1
|
Bortolotti M, Biscotti F, Zanello A, Bolognesi A, Polito L. New Insights on Saporin Resistance to Chemical Derivatization with Heterobifunctional Reagents. Biomedicines 2023; 11:biomedicines11041214. [PMID: 37189832 DOI: 10.3390/biomedicines11041214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/12/2023] [Accepted: 04/17/2023] [Indexed: 05/17/2023] Open
Abstract
Saporin is a type 1 ribosome-inactivating protein widely used as toxic payload in the construction of targeted toxins, chimeric molecules formed by a toxic portion linked to a carrier moiety. Among the most used carriers, there are large molecules (mainly antibodies) and small molecules (such as neurotransmitters, growth factors and peptides). Some saporin-containing targeted toxins have been used for the experimental treatment of several diseases, giving very promising results. In this context, one of the reasons for the successful use of saporin lies in its resistance to proteolytic enzymes and to conjugation procedures. In this paper, we evaluated the influence of derivatization on saporin using three heterobifunctional reagents, namely 2-iminothiolane (2-IT), N-succinimidyl 3-(2-pyridyldithio)propionate (SPDP) and 4-succinimidyloxycarbonyl-α-methyl-α-[2-pyridyldithio]toluene (SMPT). In order to obtain the highest number of inserted -SH groups with the lowest reduction of saporin biological activities, we assessed the residual ability of saporin to inhibit protein synthesis, to depurinate DNA and to induce cytotoxicity after derivatization. Our results demonstrate that saporin maintains an excellent resistance to derivatization processes, especially with SPDP, and permit us to define reaction conditions, in which saporin biological properties may not be altered. Therefore, these findings provide useful information for the construction of saporin-based targeted toxins, especially with small carriers.
Collapse
Affiliation(s)
- Massimo Bortolotti
- Department of Medical and Surgical Sciences-DIMEC, General Pathology Section, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy
| | - Francesco Biscotti
- Department of Medical and Surgical Sciences-DIMEC, General Pathology Section, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy
| | - Andrea Zanello
- Department of Medical and Surgical Sciences-DIMEC, General Pathology Section, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy
| | - Andrea Bolognesi
- Department of Medical and Surgical Sciences-DIMEC, General Pathology Section, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy
| | - Letizia Polito
- Department of Medical and Surgical Sciences-DIMEC, General Pathology Section, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
2
|
Tumor-specific intracellular delivery: peptide-guided transport of a catalytic toxin. Commun Biol 2023; 6:60. [PMID: 36650239 PMCID: PMC9845330 DOI: 10.1038/s42003-022-04385-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 12/20/2022] [Indexed: 01/19/2023] Open
Abstract
There continues to be a need for cancer-specific ligands that can deliver a wide variety of therapeutic cargos. Ligands demonstrating both tumor-specificity and the ability to mediate efficient cellular uptake of a therapeutic are critical to expand targeted therapies. We previously reported the selection of a peptide from a peptide library using a non-small cell lung cancer (NSCLC) cell line as the target. Here we optimize our lead peptide by a series of chemical modifications including truncations, N-terminal capping, and changes in valency. The resultant 10 amino acid peptide has an affinity of <40 nM on four different NSCLC cell lines as a monomer and is stable in human serum for >48 h. The peptide rapidly internalizes upon cell binding and traffics to the lysosome. The peptide homes to a tumor in an animal model and is retained up to 72 h. Importantly, we demonstrate that the peptide can deliver the cytotoxic protein saporin specifically to cancer cells in vitro and in vivo, resulting in an effective anticancer agent.
Collapse
|
3
|
Scanferlato R, Bortolotti M, Sansone A, Chatgilialoglu C, Polito L, De Spirito M, Maulucci G, Bolognesi A, Ferreri C. Hexadecenoic Fatty Acid Positional Isomers and De Novo PUFA Synthesis in Colon Cancer Cells. Int J Mol Sci 2019; 20:ijms20040832. [PMID: 30769921 PMCID: PMC6412212 DOI: 10.3390/ijms20040832] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/07/2019] [Accepted: 02/11/2019] [Indexed: 12/21/2022] Open
Abstract
Palmitic acid metabolism involves delta-9 and delta-6 desaturase enzymes forming palmitoleic acid (9cis-16:1; n-7 series) and sapienic acid (6cis-16:1; n-10 series), respectively. The corresponding biological consequences and lipidomic research on these positional monounsaturated fatty acid (MUFA) isomers are under development. Furthermore, sapienic acid can bring to the de novo synthesis of the n-10 polyunsaturated fatty acid (PUFA) sebaleic acid (5cis,8cis-18:2), but such transformations in cancer cells are not known. The model of Caco-2 cell line was used to monitor sapienic acid supplementation (150 and 300 μM) and provide evidence of the formation of n-10 fatty acids as well as their incorporation at levels of membrane phospholipids and triglycerides. Comparison with palmitoleic and palmitic acids evidenced that lipid remodelling was influenced by the type of fatty acid and positional isomer, with an increase of 8cis-18:1, n-10 PUFA and a decrease of saturated fats in case of sapienic acid. Cholesteryl esters were formed only in cases with sapienic acid. Sapienic acid was the less toxic among the tested fatty acids, showing the highest EC50s and inducing death only in 75% of cells at the highest concentration tested. Two-photon fluorescent microscopy with Laurdan as a fluorescent dye provided information on membrane fluidity, highlighting that sapienic acid increases the distribution of fluid regions, probably connected with the formation of 8cis-18:1 and the n-10 PUFA in cell lipidome. Our results bring evidence for MUFA positional isomers and de novo PUFA synthesis for developing lipidomic analysis and cancer research.
Collapse
Affiliation(s)
- Roberta Scanferlato
- Consiglio Nazionale delle Ricerche, ISOF, Area della Ricerca, 40129 Bologna, Italy.
| | - Massimo Bortolotti
- Department of Experimental, Diagnostic and Specialty Medicine-DIMES, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy.
| | - Anna Sansone
- Consiglio Nazionale delle Ricerche, ISOF, Area della Ricerca, 40129 Bologna, Italy.
| | | | - Letizia Polito
- Department of Experimental, Diagnostic and Specialty Medicine-DIMES, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy.
| | - Marco De Spirito
- Istituto di Fisica, Fondazione Policlinico Universitario A.Gemelli IRCSS, 00168 Roma, Italy.
- Istituto di Fisica, Università Cattolica del Sacro Cuore, 00168 Roma, Italy.
| | - Giuseppe Maulucci
- Istituto di Fisica, Fondazione Policlinico Universitario A.Gemelli IRCSS, 00168 Roma, Italy.
- Istituto di Fisica, Università Cattolica del Sacro Cuore, 00168 Roma, Italy.
| | - Andrea Bolognesi
- Department of Experimental, Diagnostic and Specialty Medicine-DIMES, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy.
| | - Carla Ferreri
- Consiglio Nazionale delle Ricerche, ISOF, Area della Ricerca, 40129 Bologna, Italy.
| |
Collapse
|
4
|
Two Saporin-Containing Immunotoxins Specific for CD20 and CD22 Show Different Behavior in Killing Lymphoma Cells. Toxins (Basel) 2017; 9:toxins9060182. [PMID: 28556822 PMCID: PMC5488032 DOI: 10.3390/toxins9060182] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 05/18/2017] [Accepted: 05/26/2017] [Indexed: 11/17/2022] Open
Abstract
Immunotoxins (ITs) are hybrid proteins combining the binding specificity of antibodies with the cytocidal properties of toxins. They represent a promising approach to lymphoma therapy. The cytotoxicity of two immunotoxins obtained by chemical conjugation of the plant toxin saporin-S6 with the anti-CD20 chimeric antibody rituximab and the anti-CD22 murine antibody OM124 were evaluated on the CD20-/CD22-positive cell line Raji. Both ITs showed strong cytotoxicity for Raji cells, but the anti-CD22 IT was two logs more efficient in killing, probably because of its faster internalization. The anti-CD22 IT gave slower but greater caspase activation than the anti-CD20 IT. The cytotoxic effect of both immunotoxins can be partially prevented by either the pan-caspase inhibitor Z-VAD or the necroptosis inhibitor necrostatin-1. Oxidative stress seems to be involved in the cell killing activity of anti-CD20 IT, as demonstrated by the protective role of the H2O2 scavenger catalase, but not in that of anti-CD22 IT. Moreover, the IT toxicity can be augmented by the contemporary administration of other chemotherapeutic drugs, such as PS-341, MG-132, and fludarabine. These results contribute to the understanding of the immunotoxin mechanism of action that is required for their clinical use, either alone or in combination with other drugs.
Collapse
|
5
|
Bortolotti M, Bolognesi A, Battelli MG, Polito L. High in Vitro Anti-Tumor Efficacy of Dimeric Rituximab/Saporin-S6 Immunotoxin. Toxins (Basel) 2016; 8:E192. [PMID: 27338475 PMCID: PMC4926157 DOI: 10.3390/toxins8060192] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 05/27/2016] [Accepted: 06/14/2016] [Indexed: 01/07/2023] Open
Abstract
The anti-CD20 mAb Rituximab has revolutionized lymphoma therapy, in spite of a number of unresponsive or relapsing patients. Immunotoxins, consisting of toxins coupled to antibodies, are being investigated for their potential ability to augment Rituximab efficacy. Here, we compare the anti-tumor effect of high- and low-molecular-weight Rituximab/saporin-S6 immunotoxins, named HMW-IT and LMW-IT, respectively. Saporin-S6 is a potent and stable plant enzyme belonging to ribosome-inactivating proteins that causes protein synthesis arrest and consequent cell death. Saporin-S6 was conjugated to Rituximab through an artificial disulfide bond. The inhibitory activity of HMW-IT and LMW-IT was evaluated on cell-free protein synthesis and in two CD20⁺ lymphoma cell lines, Raji and D430B. Two different conjugates were separated on the basis of their molecular weight and further characterized. Both HMW-IT (dimeric) and LMW-IT (monomeric) maintained a high level of enzymatic activity in a cell-free system. HMW-IT, thanks to a higher toxin payload and more efficient antigen capping, showed stronger in vitro anti-tumor efficacy than LMW-IT against lymphoma cells. Dimeric HMW-IT can be used for lymphoma therapy at least for ex vivo treatments. The possibility of using HMW-IT augments the yield in immunotoxin preparation and allows the targeting of antigens with low internalization rates.
Collapse
Affiliation(s)
- Massimo Bortolotti
- Department of Experimental, Diagnostic and Specialty Medicine-DIMES, Alma Mater Studiorum, University of Bologna, Via San Giacomo 14, 40126 Bologna, Italy.
| | - Andrea Bolognesi
- Department of Experimental, Diagnostic and Specialty Medicine-DIMES, Alma Mater Studiorum, University of Bologna, Via San Giacomo 14, 40126 Bologna, Italy.
| | - Maria Giulia Battelli
- Department of Experimental, Diagnostic and Specialty Medicine-DIMES, Alma Mater Studiorum, University of Bologna, Via San Giacomo 14, 40126 Bologna, Italy.
| | - Letizia Polito
- Department of Experimental, Diagnostic and Specialty Medicine-DIMES, Alma Mater Studiorum, University of Bologna, Via San Giacomo 14, 40126 Bologna, Italy.
| |
Collapse
|
6
|
Polito L, Djemil A, Bortolotti M. Plant Toxin-Based Immunotoxins for Cancer Therapy: A Short Overview. Biomedicines 2016; 4:biomedicines4020012. [PMID: 28536379 PMCID: PMC5344252 DOI: 10.3390/biomedicines4020012] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 05/23/2016] [Accepted: 05/30/2016] [Indexed: 02/07/2023] Open
Abstract
Immunotoxins are chimeric proteins obtained by linking a toxin to either an intact antibody or an antibody fragment. Conjugation can be obtained by chemical or genetic engineering, where the latter yields recombinant conjugates. An essential requirement is that the target molecule recognized by the antibody is confined to the cell population to be deleted, or at least that it is not present on stem cells or other cell types essential for the organism’s survival. Hundreds of different studies have demonstrated the potential for applying immunotoxins to many models in pre-clinical studies and in clinical trials. Immunotoxins can be theoretically used to eliminate any unwanted cell responsible for a pathological condition. The best results have been obtained in cancer therapy, especially in hematological malignancies. Among plant toxins, the most frequently employed to generate immunotoxins are ribosome-inactivating proteins, the most common being ricin. This review summarizes the various approaches and results obtained in the last four decades by researchers in the field of plant toxin-based immunotoxins for cancer therapy.
Collapse
Affiliation(s)
- Letizia Polito
- Department of Experimental, Diagnostic and Specialty Medicine-DIMES, Alma Mater Studiorum, University of Bologna, Via San Giacomo 14, 40126 Bologna, Italy.
| | - Alice Djemil
- Department of Experimental, Diagnostic and Specialty Medicine-DIMES, Alma Mater Studiorum, University of Bologna, Via San Giacomo 14, 40126 Bologna, Italy.
| | - Massimo Bortolotti
- Department of Experimental, Diagnostic and Specialty Medicine-DIMES, Alma Mater Studiorum, University of Bologna, Via San Giacomo 14, 40126 Bologna, Italy.
| |
Collapse
|
7
|
Abstract
Unconjugated monoclonal antibodies that target hematopoietic differentiation antigens have been developed to treat hematologic malignancies. Although some of these have activity against chronic lymphocytic leukemia and hairy cell leukemia, in general, monoclonal antibodies have limited efficacy as single agents in the treatment of leukemia. To increase their potency, the binding domains of monoclonal antibodies can be attached to protein toxins. Such compounds, termed immunotoxins, are delivered to the interior of leukemia cells based on antibody specificity for cell surface target antigens. Recombinant immunotoxins have been shown to be highly cytotoxic to leukemic blasts in vitro, in xenograft model systems, and in early-phase clinical trials in humans. These agents will likely play an increasing role in the treatment of leukemia.
Collapse
|
8
|
Saporin-S6: a useful tool in cancer therapy. Toxins (Basel) 2013; 5:1698-722. [PMID: 24105401 PMCID: PMC3813907 DOI: 10.3390/toxins5101698] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 09/17/2013] [Accepted: 09/22/2013] [Indexed: 01/24/2023] Open
Abstract
Thirty years ago, the type 1 ribosome-inactivating protein (RIP) saporin-S6 (also known as saporin) was isolated from Saponaria officinalis L. seeds. Since then, the properties and mechanisms of action of saporin-S6 have been well characterized, and it has been widely employed in the construction of conjugates and immunotoxins for different purposes. These immunotoxins have shown many interesting results when used in cancer therapy, particularly in hematological tumors. The high enzymatic activity, stability and resistance to conjugation procedures and blood proteases make saporin-S6 a very useful tool in cancer therapy. High efficacy has been reported in clinical trials with saporin-S6-containing immunotoxins, at dosages that induced only mild and transient side effects, which were mainly fever, myalgias, hepatotoxicity, thrombocytopenia and vascular leak syndrome. Moreover, saporin-S6 triggers multiple cell death pathways, rendering impossible the selection of RIP-resistant mutants. In this review, some aspects of saporin-S6, such as the chemico-physical characteristics, the structural properties, its endocytosis, its intracellular routing and the pathogenetic mechanisms of the cell damage, are reported. In addition, the recent progress and developments of saporin-S6-containing immunotoxins in cancer immunotherapy are summarized, including in vitro and in vivo pre-clinical studies and clinical trials.
Collapse
|
9
|
Polito L, Bortolotti M, Pedrazzi M, Bolognesi A. Immunotoxins and other conjugates containing saporin-s6 for cancer therapy. Toxins (Basel) 2011; 3:697-720. [PMID: 22069735 PMCID: PMC3202841 DOI: 10.3390/toxins3060697] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Revised: 05/27/2011] [Accepted: 06/03/2011] [Indexed: 11/18/2022] Open
Abstract
Ribosome-inactivating proteins (RIPs) are a family of plant toxins that permanently damage ribosomes and possibly other cellular substrates, thus causing cell death. RIPs are mostly divided in two types: Type 1 RIPs that are single-chain enzymatic proteins, and type 2 RIPs that consist of an active A chain (similar to a type 1 RIP) linked to a B chain with lectin properties. RIP-containing conjugates have been used in many experimental strategies against cancer cells, often showing great efficacy in clinical trials. Saporin-S6, a type 1 RIP extracted from Saponaria officinalis L. seeds, has been extensively utilized to construct anti-cancer conjugates because of its high enzymatic activity, stability and resistance to conjugation procedures, resulting in the efficient killing of target cells. This review summarizes saporin-S6-containing conjugates and their application in cancer therapy, considering in-vitro and in-vivo studies both in animal models and in clinical trials. The review is structured on the basis of the targeting of hematological versus solid tumors and on the antigen recognized on the cell surface.
Collapse
Affiliation(s)
- Letizia Polito
- Department of Experimental Pathology, "Alma Mater Studiorum" University of Bologna, via San Giacomo 14, 40126-Bologna, Italy.
| | | | | | | |
Collapse
|