1
|
Hojjat-Farsangi M, Jeddi-Tehrani M, Daneshmanesh AH, Mozaffari F, Moshfegh A, Hansson L, Razavi SM, Sharifian RA, Rabbani H, Österborg A, Mellstedt H, Shokri F. Spontaneous Immunity Against the Receptor Tyrosine Kinase ROR1 in Patients with Chronic Lymphocytic Leukemia. PLoS One 2015; 10:e0142310. [PMID: 26562161 PMCID: PMC4642968 DOI: 10.1371/journal.pone.0142310] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 10/19/2015] [Indexed: 12/03/2022] Open
Abstract
Background ROR1 is a receptor tyrosine kinase expressed in chronic lymphocytic leukemia (CLL) and several other malignancies but absent in most adult normal tissues. ROR1 is considered an onco-fetal antigen. In the present study we analysed spontaneous humoral and cellular immunity against ROR1 in CLL patients. Materials and Methods Antibodies against ROR1 were analysed in 23 patients and 20 healthy donors by ELISA and Western blot. Purified serum IgG from patients was tested for cytotoxicity against CLL cells using the MTT viability assay. A cellular immune response against ROR1 derived HLA-A2 restricted 9 aa and 16 aa long peptides were analysed using peptide loaded dendritic cells co-cultured with autologous T cells from CLL patients (n = 9) and healthy donors (n = 6). IFN-γ, IL-5 and IL-17A-secreting T cells were assessed by ELISPOT and a proliferative response using a H3-thymidine incorporation assay. Results The majority of CLL patients had antibodies against ROR1. Significantly higher titers of anti-ROR1 antibodies were noted in patients with non-progressive as compared to progressive disease. The extracellular membrane-close ROR1 KNG domain seemed to be an immunodominant epitope. Ten patients with high titers of anti-ROR1 binding antibodies were tested for cytotoxicity. Five of those had cytotoxic anti-ROR1 antibodies against CLL cells. ROR1-specific IFN-γ and IL-17A producing T cells could be detected in CLL patients, preferentially in non-progressive as compared to patients with progressive disease (p<0.05). Conclusion ROR1 seemed to spontaneously induce a humoral as well as a T cell response in CLL patients. The data support the notion that ROR1 might be a specific neo-antigen and may serve as a target for immunotherapy.
Collapse
MESH Headings
- Amino Acid Sequence
- Antibodies/blood
- Antibodies/immunology
- Antibody-Dependent Cell Cytotoxicity/immunology
- Blotting, Western
- Enzyme-Linked Immunosorbent Assay
- Female
- HLA-A2 Antigen/immunology
- Humans
- Immunity/immunology
- Immunoglobulin G/blood
- Immunoglobulin G/immunology
- Interferon-gamma/immunology
- Interferon-gamma/metabolism
- Interleukin-17/immunology
- Interleukin-17/metabolism
- Interleukin-5/immunology
- Interleukin-5/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/blood
- Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Male
- Middle Aged
- Molecular Sequence Data
- Peptides/immunology
- Prognosis
- Receptor Tyrosine Kinase-like Orphan Receptors/immunology
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
Collapse
Affiliation(s)
- Mohammad Hojjat-Farsangi
- Department of Oncology-Pathology, Immune and Gene Therapy Lab, Cancer Center Karolinska (CCK), Karolinska University Hospital Solna and Karolinska Institute, Stockholm, Sweden
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmood Jeddi-Tehrani
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Amir Hossein Daneshmanesh
- Department of Oncology-Pathology, Immune and Gene Therapy Lab, Cancer Center Karolinska (CCK), Karolinska University Hospital Solna and Karolinska Institute, Stockholm, Sweden
| | - Fariba Mozaffari
- Department of Oncology-Pathology, Immune and Gene Therapy Lab, Cancer Center Karolinska (CCK), Karolinska University Hospital Solna and Karolinska Institute, Stockholm, Sweden
| | - Ali Moshfegh
- Department of Oncology-Pathology, Immune and Gene Therapy Lab, Cancer Center Karolinska (CCK), Karolinska University Hospital Solna and Karolinska Institute, Stockholm, Sweden
| | - Lotta Hansson
- Department of Oncology-Pathology, Immune and Gene Therapy Lab, Cancer Center Karolinska (CCK), Karolinska University Hospital Solna and Karolinska Institute, Stockholm, Sweden
- Department of Hematology-Oncology, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Seyed Mohsen Razavi
- Clinic of Hematology and Oncology, Firozgar Hospital, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ramazan Ali Sharifian
- Clinic of Hematology and Oncology, Vali-Asr Hospital, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hodjattallah Rabbani
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Anders Österborg
- Department of Oncology-Pathology, Immune and Gene Therapy Lab, Cancer Center Karolinska (CCK), Karolinska University Hospital Solna and Karolinska Institute, Stockholm, Sweden
- Department of Hematology-Oncology, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Håkan Mellstedt
- Department of Oncology-Pathology, Immune and Gene Therapy Lab, Cancer Center Karolinska (CCK), Karolinska University Hospital Solna and Karolinska Institute, Stockholm, Sweden
- * E-mail:
| | - Fazel Shokri
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| |
Collapse
|
2
|
Cosialls AM, Santidrián AF, Coll-Mulet L, Iglesias-Serret D, González-Gironès DM, Pérez-Perarnau A, Rubio-Patiño C, González-Barca E, Alonso E, Pons G, Gil J. Epigenetic profile in chronic lymphocytic leukemia using methylation-specific multiplex ligation-dependent probe amplification. Epigenomics 2013; 4:491-501. [PMID: 23130831 DOI: 10.2217/epi.12.40] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM To analyze the methylation status of 35 tumor suppressor genes using methylation-specific multiplex ligation-dependent probe amplification (MS-MLPA) in chronic lymphocytic leukemia (CLL). MATERIALS & METHODS The DNA of 37 samples from patients with CLL, six healthy donors, and Jurkat and Ramos cell lines was analyzed by MS-MLPA. RESULTS Our results confirm that hypermethylation is a common and not randomly distributed event in CLL, and some genes, such as WT1, CDH13, IGSF4/TSLC1, GATA5, DAPK1 and RARB, are hypermethylated in more than 25% of the analyzed samples. Importantly, MS-MLPA also detected hypermethylation of some genes not reported previously in CLL, and their methylation status was confirmed by bisulfite sequencing. CONCLUSION These results indicate that MS-MLPA is a useful technique for the detection of methylation in CLL samples. Selecting CLL-specific methylation targets in order to generate a CLL-specific MS-MLPA probe set could enhance its usefulness as a tool in studies of risk stratification and guiding the best therapeutic decision.
Collapse
Affiliation(s)
- Ana M Cosialls
- Departament de Ciències Fisiològiques II, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL)-Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Rampazzo E, Bonaldi L, Trentin L, Visco C, Keppel S, Giunco S, Frezzato F, Facco M, Novella E, Giaretta I, Del Bianco P, Semenzato G, De Rossi A. Telomere length and telomerase levels delineate subgroups of B-cell chronic lymphocytic leukemia with different biological characteristics and clinical outcomes. Haematologica 2011; 97:56-63. [PMID: 21933855 DOI: 10.3324/haematol.2011.049874] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND B-cell chronic lymphocytic leukemia is a clinically heterogeneous disease; some patients rapidly progress and die within a few years of diagnosis, whereas others have a long life expectancy with minimal or no treatment. Telomere length and telomerase levels have been proposed as prognostic factors; however, very few cases have been characterized for both parameters and no study has analyzed the prognostic value of the telomere/telomerase profile. DESIGN AND METHODS One hundred and seventy-three cases of chronic lymphocytic leukemia were characterized for telomere lengths and telomerase levels by real-time polymerase chain reaction. Data were correlated with established prognostic markers, IGVH mutational status and chromosomal aberrations, and clinical outcome. RESULTS Telomere lengths were inversely correlated with telomerase levels (r(s) = -0.213; P = 0.012), and most of the cases of chronic lymphocytic leukemia with high levels (above median) of telomerase had short (below median) telomeres (P = 0.0001). Telomerase levels were higher and telomeres were shorter in unmutated IGVH cases than in mutated IGVH ones (P<0.0001). Chronic lymphocytic leukemias with 11q, 17p deletion or 12 trisomy had significantly higher levels of telomerase and shorter telomeres than those with no chromosomal aberration or the sole 13q deletion (P < 0.001). Telomere length/telomerase level profiles identified subgroups of patients with different clinical outcomes (P < 0.0001), even within the subsets of chronic lymphocytic leukemia defined by IGVH mutational status or chromosomal aberrations. Short telomere/high telomerase profile was independently associated with more rapid disease progression. CONCLUSIONS Comprehensive analyses of telomeres, telomerase, chromosomal aberrations, and IGVH mutational status delineate groups of chronic lymphocytic leukemias with distinct biological characteristics and clinical outcomes. The telomere/telomerase profile may be particularly useful in refining the prognosis of chronic lymphocytic leukemia patients with mutated IGVH and no high-risk chromosomal aberrations.
Collapse
Affiliation(s)
- Enrica Rampazzo
- Department of Oncology and Surgical Sciences, Oncology Section, University of Padova,Padova, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Abstract
Inherited susceptibility to chronic lymphocytic leukemia (CLL) has been recognized for decades. Approximately 10% of individuals with CLL report a family history of CLL or a related lymphoproliferative disorder, and genetic predisposition is the best understood risk factor for CLL. Studies of familial CLL have suggested that the disease features are largely similar to sporadic CLL, although recent data suggest that familial CLL may more commonly show somatic hypermutation of the immunoglobulin heavy-chain variable region, suggesting a more indolent disease course. Monoclonal B-cell lymphocytosis (MBL) has been identified recently as a likely precursor to CLL; it is found in the general population with increasing age and enriched in unaffected relatives of individuals with familial CLL. Studies of MBL as well as mouse models of CLL may lead to better understanding of early CLL pathogenesis that is relevant to familial predisposition. To date, the identification of genes that predispose to familial CLL has been slow, primarily due to the relatively few families available for study, the small size of those families and disease causation most likely by multiple genes that each confer smaller risks. In the coming years, the application of systematic genomics approaches to familial CLL should, hopefully, lead to the identification of novel loci involved in the disease.
Collapse
Affiliation(s)
- Jennifer R Brown
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
| |
Collapse
|
5
|
Cellular origin(s) of chronic lymphocytic leukemia: cautionary notes and additional considerations and possibilities. Blood 2010; 117:1781-91. [PMID: 21148333 DOI: 10.1182/blood-2010-07-155663] [Citation(s) in RCA: 183] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Several cell types have been suggested as giving rise to chronic lymphocytic leukemia (CLL), and these suggestions have reflected the sophistication of technology available at the time. Although there is no consensus as to the normal cellular counterpart(s) in the disease, an antigen-experienced B lymphocyte appears required based on surface membrane phenotypes and gene expression profiles. However, what is still unclear is whether a single or multiple normal precursors were stimulated to evolve into CLL and at what stage(s) this occurred. A unifying, parsimonious theory is that CLL clones with either mutated or unmutated IGHVs derive from marginal zone B cells. However, evidence for remarkably similar B-cell receptor amino acid sequence and striking differences in polyantigen and autoantigen-binding activity, found in some but not all CLL clones, challenge a single-cell derivation for CLL. In this Perspective, we summarize data regarding normal counterparts of CLL cells and suggest that a multistep process of leukemogenesis is important to consider when assigning a cellular origin for this disease. Finally, although available data do not definitively identify the cell(s) of origin, we offer possibilities for single- and multiple-cell origin models as straw men that can be improved on and hopefully lead to final answers to this puzzle.
Collapse
|
6
|
Marteau JB, Rigaud O, Brugat T, Gault N, Vallat L, Kruhoffer M, Orntoft TF, Nguyen-Khac F, Chevillard S, Merle-Beral H, Delic J. Concomitant heterochromatinisation and down-regulation of gene expression unveils epigenetic silencing of RELB in an aggressive subset of chronic lymphocytic leukemia in males. BMC Med Genomics 2010; 3:53. [PMID: 21062507 PMCID: PMC2994775 DOI: 10.1186/1755-8794-3-53] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Accepted: 11/10/2010] [Indexed: 01/14/2023] Open
Abstract
Background The sensitivity of chronic lymphocytic leukemia (CLL) cells to current treatments, both in vitro and in vivo, relies on their ability to activate apoptotic death. CLL cells resistant to DNA damage-induced apoptosis display deregulation of a specific set of genes. Methods Microarray hybridization (Human GeneChip, Affymetrix), immunofluorescent in situ labeling coupled with video-microscopy recording/analyses, chromatin-immunoprecipitation (ChIP), polymerase chain reactions (PCR), real-time quantitative PCR (RT-QPCR) and bisulfite genome sequencing were the main methods applied. Statistical analyses were performed by applying GCRMA and SAM analysis (microarray data) and Student's t-test or Mann & Whitney's U-test. Results Herein we show that, remarkably, in a resistant male CLL cells the vast majority of genes were down-regulated compared with sensitive cells, whereas this was not the case in cells derived from females. This gene down-regulation was found to be associated with an overall gain of heterochromatin as evidenced by immunofluorescent labeling of heterochromatin protein 1α (HP-1), trimethylated histone 3 lysine 9 (3metH3K9), and 5-methylcytidine (5metC). Notably, 17 genes were found to be commonly deregulated in resistant male and female cell samples. Among these, RELB was identified as a discriminatory candidate gene repressed in the male and upregulated in the female resistant cells. Conclusion The molecular defects in the silencing of RELB involve an increase in H3K9- but not CpG-island methylation in the promoter regions. Increase in acetyl-H3 in resistant female but not male CLL samples as well as a decrease of total cellular level of RelB after an inhibition of histone deacetylase (HDAC) by trichostatin A (TSA), further emphasize the role of epigenetic modifications which could discriminate two CLL subsets. Together, these results highlighted the epigenetic RELB silencing as a new marker of the progressive disease in males.
Collapse
|
7
|
Dubovsky JA, Wang D, Powers JJ, Berchmans E, Smith MA, Wright KL, Sotomayor EM, Pinilla-Ibarz JA. Restoring the functional immunogenicity of chronic lymphocytic leukemia using epigenetic modifiers. Leuk Res 2010; 35:394-404. [PMID: 20863567 DOI: 10.1016/j.leukres.2010.08.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Revised: 06/23/2010] [Accepted: 08/03/2010] [Indexed: 10/19/2022]
Abstract
Chronic lymphocytic leukemia (CLL) is a malignancy arising from immune cells (B-lymphocytes) endowed with intrinsic antigen-presenting capabilities. Such a function however is lost during malignant transformation and CLL cells are well known for their inability to process and present antigens to the T-cell arm of the immune system. Instead, malignant CLL cells elicit a vast array of immune regulatory mechanisms conducive to T-cell dysfunction and immunosuppression. Previously, we have shown that treatment of CLL cells with the demethylating agent 5-aza-2'-deoxycytidine unleashed target antigen expression. Here we show for the first time that combining two epigenetic modifiers, 5-aza-2'-deoxycytidine and the histone deacetylase inhibitor LAQ824 effectively restores the immunogenicity of CLL cell lines as well as primary cells obtained from CLL patients. Indeed, such a combination induces the expression of novel and highly antigenic cancer-testis antigens (CTAs) and costimulatory molecules. These changes facilitate the formation of robust supramolecular activation complexes (SMAC) between CLL cells and responder T-cells leading to intracellular signaling, lytic granule mobilization, and polarization of functional and relevant T-cell responses. This cascade of T-cell activating events triggered by CLL cells with restored APC function, points to combined epigenetic modifier treatment as a potential immunotherapeutic strategy for CLL patients.
Collapse
Affiliation(s)
- Jason A Dubovsky
- Department of Malignant Hematology, Immunology, and Experimental Therapeutics, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Gade P, Singh AK, Roy SK, Reddy SP, Kalvakolanu DV. Down-regulation of the transcriptional mediator subunit Med1 contributes to the loss of expression of metastasis-associated dapk1 in human cancers and cancer cells. Int J Cancer 2009; 125:1566-74. [PMID: 19521987 DOI: 10.1002/ijc.24493] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
DAPK1, a ca(+2)/calmodulin regulated serine/threonine kinase, is a major tumor suppressor, whose expression is lost in multiple tumor types. However, the mechanisms contributing to it are unclear. We have recently shown that CCAAT/Enhancer binding protein-beta (C/EBP-beta) is required for the basal and interferon gamma (IFN-gamma)-induced expression of dapk1 in many cell types. C/EBP-beta interacts with the transcriptional Mediator, a multisubunit complex that couples enhancer bound transcription factors to the basal transcriptional machinery in an IFN-gamma dependent manner for regulating dapk1 expression. Specifically, the Med1 (TRAP220/PBP/DRIP220/CRSP220) subunit associates with the enhancer bound C/EBP-beta at the CRE/ATF site of dapk1 in an IFN-gamma dependent manner for stimulating gene expression. Therefore, we investigated if the mechanism responsible for the loss of dapk1 expression in human cancers involves a failure to recruit C/EBP-beta and/or Med1 to the dapk1 promoter. We compared the relative occupancy of these factors at the dapk1 promoter at CRE/ATF sites in normal and cancer cell lines. A significantly lower binding of these factors to the CRE/ATF site of dapk1 promoter occurred in human cancer cell lines than in normal cells. We show that loss of Med1 expression correlates with a corresponding loss of dapk1 expression in a number of primary human lung carcinomas. Med1 levels were significantly lower in cancer cell lines than in normal controls. Importantly, we show that restoration of Med1 induces the expression of dapk1 in these cancer cells and also attenuates their metastatic potential in vivo. Our studies reveal a critical parameter limiting dapk1 expression in cancer cell lines.
Collapse
Affiliation(s)
- Padmaja Gade
- Department of Microbiology and Immunology, Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | | | | | | |
Collapse
|
9
|
Seeliger B, Wilop S, Osieka R, Galm O, Jost E. CpG island methylation patterns in chronic lymphocytic leukemia. Leuk Lymphoma 2009; 50:419-26. [PMID: 19347729 DOI: 10.1080/10428190902756594] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Chronic lymphocytic leukemia (CLL) is the most common leukemia in Western countries. In CLL, a large number of genes affecting cancer-related pathways may be dysregulated by epigenetic silencing. We analysed by methylation-specific polymerase chain reaction the CpG island methylation status of 15 well-characterised cancer-related genes in 32 patients with CLL. Aberrant methylation in the sample of patients with CLL was shown for secreted frizzled-related protein 1 (68.8%), secreted frizzled-related protein 2 (65.6%), death-associated protein kinase 1 (50.0%), E-cadherin (21.9%), secreted frizzled-related protein 4 (15.6%), p15 (9.4%), p16 (6.3%), retinoic acid receptor beta2 (3.1%), secreted frizzled-related protein 5 (3.1%) and tissue inhibitor of matrix metalloproteinases 3 (3.1%). For human Mut-L homolog 1, O(6)-methylguanine DNA methyltransferase, p73, suppressor of cytokine signalling 1 and tissue inhibitor of matrix metalloproteinases 2 no hypermethylation was detected. Hypermethylation of at least one gene was observed in 87.5% of the samples. Our results show that aberrant CpG island methylation affecting cancer-related pathways such as Wnt signalling, regulation of apoptosis, cell cycle control and tissue invasion is a common phenomenon in CLL. Epigenetic disturbances may be involved in the pathogenesis of CLL and thus may provide a molecular rationale for therapeutic approaches.
Collapse
Affiliation(s)
- Barbara Seeliger
- Medizinische Klinik IV, Universitaetsklinikum Aachen, RWTH Aachen, Aachen, Germany
| | | | | | | | | |
Collapse
|
10
|
Zenz T, Mertens D, Döhner H, Stilgenbauer S. Molecular diagnostics in chronic lymphocytic leukemia – Pathogenetic and clinical implications. Leuk Lymphoma 2009; 49:864-73. [DOI: 10.1080/10428190701882955] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
11
|
Dubovsky JA, McNeel DG, Powers JJ, Gordon J, Sotomayor EM, Pinilla-Ibarz JA. Treatment of chronic lymphocytic leukemia with a hypomethylating agent induces expression of NXF2, an immunogenic cancer testis antigen. Clin Cancer Res 2009; 15:3406-15. [PMID: 19401350 DOI: 10.1158/1078-0432.ccr-08-2099] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Critical to the success of active immunotherapy against cancer is the identification of immunologically recognized cancer-specific proteins with low tolerogenic potential. Cancer testis antigens (CTA), in particular, fulfill this requirement as a result of their aberrant expression restricted to cancer cells and lack of expression in normal tissues bypassing tolerogenic mechanisms against self. Although CTAs have been extensively studied in solid malignancies, little is known regarding their expression in chronic lymphocytic leukemia (CLL). EXPERIMENTAL DESIGN Using a two-pronged approach we evaluated the immunogenicity of 29 CTAs in 22 patients with CLL and correlated these results to reverse transcriptase PCR data from CLL cell lines and patient cells. RESULTS We identified IgG-specific antibodies for one antigen, NXF2, and confirmed this response by ELISA and Western blot. We found that treatment of CLL with 5-aza-2'-deoxycytidine can induce expression of NXF2 that lasted for several weeks after treatment. Treatment also increased levels of MHC and costimulatory molecules (CD80, CD86, and CD40) necessary for antigen presentation. In addition, we identified other promising antigens that may have potential immunotherapeutic application. CONCLUSIONS Our findings suggest that NXF2 could be further pursued as an immunotherapeutic target in CLL, and that treatment with demethylating agents could be exploited to specifically modulate CTA expression and effective antigen presentation in malignant B cells.
Collapse
|
12
|
Specific activation of microRNA106b enables the p73 apoptotic response in chronic lymphocytic leukemia by targeting the ubiquitin ligase Itch for degradation. Blood 2008; 113:3744-53. [PMID: 19096009 DOI: 10.1182/blood-2008-09-178707] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Chronic lymphocytic leukemia (CLL) is characterized by cells that exhibit dysfunctional apoptosis. Here, we show that deacetylase inhibition led to the E2F1- and myc-mediated transcriptional activation of the microRNA miR106b in primary CLL cells. Induction of miR106b was associated with a down-regulation in the levels of the E3-ubiquitin ligase Itch. Decreases in Itch protein levels were associated with a reciprocal accumulation of its proapoptotic substrate, TAp73 (p73), and induction of p53 up-regulated modulator of apoptosis (PUMA) mRNA and protein. This event was accompanied by mitochondrial dysfunction, processing of caspase-9, and apoptosis of CLL cells. Ectopic expression of miR106b in CLL cells demonstrated that Itch was a direct target of miR106b such that miR106b-induced decreases in Itch resulted in an accumulation of p73. Thus, our results identify a novel regulatory mechanism wherein microRNA regulate cell survival by mediating the posttranscriptional down-regulation of an ubiquitin ligase, leading to the induction of a proapoptotic regulator in malignant cells. Silencing of miRNA expression in CLL may selectively suppress proapoptotic pathways, providing such tumors with a survival advantage. Consequently, chemotherapeutic drugs that activate miR106b could initiate a p53-independent mechanism that targets CLL cells.
Collapse
|
13
|
Lynch HT, Ferrara KM, Weisenburger DD, Sanger WG, Lynch JF, Thomé SD. Genetic counseling for DAPK1 mutation in a chronic lymphocytic leukemia family. ACTA ACUST UNITED AC 2008; 186:95-102. [PMID: 18940472 DOI: 10.1016/j.cancergencyto.2008.06.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2008] [Revised: 06/19/2008] [Accepted: 06/25/2008] [Indexed: 10/21/2022]
Abstract
Genetic counseling has become the clinical bedrock of hereditary cancer management. Countless advances in molecular genetics contributing to the identification of cancer-causing germline mutations have increased its importance. We report a unique genetic counseling experience involving a family with hereditary chronic lymphocytic leukemia and the cancer-causing mutation in the death-associated protein kinase 1 gene (DAPK1). This hereditary disorder currently lacks any preventive or curative interventions for mutation carriers. This family has been under our investigation for a decade, during which time genealogy, cancer of all anatomic sites, medical and pathology records, and, whenever possible, slides and tissue blocks were reviewed. Family attendance at three group-oriented family information service sessions provided intensive education about this disease. Blood and skin fibroblasts were obtained for molecular genetic studies of DNA leading to the discovery of the DAPK1 mutation in the family. Their intellectual and emotional reaction to its presence or absence in them was assessed. This family serves as a model for genetic counseling in disorders for which lifesaving intervention is not yet possible.
Collapse
Affiliation(s)
- Henry T Lynch
- Department of Preventive Medicine and Public Health, Creighton University School of Medicine, 2500 California Plaza, Omaha, NE 68178, USA.
| | | | | | | | | | | |
Collapse
|
14
|
Caporaso N, Goldin L, Plass C, Calin G, Marti G, Bauer S, Raveche E, McMaster ML, Ng D, Landgren O, Slager S. Chronic lymphocytic leukaemia genetics overview. Br J Haematol 2008; 139:630-4. [PMID: 18021078 DOI: 10.1111/j.1365-2141.2007.06846.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Although the familial aspect of chronic lymphocytic leukaemia (CLL) has been appreciated for decades, it is only with the recent confluence of improved molecular and gene technologies and world-wide collaborative networks that accelerated progress has become apparent. In this summary we highlight selected themes in the genetics of CLL emphasizing the opportunities and challenges of this malignancy.
Collapse
Affiliation(s)
- Neil Caporaso
- Genetic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|