1
|
Tundo GR, Sbardella D, Santoro AM, Coletta A, Oddone F, Grasso G, Milardi D, Lacal PM, Marini S, Purrello R, Graziani G, Coletta M. The proteasome as a druggable target with multiple therapeutic potentialities: Cutting and non-cutting edges. Pharmacol Ther 2020; 213:107579. [PMID: 32442437 PMCID: PMC7236745 DOI: 10.1016/j.pharmthera.2020.107579] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 05/05/2020] [Indexed: 01/10/2023]
Abstract
Ubiquitin Proteasome System (UPS) is an adaptable and finely tuned system that sustains proteostasis network under a large variety of physiopathological conditions. Its dysregulation is often associated with the onset and progression of human diseases; hence, UPS modulation has emerged as a promising new avenue for the development of treatments of several relevant pathologies, such as cancer and neurodegeneration. The clinical interest in proteasome inhibition has considerably increased after the FDA approval in 2003 of bortezomib for relapsed/refractory multiple myeloma, which is now used in the front-line setting. Thereafter, two other proteasome inhibitors (carfilzomib and ixazomib), designed to overcome resistance to bortezomib, have been approved for treatment-experienced patients, and a variety of novel inhibitors are currently under preclinical and clinical investigation not only for haematological malignancies but also for solid tumours. However, since UPS collapse leads to toxic misfolded proteins accumulation, proteasome is attracting even more interest as a target for the care of neurodegenerative diseases, which are sustained by UPS impairment. Thus, conceptually, proteasome activation represents an innovative and largely unexplored target for drug development. According to a multidisciplinary approach, spanning from chemistry, biochemistry, molecular biology to pharmacology, this review will summarize the most recent available literature regarding different aspects of proteasome biology, focusing on structure, function and regulation of proteasome in physiological and pathological processes, mostly cancer and neurodegenerative diseases, connecting biochemical features and clinical studies of proteasome targeting drugs.
Collapse
Affiliation(s)
- G R Tundo
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy.
| | | | - A M Santoro
- CNR, Institute of Crystallography, Catania, Italy
| | - A Coletta
- Department of Chemistry, University of Aarhus, Aarhus, Denmark
| | - F Oddone
- IRCCS-Fondazione Bietti, Rome, Italy
| | - G Grasso
- Department of Chemical Sciences, University of Catania, Catania, Italy
| | - D Milardi
- CNR, Institute of Crystallography, Catania, Italy
| | - P M Lacal
- Laboratory of Molecular Oncology, IDI-IRCCS, Rome, Italy
| | - S Marini
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | - R Purrello
- Department of Chemical Sciences, University of Catania, Catania, Italy
| | - G Graziani
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.
| | - M Coletta
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy.
| |
Collapse
|
2
|
Abstract
Bortezomib is a dipeptidyl boronic acid that selectively inhibits the ubiquitin proteasome pathway, which plays a role in the degradation of many intracellular proteins. It is the first-in-class selective and reversible inhibitor of the 26S proteasome, with antiproliferative and antitumor activity. It exerts its anti-neoplastic action mainly via the inhibition of the nuclear factor-κB pathway components associated with cell proliferation, apoptosis, and angiogenesis. The drug has revolutionized the treatment of multiple myeloma and, more recently, mantle cell lymphoma. In 2003, bortezomib received accelerated approval from the US Food and Drug Administration for the treatment of relapsed/refractory multiple myeloma and in 2008 for patients with previously untreated multiple myeloma. In 2006, bortezomib was approved for the treatment of refractory/relapsed mantle cell lymphoma and, in 2014, for previously untreated mantle cell lymphoma. Bortezomib has also demonstrated clinical efficacy both as a single drug and in combination with other agents in light chain amyloidosis, lymphoplasmacytic lymphoma/Waldenstrom macroglobulinemia, and peripheral T-cell lymphomas. Furthermore, continued clinical studies are required to confirm its value for patients with indolent and aggressive B-cell non-Hodgkin lymphomas and acute leukemias.
Collapse
|
3
|
Robak T, Smolewski P, Robak P, Dreyling M. Mantle cell lymphoma: therapeutic options in transplant-ineligible patients. Leuk Lymphoma 2019; 60:2622-2634. [DOI: 10.1080/10428194.2019.1605511] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Tadeusz Robak
- Department of Hematology, Medical University of Lodz, Lodz, Poland
| | - Piotr Smolewski
- Department of Experimental Hematology, Medical University of Lodz, Lodz, Poland
| | - Pawel Robak
- Department of Experimental Hematology, Medical University of Lodz, Lodz, Poland
| | - Martin Dreyling
- Department of Medicine III, University Hospital Ludwig Maximilians University, Munich, Germany
| |
Collapse
|
4
|
Arkwright R, Pham TM, Zonder JA, Dou QP. The preclinical discovery and development of bortezomib for the treatment of mantle cell lymphoma. Expert Opin Drug Discov 2016; 12:225-235. [PMID: 27917682 DOI: 10.1080/17460441.2017.1268596] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Mantle cell lymphoma (MCL) is an incurable, often aggressive B-cell malignancy. Bortezomib (BTZ), the 20S proteasome inhibitor was originally developed and approved for treatment of relapsed refractory multiple myeloma, and subsequently approved for treatment of MCL. BTZ's single-agent activity induces clinical responses in approximately one-third of relapsed MCL patients. BTZ-containing combination therapies have further improved the quality and duration of clinical responses compared to standard chemotherapies in previously untreated MCL patients. Areas covered: This review summarizes the discovery, mechanisms of -action and resistance, preclinical- clinical-developments, and FDA approval of BTZ for treatments of MCL. Expert opinion: Preclinical MCL models demonstrated the apoptotic effect of BTZ through multiple mechanisms, as well as synergistic anti-MCL activity between BTZ and other chemotherapeutics. Single-agent and combinational clinical trials have validated the therapeutic potential of targeting the ubiquitin proteasome system (UPS) in MCL. However, inherent and acquired drug resistance remains a significant clinical problem and multiple potential mechanisms have been identified. Next-generation proteasome inhibitors with different pharmacodynamic properties from BTZ may partially address the issue of inherent resistance, with increased response rates noted in some diseases. In addition, upstream UPS components, e.g., E3 ligases or deubiquitinating enzymes, may also be targetable in MCL.
Collapse
Affiliation(s)
- Richard Arkwright
- a Department of Oncology , Wayne State University School of Medicine , Detroit , Michigan , USA.,b Barbara Ann Karmanos Cancer Institute , Detroit , Michigan , USA
| | - Tri Minh Pham
- c Department of Pathology , Wayne State University School of Medicine , Detroit , Michigan , USA
| | - Jeffrey A Zonder
- a Department of Oncology , Wayne State University School of Medicine , Detroit , Michigan , USA.,b Barbara Ann Karmanos Cancer Institute , Detroit , Michigan , USA
| | - Q Ping Dou
- a Department of Oncology , Wayne State University School of Medicine , Detroit , Michigan , USA.,b Barbara Ann Karmanos Cancer Institute , Detroit , Michigan , USA.,c Department of Pathology , Wayne State University School of Medicine , Detroit , Michigan , USA
| |
Collapse
|
5
|
Abstract
Mantle cell lymphoma (MCL) is a hematological malignancy with unfavorable prognosis. Bortezomib, a potent, selective and reversible inhibitor of the 26S proteasome, was shown to be active in MCL and is currently implemented in therapeutic combinations. Single-agent bortezomib has demonstrated clinical efficacy in relapsed and refractory MCL with objective response in up to 47% of the patients. However, complete remission rates are low and duration of response is relatively short. In previously untreated patients, the addition of bortezomib to induction chemotherapy is also promising. Further evaluation of bortezomib alone or in combination with other drugs for the treatment of MCL is warranted to improve the quality of life and survival of patients. This review explores bortezomib as therapy in patients with MCL.
Collapse
Affiliation(s)
- Tadeusz Robak
- Department of Hematology, Medical University of Lodz, 93-510 Lodz, ul. Ciołkowskiego 2, Poland
| |
Collapse
|
6
|
Alinari L, Quinion C, Blum KA. Bruton's tyrosine kinase inhibitors in B-cell non-Hodgkin's lymphomas. Clin Pharmacol Ther 2015; 97:469-77. [PMID: 25670208 DOI: 10.1002/cpt.65] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 12/01/2014] [Accepted: 12/08/2014] [Indexed: 02/06/2023]
Abstract
The B-cell receptor pathway (BCR) is aberrantly activated in select B-cell malignancies. This knowledge has allowed for the development of inhibitors of different crucial steps of this pathway. Bruton's tyrosine kinase (BTK) is a key component of BCR signaling and functions as an important regulator of multiple cell functions including differentiation, proliferation, and survival in various B-cell malignancies. Ibrutinib is a potent, selective BTK inhibitor that has shown significant activity in specific subtypes of B-cell non-Hodgkin's lymphomas (NHLs). Given the high response rates, tolerability, and acceptable toxicities, ibrutinib was recently approved by the US Food and Drug Administration (FDA) for the treatment of patients with relapsed mantle cell lymphoma and chronic lymphocytic leukemia. It is also currently being evaluated in combination with chemotherapy and as frontline therapy in B-cell NHL. This review summarizes the preclinical and clinical development of ibrutinib in the treatment of B-cell NHL.
Collapse
Affiliation(s)
- L Alinari
- Department of Hematology, Arthur G James Comprehensive Cancer Center, Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | | | | |
Collapse
|
7
|
Dou QP, Zonder JA. Overview of proteasome inhibitor-based anti-cancer therapies: perspective on bortezomib and second generation proteasome inhibitors versus future generation inhibitors of ubiquitin-proteasome system. Curr Cancer Drug Targets 2014; 14:517-36. [PMID: 25092212 PMCID: PMC4279864 DOI: 10.2174/1568009614666140804154511] [Citation(s) in RCA: 207] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 06/16/2014] [Accepted: 07/11/2014] [Indexed: 02/07/2023]
Abstract
Over the past ten years, proteasome inhibition has emerged as an effective therapeutic strategy for treating multiple myeloma (MM) and some lymphomas. In 2003, Bortezomib (BTZ) became the first proteasome inhibitor approved by the U.S. Food and Drug Administration (FDA). BTZ-based therapies have become a staple for the treatment of MM at all stages of the disease. The survival rate of MM patients has improved significantly since clinical introduction of BTZ and other immunomodulatory drugs. However, BTZ has several limitations. Not all patients respond to BTZ based therapies and relapse occurs in many patients who initially responded. Solid tumors, in particular, are often resistant to BTZ. Furthermore, BTZ can induce dose-limiting peripheral neuropathy (PN). The second generation proteasome inhibitor Carfizomib (CFZ; U.S. FDA approved in August 2012) induces responses in a minority of MM patients relapsed from or refractory to BTZ. There is less PN compared to BTZ. Four other second-generation proteasome inhibitors (Ixazomib, Delanzomib, Oprozomib and Marizomib) with different pharmacologic properties and broader anticancer activities, have also shown some clinical activity in bortezomib-resistant cancers. While the mechanism of resistance to bortezomib in human cancers still remains to be fully understood, targeting the immunoproteasome, ubiquitin E3 ligases, the 19S proteasome and deubiquitinases in pre-clinical studies represents possible directions for future generation inhibitors of ubiquitin-proteasome system in the treatment of MM and other cancers.
Collapse
Affiliation(s)
| | - Jeffrey A Zonder
- Barbara Ann Karmanos Cancer Institute and Department of Oncology, Wayne State University School of Medicine, 540.1 HWCRC, 4100 John R Road, Detroit, MI 48201.
| |
Collapse
|
8
|
Mato AR, Feldman T, Goy A. Proteasome inhibition and combination therapy for non-Hodgkin's lymphoma: from bench to bedside. Oncologist 2012; 17:694-707. [PMID: 22566373 PMCID: PMC3360909 DOI: 10.1634/theoncologist.2011-0341] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Accepted: 03/16/2012] [Indexed: 11/17/2022] Open
Abstract
Although patients with B-cell non-Hodgkin's lymphoma (NHL) usually respond to initial conventional chemotherapy, they often relapse and mortality has continued to increase over the last three decades in spite of salvage therapy or high dose therapy and stem cell transplantation. Outcomes vary by subtype, but there continues to be a need for novel options that can help overcome chemotherapy resistance, offer new options as consolidation or maintenance therapy postinduction, and offer potentially less toxic combinations, especially in the elderly population. The bulk of these emerging novel agents for cancer treatment target important biological cellular processes. Bortezomib is the first in the class of proteasome inhibitors (PIs), which target the critical process of intracellular protein degradation or recycling and editing through the proteasome. Bortezomib is approved for the treatment of relapsed or refractory mantle cell lymphoma. The mechanisms of proteasome inhibition are very complex by nature (because they affect many pathways) and not fully understood. However, mechanisms of action shared by bortezomib and investigational PIs such as carfilzomib, marizomib, ONX-0912, and MLN9708 are distinct from those of other NHL treatments, making them attractive options for combination therapy. Preclinical evidence suggests that the PIs have additive and/or synergistic activity with a large number of agents both in vitro and in vivo, from cytotoxics to new biologicals, supporting a growing number of combination studies currently underway in NHL patients, as reviewed in this article. The results of these studies will help our understanding about how to best integrate proteasome inhibition in the management of NHL and continue to improve patient outcomes.
Collapse
Affiliation(s)
- Anthony R Mato
- Lymphoma Division, John Theurer Cancer Center at Hackensack University Medical Center, Hackensack, New Jersey, USA.
| | | | | |
Collapse
|
9
|
Kouroukis CT, Fernandez LAV, Crump M, Gascoyne RD, Chua NS, Buckstein R, Turner R, Assouline S, Klasa RJ, Walsh W, Powers J, Eisenhauer E. A phase II study of bortezomib and gemcitabine in relapsed mantle cell lymphoma from the National Cancer Institute of Canada Clinical Trials Group (IND 172). Leuk Lymphoma 2011; 52:394-9. [PMID: 21323520 DOI: 10.3109/10428194.2010.546015] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Bortezomib and gemcitabine have each shown activity as single agents in mantle cell lymphoma (MCL), which is incurable. The purpose of this phase II study was to determine the efficacy and safety of the previously unstudied combination of bortezomib and gemcitabine in patients with relapsed or refractory MCL. Patients were eligible if they had relapsed MCL with 1-3 prior therapies. Patients were treated with gemcitabine 1000 mg/m(2) on days 1 and 8 and bortezomib 1.0 mg/m(2) IV on days 1, 4, 8, and 11, on a 21-day schedule. Twenty-six patients were evaluable for toxicity and 25 for response. The overall response rate was 60% and the median progression free survival was 11.4 months. The main adverse effects were hematological, with 40% and 48% of patients experiencing grade 3/4 thrombocytopenia and granulocytopenia, respectively. Bortezomib and gemcitabine is an active combination in relapsed and refractory MCL with clinically meaningful results. It offers a chemotherapy backbone to which other agents, less myelosuppressive, may be added.
Collapse
Affiliation(s)
- C Tom Kouroukis
- Juravinski Hospital and Cancer Centre, Hamilton, Ontario, Canada.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|