiesis. Int J Mol Sci 2020; 21:ijms21228460. [PMID: 33187090 PMCID: PMC7696854 DOI: 10.3390/ijms21228460] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/05/2020] [Accepted: 11/06/2020] [Indexed: 02/06/2023] Open
Abstract
Histone deacetylases (HDACs) play important roles in transcriptional regulation in eukaryotic cells. Class I deacetylase HDAC1/2 often associates with repressor complexes, such as Sin3 (Switch Independent 3), NuRD (Nucleosome remodeling and deacetylase) and CoREST (Corepressor of RE1 silencing transcription factor) complexes. It has been shown that HDAC1 interacts with and modulates all essential transcription factors for erythropoiesis. During erythropoiesis, histone deacetylase activity is dramatically reduced. Consistently, inhibition of HDAC activity promotes erythroid differentiation. The reduction of HDAC activity not only results in the activation of transcription activators such as GATA-1 (GATA-binding factor 1), TAL1 (TAL BHLH Transcription Factor 1) and KLF1 (Krüpple-like factor 1), but also represses transcription repressors such as PU.1 (Putative oncogene Spi-1). The reduction of histone deacetylase activity is mainly through HDAC1 acetylation that attenuates HDAC1 activity and trans-repress HDAC2 activity through dimerization with HDAC1. Therefore, the acetylation of HDAC1 can convert the corepressor complex to an activator complex for gene activation. HDAC1 also can deacetylate non-histone proteins that play a role on erythropoiesis, therefore adds another layer of gene regulation through HDAC1. Clinically, it has been shown HDACi can reactivate fetal globin in adult erythroid cells. This review will cover the up to date research on the role of HDAC1 in modulating key transcription factors for erythropoiesis and its clinical relevance.
Collapse
|
7
|
Wang P, Wang Z, Liu J. Role of HDACs in normal and malignant hematopoiesis. Mol Cancer 2020; 19:5. [PMID: 31910827 PMCID: PMC6945581 DOI: 10.1186/s12943-019-1127-7] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 12/26/2019] [Indexed: 01/09/2023] Open
Abstract
Normal hematopoiesis requires the accurate orchestration of lineage-specific patterns of gene expression at each stage of development, and epigenetic regulators play a vital role. Disordered epigenetic regulation has emerged as a key mechanism contributing to hematological malignancies. Histone deacetylases (HDACs) are a series of key transcriptional cofactors that regulate gene expression by deacetylation of lysine residues on histone and nonhistone proteins. In normal hematopoiesis, HDACs are widely involved in the development of various lineages. Their functions involve stemness maintenance, lineage commitment determination, cell differentiation and proliferation, etc. Deregulation of HDACs by abnormal expression or activity and oncogenic HDAC-containing transcriptional complexes are involved in hematological malignancies. Currently, HDAC family members are attractive targets for drug design, and a variety of HDAC-based combination strategies have been developed for the treatment of hematological malignancies. Drug resistance and limited therapeutic efficacy are key issues that hinder the clinical applications of HDAC inhibitors (HDACis). In this review, we summarize the current knowledge of how HDACs and HDAC-containing complexes function in normal hematopoiesis and highlight the etiology of HDACs in hematological malignancies. Moreover, the implication and drug resistance of HDACis are also discussed. This review presents an overview of the physiology and pathology of HDACs in the blood system.
Collapse
Affiliation(s)
- Pan Wang
- The Xiangya Hospital, Central South University, Changsha, 410005, Hunan, China.,Molecular Biology Research Center and Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, 410078, Hunan, China
| | - Zi Wang
- The Xiangya Hospital, Central South University, Changsha, 410005, Hunan, China. .,Molecular Biology Research Center and Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, 410078, Hunan, China.
| | - Jing Liu
- Molecular Biology Research Center and Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, 410078, Hunan, China.
| |
Collapse
|
8
|
Chemical Inhibition of Histone Deacetylases 1 and 2 Induces Fetal Hemoglobin through Activation of GATA2. PLoS One 2016; 11:e0153767. [PMID: 27073918 PMCID: PMC4830539 DOI: 10.1371/journal.pone.0153767] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 04/04/2016] [Indexed: 01/10/2023] Open
Abstract
Therapeutic intervention aimed at reactivation of fetal hemoglobin protein (HbF) is a promising approach for ameliorating sickle cell disease (SCD) and β-thalassemia. Previous studies showed genetic knockdown of histone deacetylase (HDAC) 1 or 2 is sufficient to induce HbF. Here we show that ACY-957, a selective chemical inhibitor of HDAC1 and 2 (HDAC1/2), elicits a dose and time dependent induction of γ-globin mRNA (HBG) and HbF in cultured primary cells derived from healthy individuals and sickle cell patients. Gene expression profiling of erythroid progenitors treated with ACY-957 identified global changes in gene expression that were significantly enriched in genes previously shown to be affected by HDAC1 or 2 knockdown. These genes included GATA2, which was induced greater than 3-fold. Lentiviral overexpression of GATA2 in primary erythroid progenitors increased HBG, and reduced adult β-globin mRNA (HBB). Furthermore, knockdown of GATA2 attenuated HBG induction by ACY-957. Chromatin immunoprecipitation and sequencing (ChIP-Seq) of primary erythroid progenitors demonstrated that HDAC1 and 2 occupancy was highly correlated throughout the GATA2 locus and that HDAC1/2 inhibition led to elevated histone acetylation at well-known GATA2 autoregulatory regions. The GATA2 protein itself also showed increased binding at these regions in response to ACY-957 treatment. These data show that chemical inhibition of HDAC1/2 induces HBG and suggest that this effect is mediated, at least in part, by histone acetylation-induced activation of the GATA2 gene.
Collapse
|
9
|
Roe C. Unwrapping Neurotrophic Cytokines and Histone Modification. Cell Mol Neurobiol 2016; 37:1-4. [PMID: 26935061 PMCID: PMC5226993 DOI: 10.1007/s10571-016-0330-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 01/08/2016] [Indexed: 10/25/2022]
Abstract
The conventional view that neuroinflammatory lesions contain strictly pro- and anti-inflammatory cytokines is being challenged. Some proinflammatory products e.g. TNF-α are crucial intermediates in axon regeneration, oligodendroglial renewal and remyelination. A more functional system of nomenclature classifies cytokines by their neuro 'protective' or 'suppressive' properties. Beyond the balance of these 'environmental' or 'extrinsic' signals, specific 'intrinsic' determinants of cytokine signalling appear to influence the outcome of axoglial regeneration. In this commentary, we examine the potential importance of cytokine-induced histone modification on oligodendrocyte differentiation. Neuroinflammation mediates the release of astrocytic leukaemia inhibitory factor (LIF) and erythropoietin (EPO) which potentiates oligodendrocyte differentiation and myelin production. Meanwhile, histone deacetylation strongly suppresses important inhibitors of oligodendrocyte differentiation. Given that LIF and EPO induce histone deacetylases in other systems, future studies should examine whether this mechanism significantly influences the outcome of cytokine-induced remyelination, and whether epigenetic drug targets could potentiate the effects of exogenous cytokine therapy.
Collapse
Affiliation(s)
- Cieron Roe
- Brighton and Sussex Medical School, The Audrey Emerton Building, Eastern Road, Kemp Town, Brighton, BN2 5BE, UK.
| |
Collapse
|
10
|
Abstract
Epigenetics refers to long-term modifications of gene activity that can be inherited, either somatically or transgenerationally, but that are independent of alterations in the primary base sequence of the organism's DNA. These changes can include chemical modifications of both the DNA bases and the proteins that associate with the DNA helices to form chromatin, the nucleic acid:protein complex of which the chromosomes are comprised. Epigenetic modifications can affect the accessibility of the DNA for transcription factors (the DNA-binding proteins that specify which genes are to be active or silent by modulating the recruitment of the transcriptional machinery that reads the information encoded in the sequence) and thereby regulate the expression of genes and alter the phenotype of the organism. Epigenetic marks can also be re-established following mitosis, allowing patterns of differential gene expression to be transmitted from one cell generation to the next, and can even be maintained through meiosis, allowing transgenerational transfer of regulatory cues. Unlike the information encoded in the DNA sequence, which is invariant between most cell types and over time, epigenetic information is tissue specific and can change in response to exogenous and endogenous perturbations. This responsive capacity enables a sensitive and reactive system that can optimize gene expression in relevant tissue in response to environmental change. The realization that organisms are capable of genetically 'reprograming' themselves as well as 'preprograming' future cells, and even future offspring to optimize gene expression for a given environment may have tremendous ramifications on our understanding of both acclimatization and adaptation to hypoxia.
Collapse
Affiliation(s)
- Carolyn J Brown
- 1 Department of Medical Genetics, Molecular Epigenetics Group, University of British Columbia , Vancouver, British Columbia, Canada
| | | |
Collapse
|
11
|
Abstract
The corepressor Rcor1 has been linked biochemically to hematopoiesis, but its function in vivo remains unknown. We show that mice deleted for Rcor1 are profoundly anemic and die in late gestation. Definitive erythroid cells from mutant mice arrest at the transition from proerythroblast to basophilic erythroblast. Remarkably, Rcor1 null erythroid progenitors cultured in vitro form myeloid colonies instead of erythroid colonies. The mutant proerythroblasts also aberrantly express genes of the myeloid lineage as well as genes typical of hematopoietic stem cells (HSCs) and/or progenitor cells. The colony-stimulating factor 2 receptor β subunit (Csf2rb), which codes for a receptor implicated in myeloid cytokine signaling, is a direct target for both Rcor1 and the transcription repressor Gfi1b in erythroid cells. In the absence of Rcor1, the Csf2rb gene is highly induced, and Rcor1(-/-) progenitors exhibit CSF2-dependent phospho-Stat5 hypersensitivity. Blocking this pathway can partially reduce myeloid colony formation by Rcor1-deficient erythroid progenitors. Thus, Rcor1 promotes erythropoiesis by repressing HSC and/or progenitor genes, as well as the genes and signaling pathways that lead to myeloid cell fate.
Collapse
|
12
|
Zhao T, Li Y, Liu B, Halaweish I, Mazitschek R, Alam HB. Selective inhibition of histone deacetylase 6 alters the composition of circulating blood cells in a lethal septic model. J Surg Res 2014; 190:647-54. [PMID: 24613069 DOI: 10.1016/j.jss.2014.01.056] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Revised: 01/24/2014] [Accepted: 01/31/2014] [Indexed: 01/12/2023]
Abstract
BACKGROUND Phagocytes, especially monocytes, macrophages, and dendritic cells, play a pivotal role in the innate and adaptive immune responses during sepsis. We have shown that inhibition of histone deacetylase 6 improves survival and increases bacterial clearance in a mouse model of cecal ligation and puncture (CLP). The aim of this study was to determine whether this effect was associated with changes in the number and composition of different blood cell types in the circulation. METHODS C57BL/6J mice were subjected to CLP, and 1 h later given an intraperitoneal injection of either Tubastatin A dissolved in dimethyl sulfoxide, or dimethyl sulfoxide only. Sham-operated animals were treated in an identical fashion but not subjected to CLP. Forty-eight hours later, peripheral blood was obtained via cardiac puncture and analyzed using a HemaTrue veterinary hematology analyzer. RESULTS Tubastatin A administration increased the number of circulating monocytes in the sham-operated and the CLP animals. In comparison with the sham, CLP animals displayed an increase in the granulocyte percentage in white blood cells and decrease in the lymphocyte number and percentage, with a resultant increase in the granulocyte-to-lymphocyte ratio. Treatment of CLP animals with Tubastatin A decreased the granulocyte percentage and restored the lymphocyte number and percentage, which decreased the granulocyte-to-lymphocyte ratio. In the sham animals, Tubastatin A increased red blood cell number, hematocrit, and hemoglobin. This effect was not seen in CLP animals. CONCLUSIONS Tubastatin A treatment has significant impact on the composition of circulating blood cells. It increases the number of circulating monocytes and the red blood cell mass in sham-operated animals. In the CLP animals, it increases the monocyte count, decreases the percentage of granulocytes, restores the lymphocyte population, and decreases the granulocyte-to-lymphocyte ratio. These results may explain why Tubastatin A treatment improves survival in the septic models.
Collapse
Affiliation(s)
- Ting Zhao
- Division of Trauma, Emergency Surgery and Surgical Critical Care, Department of Surgery, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts
| | - Yongqing Li
- Department of Surgery, University of Michigan Hospital, Ann Arbor, Michigan
| | - Baoling Liu
- Department of Surgery, University of Michigan Hospital, Ann Arbor, Michigan
| | - Ihab Halaweish
- Department of Surgery, University of Michigan Hospital, Ann Arbor, Michigan
| | - Ralph Mazitschek
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; Chemical Biology Program, The Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Hasan B Alam
- Department of Surgery, University of Michigan Hospital, Ann Arbor, Michigan.
| |
Collapse
|
13
|
Protein kinase D-HDAC5 signaling regulates erythropoiesis and contributes to erythropoietin cross-talk with GATA1. Blood 2012; 120:4219-28. [PMID: 22983445 DOI: 10.1182/blood-2011-10-387050] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In red cell development, the differentiation program directed by the transcriptional regulator GATA1 requires signaling by the cytokine erythropoietin, but the mechanistic basis for this signaling requirement has remained unknown. Here we show that erythropoietin regulates GATA1 through protein kinase D activation, promoting histone deacetylase 5 (HDAC5) dissociation from GATA1, and subsequent GATA1 acetylation. Mice deficient for HDAC5 show resistance to anemic challenge and altered marrow responsiveness to erythropoietin injections. In ex vivo studies, HDAC5(-/-) progenitors display enhanced entry into and passage through the erythroid lineage, as well as evidence of erythropoietin-independent differentiation. These results reveal a molecular pathway that contributes to cytokine regulation of hematopoietic differentiation and offer a potential mechanism for fine tuning of lineage-restricted transcription factors by lineage-specific cytokines.
Collapse
|
14
|
The combination of valproic acid and lithium delays hematopoietic stem/progenitor cell differentiation. Blood 2012; 119:3050-9. [PMID: 22327222 DOI: 10.1182/blood-2011-08-375386] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Despite increasing knowledge on the regulation of hematopoietic stem/progenitor cell (HSPC) self-renewal and differentiation, in vitro control of stem cell fate decisions has been difficult. The ability to inhibit HSPC commitment in culture may be of benefit to cell therapy protocols. Small molecules can serve as tools to manipulate cell fate decisions. Here, we tested 2 small molecules, valproic acid (VPA) and lithium (Li), to inhibit differentiation. HSPCs exposed to VPA and Li during differentiation-inducing culture preserved an immature cell phenotype, provided radioprotection to lethally irradiated recipients, and enhanced in vivo repopulating potential. Anti-differentiation effects of VPA and Li were observed also at the level of committed progenitors, where VPA re-activated replating activity of common myeloid progenitor and granulocyte macrophage progenitor cells. Furthermore, VPA and Li synergistically preserved expression of stem cell-related genes and repressed genes involved in differentiation. Target genes were collectively co-regulated during normal hematopoietic differentiation. In addition, transcription factor networks were identified as possible primary regulators. Our results show that the combination of VPA and Li potently delays differentiation at the biologic and molecular levels and provide evidence to suggest that combinatorial screening of chemical compounds may uncover possible additive/synergistic effects to modulate stem cell fate decisions.
Collapse
|
15
|
Ji P, Yeh V, Ramirez T, Murata-Hori M, Lodish HF. Histone deacetylase 2 is required for chromatin condensation and subsequent enucleation of cultured mouse fetal erythroblasts. Haematologica 2010; 95:2013-21. [PMID: 20823130 DOI: 10.3324/haematol.2010.029827] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND During the final stages of differentiation of mammalian erythroid cells, the chromatin is condensed and enucleated. We previously reported that Rac GTPases and their downstream target, mammalian homolog of Drosophila diaphanous 2 (mDia2), are required for enucleation of in vitro cultured mouse fetal liver erythroblasts. However, it is not clear how chromatin condensation is achieved and whether it is required for enucleation. DESIGN AND METHODS Mouse fetal liver erythroblasts were purified from embryonic day 14.5 pregnant mice and cultured in erythropoietin-containing medium. Enucleation was determined by flow-cytometry based analysis after treatment with histone deacetylase inhibitors or infection with lentiviral short hairpin RNA. RESULTS We showed that histone deacetylases play critical roles in chromatin condensation and enucleation in cultured mouse fetal liver erythroblasts. Enzymatic inhibition of histone deacetylases by trichostatin A or valproic acid prior to the start of enucleation blocked chromatin condensation, contractile actin ring formation and enucleation. We further demonstrated that histone deacetylases 1, 2, 3 and 5 are highly expressed in mouse fetal erythroblasts. Short hairpin RNA down-regulation of histone deacetylase 2, but not of the other histone deacetylases, phenotypically mimicked the effect of trichostatin A or valproic acid treatment, causing significant inhibition of chromatin condensation and enucleation. Importantly, knock-down of histone deacetylase 2 did not affect erythroblast proliferation, differentiation, or apoptosis. CONCLUSIONS These results identify histone deacetylase 2 as an important regulator, mediating chromatin condensation and enucleation in the final stages of mammalian erythropoiesis.
Collapse
Affiliation(s)
- Peng Ji
- Whitehead Institute for Biomedical Research, Cambridge, 9 Cambridge Center, Cambridge, MA, USA
| | | | | | | | | |
Collapse
|
16
|
Liu B, Ohishi K, Yamamura K, Suzuki K, Monma F, Ino K, Masuya M, Sekine T, Heike Y, Takaue Y, Katayama N. A potential activity of valproic acid in the stimulation of interleukin-3−mediated megakaryopoiesis and erythropoiesis. Exp Hematol 2010; 38:685-95. [DOI: 10.1016/j.exphem.2010.03.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2009] [Revised: 02/28/2010] [Accepted: 03/25/2010] [Indexed: 10/19/2022]
|
17
|
Wada T, Kikuchi J, Nishimura N, Shimizu R, Kitamura T, Furukawa Y. Expression levels of histone deacetylases determine the cell fate of hematopoietic progenitors. J Biol Chem 2009; 284:30673-83. [PMID: 19736310 DOI: 10.1074/jbc.m109.042242] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Histone deacetylases (HDACs) are globally implicated in the growth and differentiation of mammalian cells; however, relatively little is known about their specific roles in hematopoiesis. In this study, we investigated the expression of HDACs in human hematopoietic cells and their functions during hematopoiesis. The expression of HDACs was very low in hematopoietic progenitor cells, which was accompanied by histone hyperacetylation. HDACs were detectable in more differentiated progenitors and erythroid precursors but down-regulated in mature myeloid cells especially granulocytes. In contrast, acute myeloid leukemias showed HDAC overexpression and histone hypoacetylation. Transcription of the HDAC1 gene was repressed by CCAAT/enhancer binding proteins during myeloid differentiation, and activated by GATA-1 during erythro-megakaryocytic differentiation. Small interfering RNA-mediated knockdown of HDAC1 enhanced myeloid differentiation in immature hematopoietic cell lines and perturbed erythroid differentiation in progenitor cells. Myeloid but not erythro-megakaryocytic differentiation was blocked in mice transplanted with HDAC1-overexpressing hematopoietic progenitor cells. These findings suggest that HDAC is not merely an auxiliary factor of genetic elements but plays a direct role in the cell fate decision of hematopoietic progenitors.
Collapse
Affiliation(s)
- Taeko Wada
- Division of Stem Cell Regulation, Center for Molecular Medicine, Jichi Medical School, Tochigi 329-0498, Japan
| | | | | | | | | | | |
Collapse
|
18
|
Granger A, Abdullah I, Huebner F, Stout A, Wang T, Huebner T, Epstein JA, Gruber PJ. Histone deacetylase inhibition reduces myocardial ischemia-reperfusion injury in mice. FASEB J 2008; 22:3549-60. [PMID: 18606865 DOI: 10.1096/fj.08-108548] [Citation(s) in RCA: 217] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Limitation of infarct size is a major goal of therapy for acute coronary syndromes, and research has focused on achieving rapid patency of infarct-related vessels. However, new understandings of epigenetic modifications during ischemia suggest additional targeted approaches that have not been extensively explored. Here, we show that ischemia induces histone deacetylase (HDAC) activity in the heart with deacetylation of histones H3/4 in vitro and in vivo. We show, utilizing a standard murine model of ischemia-reperfusion, that chemical HDAC inhibitors significantly reduce infarct area, even when delivered 1 h after the ischemic insult. We demonstrate that HDAC inhibitors prevent ischemia-induced activation of gene programs that include hypoxia inducible factor-1alpha, cell death, and vascular permeability in vivo and in vitro, thus providing potential mechanisms to explain reduced vascular leak and myocardial injury. In vitro, siRNA knockdown experiments implicate HDAC4 as a mediator of the effects in ischemic cardiac myocytes. These results demonstrate that HDAC inhibitors alter the response to ischemic injury in the heart and reduce infarct size, suggesting novel therapeutic approaches for acute coronary syndromes.
Collapse
Affiliation(s)
- Anne Granger
- The Children's Hospital of Philadelphia, 34th St. and Civic Center Blvd., Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Ex Vivo Culture of Human Cord Blood Hematopoietic Stem/Progenitor Cells Adversely Influences Their Distribution to Other Bone Marrow Compartments After Intra-Bone Marrow Transplantation. Stem Cells 2008; 26:543-9. [DOI: 10.1634/stemcells.2007-0476] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
20
|
Yamamura K, Ohishi K, Katayama N, Kato K, Shibasaki T, Sugimoto Y, Miyata E, Shiku H, Masuya M, Nishioka J, Nobori T, Nishikawa M, Inagaki Y, Hiramatsu H, Nakahata T. Notch ligand Delta-1 differentially modulates the effects of gp130 activation on interleukin-6 receptor alpha-positive and -negative human hematopoietic progenitors. Cancer Sci 2007; 98:1597-603. [PMID: 17645774 PMCID: PMC11158033 DOI: 10.1111/j.1349-7006.2007.00566.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Interleukin (IL)-6 plays pleiotropic roles in human hematopoiesis and immune responses by acting on not only the IL-6 receptor-alpha subunit (IL-6Ralpha)(+) but also IL-6Ralpha(-) hematopoietic progenitors via soluble IL-6R. The Notch ligand Delta-1 has been identified as an important modulator of the differentiation and proliferation of human hematopoietic progenitors. Here, it was investigated whether these actions of IL-6 are influenced by Delta-1. When CD34(+)CD38(-) hematopoietic progenitors were cultured with stem cell factor, flt3 ligand, thrombopoietin and IL-3, Delta-1, in combination with the IL-6R/IL-6 fusion protein FP6, increased the generation of glycophorin A(+) erythroid cells but counteracted the effects of IL-6 and FP6 on the generation of CD14(+) monocytic and CD15(+) granulocytic cells. Although freshly isolated CD34(+)CD38(-) cells expressed no or only low levels of IL-6Ralpha, its expression was increased in myeloid progenitors after culture but remained negative in erythroid progenitors. It was found that Delta-1 acted in synergy with FP6 to enhance the generation of erythroid cells from the IL-6Ralpha(-) erythroid progenitors. In contrast, Delta-1 antagonized the effects of IL-6 and FP6 on the development of monocytic and granulocytic cells, as well as CD14(-)CD1a(+) dendritic cells, from the IL-6Ralpha(+) myeloid progenitors. These results indicate that Delta-1 interacts differentially with gp130 activation in IL-6Ralpha(-) erythroid and IL-6Ralpha(+) myeloid progenitors. The present data suggest a divergent interaction between Delta-1 and gp130 activation in human hematopoiesis.
Collapse
Affiliation(s)
- Kentaro Yamamura
- Department of Hematology and Oncology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|