1
|
Oketch DJA, Giulietti M, Piva F. Copy Number Variations in Pancreatic Cancer: From Biological Significance to Clinical Utility. Int J Mol Sci 2023; 25:391. [PMID: 38203561 PMCID: PMC10779192 DOI: 10.3390/ijms25010391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/20/2023] [Accepted: 12/24/2023] [Indexed: 01/12/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the most common type of pancreatic cancer, characterized by high tumor heterogeneity and a poor prognosis. Inter- and intra-tumoral heterogeneity in PDAC is a major obstacle to effective PDAC treatment; therefore, it is highly desirable to explore the tumor heterogeneity and underlying mechanisms for the improvement of PDAC prognosis. Gene copy number variations (CNVs) are increasingly recognized as a common and heritable source of inter-individual variation in genomic sequence. In this review, we outline the origin, main characteristics, and pathological aspects of CNVs. We then describe the occurrence of CNVs in PDAC, including those that have been clearly shown to have a pathogenic role, and further highlight some key examples of their involvement in tumor development and progression. The ability to efficiently identify and analyze CNVs in tumor samples is important to support translational research and foster precision oncology, as copy number variants can be utilized to guide clinical decisions. We provide insights into understanding the CNV landscapes and the role of both somatic and germline CNVs in PDAC, which could lead to significant advances in diagnosis, prognosis, and treatment. Although there has been significant progress in this field, understanding the full contribution of CNVs to the genetic basis of PDAC will require further research, with more accurate CNV assays such as single-cell techniques and larger cohorts than have been performed to date.
Collapse
Affiliation(s)
| | - Matteo Giulietti
- Department of Specialistic Clinical and Odontostomatological Sciences, Polytechnic University of Marche, 60131 Ancona, Italy
| | - Francesco Piva
- Department of Specialistic Clinical and Odontostomatological Sciences, Polytechnic University of Marche, 60131 Ancona, Italy
| |
Collapse
|
2
|
An Axis between the Long Non-Coding RNA HOXA11-AS and NQOs Enhances Metastatic Ability in Oral Squamous Cell Carcinoma. Int J Mol Sci 2022; 23:ijms231810704. [PMID: 36142607 PMCID: PMC9506332 DOI: 10.3390/ijms231810704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/10/2022] [Accepted: 09/12/2022] [Indexed: 12/03/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) play critical roles in human cancers. HOXA11 anti-sense RNA (HOXA11-AS) is an lncRNA belonging to the homeobox (HOX) gene cluster that promotes liver metastasis in human colon cancer. However, its role and mechanism of action in human oral squamous cell carcinoma (OSCC) are unclear. In this study, we investigated HOXA11-AS expression and function in human OSCC tissues and cell lines, as well as a mouse model of OSCC. Our analyses showed that HOXA11-AS expression in human OSCC cases correlates with lymph node metastasis, nicotinamide adenine dinucleotide (NAD)(P)H: quinone oxidoreductase 1 (NQO1) upregulation, and dihydronicotinamide riboside (NRH): quinone oxidoreductase 2 (NQO2) downregulation. Using the human OSCC cell lines HSC3 and HSC4, we demonstrate that HOXA11-AS promotes NQO1 expression by sponging microRNA-494. In contrast, HOXA11-AS recruits zeste homolog 2 (EZH2) to the NQO2 promoter to suppress its expression via the trimethylation of H3K27. The upregulation of NQO1 enzymatic activity by HOXA11-AS results in the consumption of flavin adenine dinucleotide (FAD), which reduces FAD-requiring glyceraldehyde-3-phosphate dehydrogenase (GAPDH) activity and suppresses glycolysis. However, our analyses show that lactic acid fermentation levels are preserved by glutaminolysis due to increased malic enzyme-1 expression, promoting enhanced proliferation, invasion, survival, and drug resistance. In contrast, suppression of NQO2 expression reduces the consumption of NRH via NQO2 enzymatic activity and increases NAD levels, which promotes enhanced stemness and metastatic potential. In mouse tumor models, knockdown of HOXA11-AS markedly suppressed tumor growth and lung metastasis. From these findings, targeting HOXA11-AS may strongly suppress high-grade OSCC by regulating both NQO1 and NQO2.
Collapse
|
3
|
Zheng HC, Xue H, Zhang CY. REG4 promotes the proliferation and anti-apoptosis of cancer. Front Cell Dev Biol 2022; 10:1012193. [PMID: 36172286 PMCID: PMC9511136 DOI: 10.3389/fcell.2022.1012193] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 08/26/2022] [Indexed: 11/27/2022] Open
Abstract
Regenerating islet-derived 4 (REG4) gene was discovered by high-throughput sequencing of ulcerative colitis cDNA libraries. REG4 is involved in infection and inflammation by enhancing macrophage polarization to M2, via activation of epidermal growth factor receptor (EGFR)/Akt/cAMP-responsive element binding and the killing inflammatory Escherichia coli, and closely linked to tumorigenesis. Its expression was transcriptionally activated by caudal type homeobox 2, GATA binding protein 6, GLI family zinc finger 1, SRY-box transcription factor 9, CD44 intracytoplasmic domain, activating transcription factor 2, and specificity protein 1, and translationally activated by miR-24. REG4 can interact with transmembrane CD44, G protein-coupled receptor 37, mannan and heparin on cancer cells. Its overexpression was observed in gastric, colorectal, pancreatic, gallbladder, ovarian and urothelial cancers, and is closely linked to their aggressive behaviors and a poor prognosis. Additionally, REG4 expression and recombinant REG4 aggravated such cellular phenotypes as tumorigenesis, proliferation, anti-apoptosis, chemoradioresistance, migration, invasion, peritoneal dissemination, tumor growth, and cancer stemness via EGFR/Akt/activator protein-1 and Akt/glycogen synthase kinase three β/β-catenin/transcription factor 4 pathways. Sorted REG4-positive deep crypt secretory cells promote organoid formation of single Lgr5 (+) colon stem cells by Notch inhibition and Wnt activation. Histologically, REG4 protein is specifically expressed in neuroendocrine tumors and signet ring cell carcinomas of the gastrointestinal tract, pancreas, ovary, and lung. It might support the histogenesis of gastric intestinal–metaplasia–globoid dysplasia–signet ring cell carcinoma. In this review, we summarized the structure, biological functions, and effects of REG4 on inflammation and cancer. We conclude that REG4 may be employed as a biomarker of tumorigenesis, subsequent progression and poor prognosis of cancer, and may be a useful target for gene therapy.
Collapse
Affiliation(s)
- Hua-Chuan Zheng
- Department of Oncology and Central Laboratory, The Affiliated Hospital of Chengde Medical University, Chengde, China
- *Correspondence: Hua-Chuan Zheng,
| | - Hang Xue
- Department of Oncology and Central Laboratory, The Affiliated Hospital of Chengde Medical University, Chengde, China
| | - Cong-Yu Zhang
- Cancer Center, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| |
Collapse
|
4
|
Zhang J, Zhu Z, Miao Z, Huang X, Sun Z, Xu H, Wang Z. The Clinical Significance and Mechanisms of REG4 in Human Cancers. Front Oncol 2021; 10:559230. [PMID: 33489872 PMCID: PMC7819868 DOI: 10.3389/fonc.2020.559230] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 11/23/2020] [Indexed: 11/13/2022] Open
Abstract
Regenerating islet-derived type 4 (REG4), a member of the calcium-dependent lectin gene superfamily, is abnormally expressed in various cancers, such as colorectal, gastric, gallbladder, pancreatic, ovarian, prostate, and lung cancer. REG4 is associated with a relatively unfavorable prognosis and clinicopathologic features in cancers, including advanced tumor and nodal stage, histological differentiation, and liver and peritoneal metastasis. Moreover, REG4-positive cancer cells show more frequent resistance to chemoradiotherapy, especially 5-FU-based chemotherapy. REG4 participates in many aspects of carcinogenesis, including cell proliferation, apoptosis, cell cycle, invasion, metastasis, and drug resistance. The underlying mechanisms are complex and involve a series of signaling mediators and multiple pathways. Thus, REG4 may be a potential diagnostic and prognostic biomarker as well as a candidate therapeutic target in cancer patients. In this review, we systematically summarize the advances about the clinical significance, biological functions, and mechanisms underlying REG4 in cancer to provide new directions for future cancer research.
Collapse
Affiliation(s)
- Junyan Zhang
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Zhi Zhu
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Zhifeng Miao
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xuanzhang Huang
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Zhe Sun
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Huimian Xu
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Zhenning Wang
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
5
|
Sasaki T, Mori S, Kishi S, Fujiwara-Tani R, Ohmori H, Nishiguchi Y, Hojo Y, Kawahara I, Nakashima C, Fujii K, Luo Y, Kuniyasu H. Effect of Proton Pump Inhibitors on Colorectal Cancer. Int J Mol Sci 2020; 21:ijms21113877. [PMID: 32485921 PMCID: PMC7312442 DOI: 10.3390/ijms21113877] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 02/07/2023] Open
Abstract
Proton pump inhibitors (PPIs) are administered commonly to aged people; however, their effect on colorectal cancer (CRC) has still not been fully elucidated. Here, we examined the effect of PPIs and consequent alkalization on CRC cells. PPI administration alkalized the fecal pH and increased serum gastrin concentration. PPI and pH8 treatment (alkalization) of CMT93 mouse colon cancer cells inhibited cell growth and invasion, increased oxidative stress and apoptosis, and decreased mitochondrial volume and protein levels of cyclin D1 and phosphorylated extracellular signal-regulated kinase (pERK) 1/2. In contrast, gastrin treatment enhanced growth and invasion, decreased oxidative stress and apoptosis, and increased mitochondrial volume and cyclin D1 and pERK1/2 levels. Concurrent treatment with a PPI, pH8, and gastrin increased aldehyde dehydrogenase activity and also enhanced liver metastasis in the BALB/c strain of mice. PPI administration was associated with Clostridiumperfringens enterotoxin (CPE) in CRC lesions. CPE treatment activated yes-associated protein (YAP) signals to enhance proliferation and stemness. The orthotopic colon cancer model of CMT93 cells with long-term PPI administration showed enhanced tumor growth and liver metastasis due to gastrin and YAP activation, as indicated by gastrin receptor knockdown and treatment with a YAP inhibitor. These findings suggest that PPI promotes CRC growth and metastasis by increasing gastrin concentration and YAP activation, resulting in gut flora alteration and fecal alkalization. These findings suggest that PPI use in colorectal cancer patients might create a risk of cancer promotion.
Collapse
Affiliation(s)
- Takamitsu Sasaki
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Japan; (T.S.); (S.M.); (S.K.); (R.F.-T.); (H.O.); (Y.N.); (Y.H.); (I.K.); (C.N.); (K.F.)
| | - Shiori Mori
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Japan; (T.S.); (S.M.); (S.K.); (R.F.-T.); (H.O.); (Y.N.); (Y.H.); (I.K.); (C.N.); (K.F.)
| | - Shingo Kishi
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Japan; (T.S.); (S.M.); (S.K.); (R.F.-T.); (H.O.); (Y.N.); (Y.H.); (I.K.); (C.N.); (K.F.)
| | - Rina Fujiwara-Tani
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Japan; (T.S.); (S.M.); (S.K.); (R.F.-T.); (H.O.); (Y.N.); (Y.H.); (I.K.); (C.N.); (K.F.)
| | - Hitoshi Ohmori
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Japan; (T.S.); (S.M.); (S.K.); (R.F.-T.); (H.O.); (Y.N.); (Y.H.); (I.K.); (C.N.); (K.F.)
| | - Yukiko Nishiguchi
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Japan; (T.S.); (S.M.); (S.K.); (R.F.-T.); (H.O.); (Y.N.); (Y.H.); (I.K.); (C.N.); (K.F.)
| | - Yudai Hojo
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Japan; (T.S.); (S.M.); (S.K.); (R.F.-T.); (H.O.); (Y.N.); (Y.H.); (I.K.); (C.N.); (K.F.)
| | - Isao Kawahara
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Japan; (T.S.); (S.M.); (S.K.); (R.F.-T.); (H.O.); (Y.N.); (Y.H.); (I.K.); (C.N.); (K.F.)
| | - Chie Nakashima
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Japan; (T.S.); (S.M.); (S.K.); (R.F.-T.); (H.O.); (Y.N.); (Y.H.); (I.K.); (C.N.); (K.F.)
| | - Kiyomu Fujii
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Japan; (T.S.); (S.M.); (S.K.); (R.F.-T.); (H.O.); (Y.N.); (Y.H.); (I.K.); (C.N.); (K.F.)
| | - Yi Luo
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
- Correspondence: (Y.L.); (H.K.); Tel.: +86-0513-85051805 (Y.L.); +81-744-22-3051 (H.K.); Fax: +81-744-25-7308 (H.K.)
| | - Hiroki Kuniyasu
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Japan; (T.S.); (S.M.); (S.K.); (R.F.-T.); (H.O.); (Y.N.); (Y.H.); (I.K.); (C.N.); (K.F.)
- Correspondence: (Y.L.); (H.K.); Tel.: +86-0513-85051805 (Y.L.); +81-744-22-3051 (H.K.); Fax: +81-744-25-7308 (H.K.)
| |
Collapse
|
6
|
Role of Metastasis-Related Genes in Cisplatin Chemoresistance in Gastric Cancer. Int J Mol Sci 2019; 21:ijms21010254. [PMID: 31905926 PMCID: PMC6981396 DOI: 10.3390/ijms21010254] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 12/23/2019] [Accepted: 12/26/2019] [Indexed: 02/06/2023] Open
Abstract
The role of metastasis-related genes in cisplatin (CDDP) chemoresistance in gastric cancer is poorly understood. Here, we examined the expression of four metastasis-related genes (namely, c-met, HMGB1, RegIV, PCDHB9) in 39 cases of gastric cancer treated with neoadjuvant therapy with CDDP or CDDP+5-fluorouracil and evaluated its association with CDDP responsiveness. Comparison of CDDP-sensitive cases with CDDP-resistant cases, the expression of c-met, HMGB1, and PCDHB9 was correlated with CDDP resistance. Among them, the expression of HMGB1 showed the most significant correlation with CDDP resistance in multivariate analysis. Treatment of TMK-1 and MKN74 human gastric cancer cell lines with ethyl pyruvate (EP) or tanshinone IIA (TAN), which are reported to inhibit HMGB1 signaling, showed a 4–5-fold increase in inhibition by CDDP. Treatment with EP or TAN also suppressed the expression of TLR4 and MyD88 in the HMGB1 signal transduction pathway and suppressed the activity of NFκB in both cell lines. These results suggest that the expression of these cancer metastasis-related genes is also related to anticancer drug resistance and that suppression of HMGB1 may be particularly useful for CDDP sensitization.
Collapse
|
7
|
Hwang JH, Yoon J, Cho YH, Cha PH, Park JC, Choi KY. A mutant KRAS-induced factor REG4 promotes cancer stem cell properties via Wnt/β-catenin signaling. Int J Cancer 2019; 146:2877-2890. [PMID: 31605540 DOI: 10.1002/ijc.32728] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 09/22/2019] [Accepted: 10/01/2019] [Indexed: 01/02/2023]
Abstract
Mutant KRAS provides a driving force for enhancement of cancer stem cells (CSCs) characteristics contributing transformation of colorectal cancer (CRC) cells harboring adenomatous polyposis coli (APC) mutations. Here, we identified the factors mediating the promotion of CSCs properties induced by KRAS mutation through microarray analyses of genes specifically induced in CRC spheroids harboring both KRAS and APC mutations. Among them, REG4 was identified as a key factor since CRISPR/Cas9-mediated knockout of REG4 most significantly affected the stem cell characteristics in which CSCs markers were effectively suppressed. We show that REG4 mediates promotion of CSCs properties via Wnt/β-catenin signaling in various in vitro studies including tumor organoid systems. Furthermore, expression patterns of CSCs markers and REG4 correlated in intestinal tumors from Apcmin/+ /KrasG12D LA2 mice and in CRC patient tissues harboring both KRAS and APC mutations. The role of REG4 in the tumor-initiating capacity accompanied by enhancement of CSCs characteristics was also revealed by NSG mice xenograft system. Collectively, our study highlights the importance of REG4 in promoting CSCs properties induced by KRAS mutation, and provides a new therapeutic strategy for CRC harboring both APC and KRAS mutations.
Collapse
Affiliation(s)
- Jeong-Ha Hwang
- Translational Research Center for Protein Function Control, Yonsei University, Seoul, South Korea.,Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea.,Department of Biomaterials Science and Engineering, Yonsei University, Seoul, South Korea
| | - Junyong Yoon
- Translational Research Center for Protein Function Control, Yonsei University, Seoul, South Korea.,Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Yong-Hee Cho
- Translational Research Center for Protein Function Control, Yonsei University, Seoul, South Korea.,Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Pu-Hyeon Cha
- Translational Research Center for Protein Function Control, Yonsei University, Seoul, South Korea.,Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Jong-Chan Park
- Translational Research Center for Protein Function Control, Yonsei University, Seoul, South Korea.,Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Kang-Yell Choi
- Translational Research Center for Protein Function Control, Yonsei University, Seoul, South Korea.,Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea.,CK Biotechnology Inc., Seoul, South Korea
| |
Collapse
|
8
|
Chen Z, Downing S, Tzanakakis ES. Four Decades After the Discovery of Regenerating Islet-Derived (Reg) Proteins: Current Understanding and Challenges. Front Cell Dev Biol 2019; 7:235. [PMID: 31696115 PMCID: PMC6817481 DOI: 10.3389/fcell.2019.00235] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 09/30/2019] [Indexed: 12/15/2022] Open
Abstract
Regenerating islet-derived (Reg) proteins have emerged as multifunctional agents with pro-proliferative, anti-apoptotic, differentiation-inducing and bactericidal properties. Over the last 40 years since first discovered, Reg proteins have been implicated in a gamut of maladies including diabetes, various types of cancer of the digestive tract, and Alzheimer disease. Surprisingly though, a consensus is still absent on the regulation of their expression, and molecular underpinning of their function. Here, we provide a critical appraisal of recent findings in the field of Reg protein biology. Specifically, the structural characteristics are reviewed particularly in connection with established or purported functions of different members of the Reg family. Moreover, Reg expression patterns in different tissues both under normal and pathophysiological conditions are summarized. Putative receptors and cascades reported to relay Reg signaling inciting cellular responses are presented aiming at a better appreciation of the biological activities of the distinct Reg moieties. Challenges are also discussed that have hampered thus far the rapid progress in this field such as the use of non-standard nomenclature for Reg molecules among various research groups, the existence of multiple Reg members with significant degree of homology and possibly compensatory modes of action, and the need for common assays with robust readouts of Reg activity. Coordinated research is warranted going forward, given that several research groups have independently linked Reg proteins to diseased states and raised the possibility that these biomolecules can serve as therapeutic targets and biomarkers.
Collapse
Affiliation(s)
- Zijing Chen
- Department of Chemical and Biological Engineering, Tufts University, Medford, MA, United States
| | - Shawna Downing
- Clinical and Translational Science Institute, Tufts Medical Center, Boston, MA, United States
| | - Emmanuel S Tzanakakis
- Department of Chemical and Biological Engineering, Tufts University, Medford, MA, United States.,Clinical and Translational Science Institute, Tufts Medical Center, Boston, MA, United States
| |
Collapse
|
9
|
Zhang N, Chai D, Du H, Li K, Xie W, Li X, Yang R, Lian X, Xu Y. Expression of Reg IV and SOX9 and their correlation in human gastric cancer. BMC Cancer 2018; 18:344. [PMID: 29587675 PMCID: PMC5870489 DOI: 10.1186/s12885-018-4285-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 03/21/2018] [Indexed: 01/06/2023] Open
Abstract
Background Reg IV is a member of the regenerating gene family and has been demonstrated to be overexpressed in gastric cancer. However, the functional mechanism of Reg IV in gastric cancer is still unclear. Methods Expression of Reg IV and SOX9 were investigated by immunohistochemistry (IHC) and real-time PCR, and the correlation between the expression of Reg IV and SOX9 was analyzed in gastric cancer tissues. Reg IV expression vectors and a siRNA of Reg IV and SOX9 were transfected into human gastric cancer cells and the protein and mRNA levels of Reg IV and SOX9 were investigated by western blot and real-time PCR. The invasion and migration ability of gastric cancer cells with overexpressed Reg IV and with gene silence of Reg IV and SOX9 were examined by transwell chambers and wound healing assay. Results The Reg IV and SOX9 protein expression levels were both significantly higher in gastric cancer tissues compared with adjacent tissues (p = 0.022, p = 0.003). Reg IV protein expression significantly correlated with tumor invasion depth (p < 0.001), but had no significant correlations with age, clinical stage or lymph node metastasis. SOX9 protein expression also had no significant correlations with age, clinical stage, tumor invasion depth or lymph node metastasis. Reg IV transcript expression demonstrated a significant correlation with invasion depth and lymph node metastasis (p = 0.005, p < 0.001) and no significant correlations with age, clinical stage, tumor tissue differentiation or tumor size. SOX9 transcript expression demonstrated a significant correlation with invasion depth and tumor tissue differentiation (p = 0.044, p = 0.007) and no significant correlations with age, clinical stage or tumor size. The Reg IV expression showed a positive correlation with the SOX9 expression (p < 0.000, p = 0.008). Overexpression of Reg IV could upregulate SOX9 expression and promote invasiveness and migration of tumor cells, and silencing of Reg IV could downregulate SOX9 and inhibit invasiveness and migration of tumor cells in MKN-45 and AGS cells. On the other hand, silencing of SOX9 could upregulate Reg IV protein expression. Conclusions Our study demonstrated that Reg IV positively regulates the expression of SOX9 and is involved in tumor cell invasion and migration in gastric cancer. Electronic supplementary material The online version of this article (10.1186/s12885-018-4285-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Na Zhang
- Department of Medicine Biotechnology, Medicine and Science Research Institute of Gansu Province, Lanzhou, China.,College of Life Sciences, Lanzhou University, Lanzhou, China
| | - Dandan Chai
- Department of Medicine Biotechnology, Medicine and Science Research Institute of Gansu Province, Lanzhou, China
| | - Huifen Du
- Department of Medicine Biotechnology, Medicine and Science Research Institute of Gansu Province, Lanzhou, China
| | - Kesheng Li
- Department of Medicine Biotechnology, Medicine and Science Research Institute of Gansu Province, Lanzhou, China. .,College of Life Sciences, Lanzhou University, Lanzhou, China.
| | - Wenguang Xie
- College of Life Sciences, Lanzhou University, Lanzhou, China
| | - Xingwen Li
- Department of Surgery, Tumor Hospital of Gansu Province, Lanzhou, China
| | - Rong Yang
- Department of pathology, Tumor Hospital of Gansu Province, Lanzhou, China
| | - Xiaowen Lian
- Department of Medicine Biotechnology, Medicine and Science Research Institute of Gansu Province, Lanzhou, China
| | - Yang Xu
- Department of Medicine Biotechnology, Medicine and Science Research Institute of Gansu Province, Lanzhou, China
| |
Collapse
|
10
|
Guo HL, He L, Zhu YC, Wu K, Yuan F. Comparison between multi-slice spiral CT and magnetic resonance imaging in the diagnosis of peritoneal metastasis in primary ovarian carcinoma. Onco Targets Ther 2018. [PMID: 29535533 PMCID: PMC5836691 DOI: 10.2147/ott.s147700] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The advent of disease evaluation by means of multi-slice spiral computed tomography (MSCT) and magnetic resonance imaging (MRI) represents a continually emerging role in the evaluation of various diseases; however, its role is yet to be adequately defined. Thus, the aim of the study was to compare the diagnostic value of MSCT and MRI in the diagnosis of peritoneal metastasis in primary ovarian carcinoma. Between January 2013 and December 2015, MSCT or MRI data were collected from 42 patients who had been previously diagnosed with peritoneal metastasis of ovarian carcinoma at the First Affiliated Hospital of Kunming Medical University. The tumor location, size, edge, and shape were all evaluated independently by three qualified imaging physicians using a double-blind method to confirm whether the patients were indeed suffering from peritoneal metastasis, as well as to rank the metastatic lesions recorded on a five-point scale. It was hypothesized that MRI and MSCT were comparable in the evaluation of ovarian carcinoma. Therefore, a receiver operating characteristics (ROC) curve was used to analyze the results and also to directly compare the respective diagnostic values of MSCT and MRI. In total, 165 metastatic lesions were confirmed by means of surgical operation. MSCT revealed 131 metastatic lesions, while MRI confirmed 154 metastatic lesions. The metastatic sites were primarily located on the subphrenic, epiploon, and gastrocolic ligaments and were further confirmed by either MRI or CT. In regard to MSCT, the most common site of underdiagnoses was in the vicinity of the uterus-rectum-fossa. MRI displayed a high detection rate in every site. The omission diagnostic rate of MSCT and MRI were 20.61% and 6.67%, respectively, while the accuracy rates were 79.39% and 93.33%, respectively. The obtained results revealed that the MSCT value of area under the ROC curve was smaller than that for MRI. Our findings provided evidence asserting that MRI, in comparison to MSCT, was more accurate in diagnosing peritoneal metastasis in patients with ovarian carcinoma.
Collapse
Affiliation(s)
- Hong-Lei Guo
- Department of Medical Imaging, The First Affiliated Hospital of Kunming Medical University, Kunming, People's Republic of China
| | - Ling He
- Department of Radiology, Yunnan Provincial Hospital of Traditional Chinese Medicine, Kunming, People's Republic of China
| | - Yan-Cui Zhu
- Intensive Care Unit, The First Affiliated Hospital of Kunming Medical University, Kunming, People's Republic of China
| | - Kun Wu
- Department of Hematology, The First Affiliated Hospital of Kunming Medical University, Kunming, People's Republic of China
| | - Feng Yuan
- Department of Medical Imaging, The First Affiliated Hospital of Kunming Medical University, Kunming, People's Republic of China
| |
Collapse
|
11
|
Wang H, Hu L, Zang M, Zhang B, Duan Y, Fan Z, Li J, Su L, Yan M, Zhu Z, Liu B, Yang Q. REG4 promotes peritoneal metastasis of gastric cancer through GPR37. Oncotarget 2016; 7:27874-88. [PMID: 27036049 PMCID: PMC5053694 DOI: 10.18632/oncotarget.8442] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 03/14/2016] [Indexed: 12/15/2022] Open
Abstract
Being the major reason of recurrence and death after surgery, peritoneal metastasis of gastric cancer dooms the prognosis of advanced gastric cancer patients. Regenerating islet-derived family, member 4 (REG4) is believed to promote peritoneal metastasis, however, its mechanism is still a moot point at present. In the present study, we show that high expression of REG4 correlates with advanced stage and poor survival prognosis for gastric cancer patients. REG4 overexpression significantly enhances peritoneal metastasis by increasing adhesion ability. Moreover, SP1 is proved to be a transcription factor of REG4 and induce REG4 expression upon TGF-alpha stimulation. Also, G protein-coupled receptor 37 (GPR37) is identified to be in the same complex of REG4, which mediates REG4's signal transduction and promotes peritoneal metastasis of gastric cancer cell. Interestingly, we also discover a positive feedback loop triggered by REG4, amplifying itself through EGFR transactivation, consisting of GPR37, ADAM17, TGF-alpha, EGFR, SP1 and REG4. In conclusion, REG4 promotes peritoneal metastasis of gastric cancer through GPR37 and triggers a positive feedback loop.
Collapse
Affiliation(s)
- Hexiao Wang
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Lei Hu
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Mingde Zang
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Baogui Zhang
- Affiliated Hospital of Jining Medical University, Department of Surgery, Jining 272000, People's Republic of China
| | - Yantao Duan
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Zhiyuan Fan
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Jianfang Li
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Liping Su
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Min Yan
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Zhenggang Zhu
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Bingya Liu
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Qiumeng Yang
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| |
Collapse
|
12
|
Ma X, Wu D, Zhou S, Wan F, Liu H, Xu X, Xu X, Zhao Y, Tang M. The pancreatic cancer secreted REG4 promotes macrophage polarization to M2 through EGFR/AKT/CREB pathway. Oncol Rep 2015; 35:189-96. [PMID: 26531138 DOI: 10.3892/or.2015.4357] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 09/04/2015] [Indexed: 11/06/2022] Open
Abstract
In the periphery of pancreatic ductal adenocarcinoma (PDAC), high accumulation of tumor-associated macrophages (TAMs), which exhibit M2 phenotype, has been shown to be correlated with extra-pancreatic invasion, lymph vessel invasion, lymph node involvement and shortened survival time. However, mechanisms by which tumor cells educate and reprogram TAMs remain largely unclear. The phenotype of TAMs in PDAC tissues was confirmed by immunofluoresence and confocal microscopy. Human CD14+ monocytes were incubated with recombinant human REG4 (rREG4) before being stimulated with LPS and IL-10 and IL-6 were measured with ELISA. A panel of M1 and M2 genes were measured by quantitative real-time PCR. Panc1, AsPC1 and BxPC3 cells were cultured in the conditioned medium (CM) and treated with REG4. The macrophages were infected with CREB shRNA or cultured by the CM of Panc1 cells infected with REG4 shRNA. The expression of CD163, CD206 and REG4 and the phosphorylation levels of epidermal growth factor receptor (EGFR), AKT and cAMP response element-binding protein (CREB) in cells were assessed with western blotting. Cell proliferation and invasiveness were also assessed. The rREG4 or the conditioned medium of Panc1 cells which secreted REG4 induced the polarization macrophages to M2 phenotype. Treatment of human macrophages with REG4 resulted in phosphorylation of EGFR, AKT and CREB. The latter was responsible for REG4-mediated macrophage polarization to M2. The conditioned medium of macrophages treated with rREG4 promoted the proliferation and invasion of pancreatic cancer cell lines. REG4, overexpressed in PDAC and secreted by cancer cells, promoted macrophage polarization to M2, through at least in part, activation of ERK1/2 and CREB and changed the microenvironment to facilitate cancer growth and metastasis.
Collapse
Affiliation(s)
- Xiuying Ma
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Deqing Wu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Shu Zhou
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Feng Wan
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Hua Liu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Xiaorong Xu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Xuanfu Xu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Yan Zhao
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Maochun Tang
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| |
Collapse
|
13
|
Luo Y, Tanabe E, Kitayoshi M, Nishiguchi Y, Fujiwara R, Matsushima S, Sasaki T, Sasahira T, Chihara Y, Nakae D, Fujii K, Ohmori H, Kuniyasu H. Expression of MAS1 in breast cancer. Cancer Sci 2015; 106:1240-8. [PMID: 26080617 PMCID: PMC4582995 DOI: 10.1111/cas.12719] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 05/28/2015] [Accepted: 06/07/2015] [Indexed: 12/18/2022] Open
Abstract
MAS1 is a receptor for angiotensin 1-7 (A1-7), which is derived from angiotensin II (A-II) by the action of angiotensin converting enzyme (ACE) 2. MAS1 induces anti-A-II phenotypes, such as vessel dilation and depression of blood pressure. Using immunohistochemistry, we examined the role of MAS1 in 132 cases of invasive ductal carcinoma (IDC) of the breast. While benign mammary tissues expressed MAS1 at high levels, MAS1 expression was attenuated in all IDC, especially in scirrhous IDC. The decrease in MAS1 expression was associated with tumor growth, lymph node metastasis, and grade. MAS1 expression was inversely associated with the proliferation index and epidermal growth factor receptor and human epidermal growth factor receptor-2 expression. Of the 132 cases, 12 (9.1%) were triple-negative breast cancer (TNBC) cases. All TNBC cases (the 12 cases and the additional 36 cases using a tissue array) expressed MAS1. Using the TNBC cell lines 4T1 and MDA-MB-468, which expresses MAS1, we found that cell growth, anti-apoptotic survival and invasion were suppressed by MAS1 activation with A1-7 treatment and enhanced by MAS1 knockdown. In contrast, synergic effect was found between tamoxifen and A1-7 in a luminal A breast cancer cell line, MCF-7. Combination treatment with cisplatin, an ACE2 activator, and an A-II type 1 receptor blocker showed synergic effects on tumor growth inhibition of 4T1 tumors in a syngeneic mouse model. These findings suggest that MAS1 might act as an inhibitory regulator of breast cancer and may be a possible molecular target for this malignancy.
Collapse
Affiliation(s)
- Yi Luo
- Department of Molecular Pathology, Nara Medical University, Kashihara, Japan
| | - Eriko Tanabe
- Department of Molecular Pathology, Nara Medical University, Kashihara, Japan
| | - Misaho Kitayoshi
- Department of Molecular Pathology, Nara Medical University, Kashihara, Japan
| | - Yukiko Nishiguchi
- Department of Molecular Pathology, Nara Medical University, Kashihara, Japan
| | - Rina Fujiwara
- Department of Molecular Pathology, Nara Medical University, Kashihara, Japan
| | - Sayako Matsushima
- Department of Molecular Pathology, Nara Medical University, Kashihara, Japan
| | - Takamitsu Sasaki
- Department of Gastroenterolgical Surgery, Fukuoka University School of Medicine, Fukuoka, Japan
| | - Tomonori Sasahira
- Department of Molecular Pathology, Nara Medical University, Kashihara, Japan
| | - Yoshitomo Chihara
- Department of Molecular Pathology, Nara Medical University, Kashihara, Japan
| | - Dai Nakae
- Department of Nutritional Science and Food Safety, Faculty of Applied Biosciences, Tokyo University of Agriculture, Tokyo, Japan
| | - Kiyomu Fujii
- Department of Molecular Pathology, Nara Medical University, Kashihara, Japan
| | - Hitoshi Ohmori
- Department of Molecular Pathology, Nara Medical University, Kashihara, Japan
| | - Hiroki Kuniyasu
- Department of Molecular Pathology, Nara Medical University, Kashihara, Japan
| |
Collapse
|
14
|
Huang J, Yang Y, Yang J, Li X. Regenerating gene family member 4 promotes growth and migration of gastric cancer through protein kinase B pathway. Int J Clin Exp Med 2014; 7:3037-3044. [PMID: 25356179 PMCID: PMC4211829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 08/31/2014] [Indexed: 06/04/2023]
Abstract
Regenerating gene family member 4 (REG4), a secreted protein, is overexpressed in several cancers, including gastric cancer. The present study was undertaken to determine the roles of REG4 in the growth of gastric cancer in the nude mice and in the proliferation and migration in human gastric cancer cell line and its downstream signaling pathway. Gastric cancer models were elicited by intraperitoneally injecting MKN45 human gastric cancer cells and the tumor size was measured every other day. The expressions of REG4 mRNA and protein were increased in the gastric cancer tissues from gastric cancer patients. REG4 increased the gastric tumor weight and size in the nude mice, and promoted the proliferation and migration of gastric cancer cells MKN45. Adeno-associated viral (AAV)-mediated knockdown of REG4 decreased the gastric tumor weight and size in the nude mice, and suppressed the proliferation and migration of MKN45 cells. REG4 increased the expression of phosphorylated protein kinase B (Akt). Triciribine hydrate (TCN), the inhibitor of Akt, decreased the gastric tumor weight and size in the nude mice and abolished REG4-induced weight and size increase of the tumor. TCN also inhibited proliferation and migration and abolished REG4-induced proliferation and migration increase of human gastric cell line MKN45. These results indicate that REG4 promotes the growth, proliferation and migration of gastric cancer through Akt pathway.
Collapse
Affiliation(s)
- Jiamiao Huang
- Department of Gastroenterology, Jingdu Hospital Nanjing, Jiangsu Province, China
| | - Ya Yang
- Department of Gastroenterology, Jingdu Hospital Nanjing, Jiangsu Province, China
| | - Jian Yang
- Department of Gastroenterology, Jingdu Hospital Nanjing, Jiangsu Province, China
| | - Xian Li
- Department of Gastroenterology, Jingdu Hospital Nanjing, Jiangsu Province, China
| |
Collapse
|
15
|
Duan Y, Hu L, Liu B, Yu B, Li J, Yan M, Yu Y, Li C, Su L, Zhu Z, Xiang M, Liu B, Yang Q. Tumor suppressor miR-24 restrains gastric cancer progression by downregulating RegIV. Mol Cancer 2014; 41:373-85. [PMID: 24886316 DOI: 10.1007/s11033-013-2871-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2012] [Accepted: 11/06/2013] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND microRNAs are small noncoding RNAs that modulate a variety of cellular processes by regulating multiple targets, which can promote or inhibit the development of malignant behaviors. Accumulating evidence suggests miR-24 plays important roles in human carcinogenesis. However, its precise biological role remains largely elusive. This study examined the role of miR-24 in gastric cancer (GC). METHODS The expression of miR-24 in GC tissues compared with matched non-tumor tissues and GC cells was detected by qRT-PCR. Synthetic short single or double stranded RNA oligonucleotides and lentiviral vectors were used to regulate miR-24 expression in GC cells to investigate its function in vitro and in vivo. RESULTS miR-24 was significantly downregulated in GC tissues compared with matched non-tumor tissues and was associated with tumor differentiation. Ectopic expression of miR-24 in SGC-7901 GC cells suppressed cell proliferation, migration and invasion in vitro as well as tumorigenicity in vivo by inducing cell cycle arrest in G0/G1 phase and promoting cell apoptosis. Furthermore, we identified RegIV as a target of miR-24 and demonstrated that miR-24 regulated RegIV expression via binding its 3' untranslated region. CONCLUSIONS miR-24 functions as a novel tumor suppressor in GC and the anti-oncogenic activity may involve its inhibition of the target gene RegIV. These findings suggest the possibility for miR-24 as a therapeutic target in GC.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Bingya Liu
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No 197 Ruijin er Road, Shanghai 200025, People's Republic of China.
| | | |
Collapse
|
16
|
Duan Y, Hu L, Liu B, Yu B, Li J, Yan M, Yu Y, Li C, Su L, Zhu Z, Xiang M, Liu B, Yang Q. Tumor suppressor miR-24 restrains gastric cancer progression by downregulating RegIV. Mol Cancer 2014; 13:127. [PMID: 24886316 PMCID: PMC4041902 DOI: 10.1186/1476-4598-13-127] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 05/20/2014] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND microRNAs are small noncoding RNAs that modulate a variety of cellular processes by regulating multiple targets, which can promote or inhibit the development of malignant behaviors. Accumulating evidence suggests miR-24 plays important roles in human carcinogenesis. However, its precise biological role remains largely elusive. This study examined the role of miR-24 in gastric cancer (GC). METHODS The expression of miR-24 in GC tissues compared with matched non-tumor tissues and GC cells was detected by qRT-PCR. Synthetic short single or double stranded RNA oligonucleotides and lentiviral vectors were used to regulate miR-24 expression in GC cells to investigate its function in vitro and in vivo. RESULTS miR-24 was significantly downregulated in GC tissues compared with matched non-tumor tissues and was associated with tumor differentiation. Ectopic expression of miR-24 in SGC-7901 GC cells suppressed cell proliferation, migration and invasion in vitro as well as tumorigenicity in vivo by inducing cell cycle arrest in G0/G1 phase and promoting cell apoptosis. Furthermore, we identified RegIV as a target of miR-24 and demonstrated that miR-24 regulated RegIV expression via binding its 3' untranslated region. CONCLUSIONS miR-24 functions as a novel tumor suppressor in GC and the anti-oncogenic activity may involve its inhibition of the target gene RegIV. These findings suggest the possibility for miR-24 as a therapeutic target in GC.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Bingya Liu
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No 197 Ruijin er Road, Shanghai 200025, People's Republic of China.
| | | |
Collapse
|
17
|
Yan LH, Wei WY, Xie YB, Xiao Q. New insights into the functions and localization of the homeotic gene CDX2 in gastric cancer. World J Gastroenterol 2014; 20:3960-3966. [PMID: 24744585 PMCID: PMC3983451 DOI: 10.3748/wjg.v20.i14.3960] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 12/22/2013] [Accepted: 02/20/2014] [Indexed: 02/06/2023] Open
Abstract
Gastric cancer is one of the most frequent cancers, and it ranks the third most common cancer in China. The most recently caudal-related homeobox transcription factor 2 (CDX2) is expressed in a large number of human gastrointestinal cancers. In addition, gastric epithelial cell mutations in CDX2 result in tumor promotion, which is characterized by cellular drug resistance and a high proclivity for developing cancer. A series of publications over the past years suggests a mechanism by which CDX2 overexpression results in multidrug resistance. CDX2 appears to forward control regenerating IV and the multidrug resistance 1 expression signaling pathway for regulation of cell drug resistance.
Collapse
|
18
|
Luo Y, Yoneda J, Ohmori H, Sasaki T, Shimbo K, Eto S, Kato Y, Miyano H, Kobayashi T, Sasahira T, Chihara Y, Kuniyasu H. Cancer usurps skeletal muscle as an energy repository. Cancer Res 2013; 74:330-40. [PMID: 24197136 DOI: 10.1158/0008-5472.can-13-1052] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cancer cells produce energy through aerobic glycolysis, but contributions of host tissues to cancer energy metabolism are unclear. In this study, we aimed to elucidate the cancer-host energy production relationship, in particular, between cancer energy production and host muscle. During the development and progression of colorectal cancer, expression of the secreted autophagy-inducing stress protein HMGB1 increased in the muscle of tumor-bearing animals. This effect was associated with decreased expression of pyruvate kinase PKM1 and pyruvate kinase activity in muscle via the HMGB1 receptor for advanced glycation endproducts (RAGE). However, muscle mitochondrial energy production was maintained. In contrast, HMGB1 addition to colorectal cancer cells increased lactate fermentation. In the muscle, HMGB1 addition induced autophagy by decreasing levels of active mTOR and increasing autophagy-associated proteins, plasma glutamate, and (13)C-glutamine incorporation into acetyl-CoA. In a mouse model of colon carcinogenesis, a temporal increase in HMGB1 occurred in serum and colonic mucosa with an increase in autophagy associated with altered plasma free amino acid levels, increased glutamine, and decreased PKM1 levels. These differences were abolished by administration of an HMGB1 neutralizing antibody. Similar results were obtained in a mouse xenograft model of human colorectal cancer. Taken together, our findings suggest that HMGB1 released during tumorigenesis recruits muscle to supply glutamine to cancer cells as an energy source.
Collapse
Affiliation(s)
- Yi Luo
- Authors' Affiliations: Department of Molecular Pathology, Nara Medical University, Shijo-cho, Kashihara; Institute for Innovation Ajinomoto Co., Inc., Suzuki-cho, Kawasaki; and Department of Gastrointestinal Surgery, Fukuoka University School of Medicine, Nanakuma, Minami-ku, Fukuoka, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
The regenerating gene (Reg) family is a group of small molecules that includes four members found in various species, although only three are found in human tissues. Their expression is stimulated by certain growth factors or cytokines. The Reg family plays different roles in proliferation, migration, and anti-apoptosis through activating different signaling pathways. Their dysexpression is closely associated with a number of human conditions and diseases such as inflammation and cancer, especially in the human digestive system. Clinically, upregulation of Reg proteins is usually demonstrated in histological sections and sera from cancer patients. Therefore, Reg proteins can predict the progression and prognosis of cancers, especially those of the digestive tract, and can also act as diagnostic markers and therapeutic targets.
Collapse
|
20
|
Zhou W, Sun M, Wang DL, Wang Y, Jin F, Zhang YY, Yang L, Wu XL, Wu YZ. Silencing of RegIV by shRNA causes the loss of stemness properties of cancer stem cells in MKN45 gastric cancer cells. Oncol Rep 2013; 30:2685-90. [PMID: 24064664 DOI: 10.3892/or.2013.2745] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 05/27/2013] [Indexed: 11/05/2022] Open
Abstract
Regenerating islet-derived family member 4 (RegIV) is overexpressed in several types of tumours, including pancreatic and gastric cancer (GC). However, the role it plays in gastric cancer stem cells (GCSCs) remains unknown. The present study tested the hypothesis that the silencing of RegIV by shRNA in GC cells may cause the loss of their stemness properties, indicating the inhibition of growth, proliferation and increased sensitivity to chemoradiation-induced cell death. MKN45 poorly differentiated human GC cells were propagated as mammospheres in stem cell culture conditions. Mammospheres were identified as CSCs using generally acknowledged CSC markers such as CD44. A panel of 21-nucleotide shRNAs were designed to target RegIV gene expression. Several shRNA constructs were identified that led to significant reduction in RegIV mRNA expression. Furthermore, the stemness properties of control mammospheres and RegIV knockdown mammospheres were compared by tumourigenicity assay in vivo and plate colony formation assay in vitro. Finally, we evaluated the treatment response in both mammospheres which underwent chemoradiation. The knockdown expression of RegIV by shRNA deprived CSCs of their stemness properties and increased the effectiveness of cell killing following chemoradiation. Inhibition of endogenous RegIV expression may be a new therapeutic strategy for human GC.
Collapse
Affiliation(s)
- Wei Zhou
- Department of Radiotherapy, Chongqing Cancer Institute, Chongqing 400011, P.R. China
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Ying LS, Yu JL, Lu XX, Ling ZQ. Enhanced RegIV expression predicts the intrinsic 5-fluorouracil (5-FU) resistance in advanced gastric cancer. Dig Dis Sci 2013; 58:414-22. [PMID: 23010741 DOI: 10.1007/s10620-012-2381-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 08/20/2012] [Indexed: 01/23/2023]
Abstract
AIM RegIV, a member of the Regenerating (REG) gene family, may be a marker for the prediction of resistance to 5-fluorouracil (5-FU)-based chemotherapy. However, the relationship between the intrinsic drug resistance of gastric cancer (GC) cells to 5-FU used alone (single FU) or in multidrug therapeutic regimens (5-FU combinations) and RegIV expression has not been investigated. METHODS The patient cohort comprised 45 patients with primary GC. The chemoresistance of GC cells to therapeutic regimens consisting of single 5-FU or FU combinations was investigated using the ATP-tumor chemosensitivity assay. The level of RegIV mRNA transcripts was determined by real-time reverse transcriptase-PCR. RegIV expression was evaluated as a novel predictive biomarker for the intrinsic drug resistance of primary GC cells to single 5-FU or 5-FU combinations. RESULTS Upregulation of RegIV mRNA transcripts was observed in 36 of the 45 tumor specimens and was positively correlated with the invasive depth of the tumor cells (p = 0.000), the clinical stages (p = 0.000) and the in vitro intrinsic drug resistance of primary GC cells to 5-FU (p = 0.000) or 5-FU combinations. CONCLUSION RegIV mRNA transcript level was strongly associated with the intrinsic resistance of GC cells to single 5-FU or 5-FU combinations, suggesting that RegIV may play an important role in the intrinsic resistance of GC cells to 5-FU and that targeted therapy against the RegIV gene could be applied to overcome 5-FU resistance in the treatment of GC.
Collapse
Affiliation(s)
- Li-Sha Ying
- Zhejiang Cancer Research Institute, Zhejiang Province Cancer Hospital, Zhejiang Cancer Center, No.38 Guangji Rd., Banshanqiao District, Hangzhou, 310022, People's Republic of China.
| | | | | | | |
Collapse
|
22
|
Liu CM, Hsieh CL, He YC, Lo SJ, Liang JA, Hsieh TF, Josson S, Chung LWK, Hung MC, Sung SY. In vivo targeting of ADAM9 gene expression using lentivirus-delivered shRNA suppresses prostate cancer growth by regulating REG4 dependent cell cycle progression. PLoS One 2013; 8:e53795. [PMID: 23342005 PMCID: PMC3547060 DOI: 10.1371/journal.pone.0053795] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 12/03/2012] [Indexed: 12/24/2022] Open
Abstract
Cancer cells respond to stress by activating a variety of survival signaling pathways. A disintegrin and metalloproteinase (ADAM) 9 is upregulated during cancer progression and hormone therapy, functioning in part through an increase in reactive oxygen species. Here, we present in vitro and in vivo evidence that therapeutic targeting of ADAM9 gene expression by lentivirus-delivered small hairpin RNA (shRNA) significantly inhibited proliferation of human prostate cancer cell lines and blocked tumor growth in a murine model of prostate cancer bone metastasis. Cell cycle studies confirmed an increase in the G1-phase and decrease in the S-phase population of cancer cells under starvation stress conditions, which correlated with elevated intracellular superoxide levels. Microarray data showed significantly decreased levels of regenerating islet-derived family member 4 (REG4) expression in prostate cancer cells with knockdown of ADAM9 gene expression. This REG4 downregulation also resulted in induction of expression of p21Cip1/WAF1, which negatively regulates cyclin D1 and blocks the G1/S transition. Our data reveal a novel molecular mechanism of ADAM9 in the regulation of prostate cancer cell proliferation, and suggests a combined modality of ADAM9 shRNA gene therapy and cytotoxic agents for hormone refractory and bone metastatic prostate cancer.
Collapse
Affiliation(s)
- Che-Ming Liu
- Ph.D. Program for Cancer Biology and Drug Discovery, China Medical University and Academia Sinica, Taichung, Taiwan, ROC
| | - Chia-Ling Hsieh
- Graduate Institutes of Cancer Biology, China Medical University, Taichung, Taiwan, ROC
- Center for Molecular Medicine, China Medical University Hospital, Taichung, Taiwan, ROC
- Department of Biotechnology, Asia University, Wufeng, Taichung, Taiwan, ROC
| | - Yun-Chi He
- Graduate Institutes of Cancer Biology, China Medical University, Taichung, Taiwan, ROC
| | - Sen-Jei Lo
- Graduate Institutes of Cancer Biology, China Medical University, Taichung, Taiwan, ROC
| | - Ji-An Liang
- Division of Radiation Oncology, China Medical University Hospital, Taichung, Taiwan, ROC
| | - Teng-Fu Hsieh
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan, ROC
- Division of Urology, Buddhist Tzu-Chi General Hospital, Taichung Branch, Taichung, Taiwan, ROC
- Department of Urology, School of Medicine, Buddhist Tzu Chi University, Hualien, Taiwan, ROC
| | - Sajni Josson
- Department of Medicine, Cedars Sinai Medical Center, Los Angeles, California, United States of America
| | - Leland W. K. Chung
- Department of Medicine, Cedars Sinai Medical Center, Los Angeles, California, United States of America
| | - Mien-Chie Hung
- Graduate Institutes of Cancer Biology, China Medical University, Taichung, Taiwan, ROC
- Center for Molecular Medicine, China Medical University Hospital, Taichung, Taiwan, ROC
- Department of Biotechnology, Asia University, Wufeng, Taichung, Taiwan, ROC
- Department of Molecular and Cellular Oncology, M.D. Anderson Cancer Center, University of Texas, Houston, Texas, United States of America
| | - Shian-Ying Sung
- Ph.D. Program for Cancer Biology and Drug Discovery, China Medical University and Academia Sinica, Taichung, Taiwan, ROC
- Graduate Institutes of Cancer Biology, China Medical University, Taichung, Taiwan, ROC
- Center for Molecular Medicine, China Medical University Hospital, Taichung, Taiwan, ROC
- * E-mail:
| |
Collapse
|
23
|
He XJ, Jiang XT, Ma YY, Xia YJ, Wang HJ, Guan TP, Shao QS, Tao HQ. REG4 contributes to the invasiveness of pancreatic cancer by upregulating MMP-7 and MMP-9. Cancer Sci 2012; 103:2082-91. [PMID: 22957785 DOI: 10.1111/cas.12018] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 08/26/2012] [Accepted: 09/01/2012] [Indexed: 01/23/2023] Open
Abstract
Recent studies have shown that overexpression of regenerating gene family member 4 (REG4) is associated with the initiation and progression of pancreatic cancer. In our study, we explored the role of REG4 in the invasion of pancreatic cancer. Real-time PCR and Western blot analysis were used to determine REG4 expression in pancreatic cancer cell lines. An MTT assay was carried out to test the effect of REG4 on the growth of pancreatic cancer cells. The involvement of REG4 in cancer cell invasion was examined by Transwell invasion assay. Two MMPs, MMP-7 and MMP-9, were identified from a pool of candidate genes as being related to REG4-induced cell invasion by PCR and Western blotting. Immunohistochemistry was used to confirm the correlation between REG4 and the two MMPs. High expression of REG4 was found in BXPC-3 cells and its culture media. But in PANC-1 and ASPC-1 cell lines, REG4 expression levels were very low, and no detectable protein was found in the culture medium. The MTT and Transwell invasion assays showed that recombinant REG4 protein and BXPC-3 conditioned media significantly promoted the proliferation and invasiveness of pancreatic cancer cells. It was also shown that MMP-7 and MMP-9 are upregulated by REG4 induction using real-time PCR and Western blotting analysis. Immunohistochemical study further verified this result. In conclusion, REG4 promotes not only growth but also in vitro invasiveness of pancreatic cancer cells by upregulating MMP-7 and MMP-9.
Collapse
Affiliation(s)
- Xu-Jun He
- Key Laboratory of Gastroenterology of Zhejiang Province, Hangzhou, China
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Numata M, Oshima T. Significance of regenerating islet-derived type IV gene expression in gastroenterological cancers. World J Gastroenterol 2012; 18:3502-10. [PMID: 22826614 PMCID: PMC3400851 DOI: 10.3748/wjg.v18.i27.3502] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2011] [Revised: 01/12/2012] [Accepted: 04/10/2012] [Indexed: 02/06/2023] Open
Abstract
The regenerating islet-derived members (Reg), a group of small secretory proteins, which are involved in cell proliferation or differentiation in digestive organs, are upregulated in several gastrointestinal cancers, functioning as trophic or antiapoptotic factors. Regenerating islet-derived type IV (RegIV), a member of the Reg gene family, has been reported to be overexpressed in gastroenterological cancers. RegIV overexpression in tumor cells has been associated with carcinogenesis, cell growth, survival and resistance to apoptosis. Cancer tissue expressing RegIV is generally associated with more malignant characteristics than that without such expression, and RegIV is considered a novel prognostic factor as well as diagnostic marker in some gastroenterological cancers. We previously investigated the expression levels of RegIV mRNA of 202 surgical colorectal cancer specimens with quantitative real-time reverse-transcriptase polymerase chain reaction and reported that a higher level of RegIV gene expression was a significant independent predictor of colorectal cancer. The biologic functions of RegIV protein in cancer tissue, associated with carcinogenesis, anti-apoptosis and invasiveness, are being elucidated by molecular investigations using transfection techniques or neutralizing antibodies of RegIV, and the feasibility of antibody therapy targeting RegIV is being assessed. These studies may lead to novel therapeutic strategies for gastroenterological cancers expressing RegIV. This review article summarizes the current information related to biological functions as well as clinical importance of RegIV gene to clarify the significance of RegIV expression in gastroenterological cancers.
Collapse
|
25
|
Suh YS, Lee HJ, Jung EJ, Kim MA, Nam KT, Goldenring JR, Yang HK, Kim WH. The combined expression of metaplasia biomarkers predicts the prognosis of gastric cancer. Ann Surg Oncol 2011; 19:1240-9. [PMID: 22048633 DOI: 10.1245/s10434-011-2125-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Indexed: 12/22/2022]
Abstract
BACKGROUND Our previous study indicated that gene expression profiling of intestinal metaplasia (IM) or spasmolytic polypeptide-expressing metaplasia (SPEM) can identify useful prognostic markers of early-stage gastric cancer, and seven metaplasia biomarkers (MUC13, CDH17, OLFM4, KRT20, LGALS4, MUC5AC, and REG4) were selectively expressed in 17-50% of gastric cancer tissues. We investigated whether the combined expression of these metaplasia biomarkers could predict the prognosis of advanced stage gastric cancer. METHODS The expression of seven metaplasia biomarkers was evaluated immunohistochemically using tissue microarrays comprised of 450 gastric cancer patients. The clinicopathologic correlations and the prognostic impact were analyzed according to the expression of multiple biomarkers. RESULTS MUC13, CDH17, LGALS4, and REG4 were significant prognostic biomarkers in univariate analysis. No expression of four markers was found in 56 cases (14.2%); 1 marker was seen in 67 cases (17%), 2 in 106 cases (27%), 3 in 101 cases (25.7%), and 4 in 63 cases (16%). Patients in which two or fewer proteins were expressed (group B) showed younger age, undifferentiated or diffuse type cancer, larger tumor size, larger number of metastatic lymph nodes, and more advanced stage than those in which three or more proteins were expressed (group A). In undifferentiated or stage II/III gastric cancer, the prognosis of group B was significantly poorer than that of group A by multivariate analysis. CONCLUSIONS The combined loss of expression of multiple metaplasia biomarkers is considered an independent prognostic indicator in undifferentiated or stage II/III gastric cancer.
Collapse
Affiliation(s)
- Yun-Suhk Suh
- Department of Surgery, Seoul National University College of Medicine, Seoul, Korea
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Expression of MK-1 and RegIV and its clinicopathological significances in the benign and malignant lesions of gallbladder. Diagn Pathol 2011; 6:100. [PMID: 22018336 PMCID: PMC3225305 DOI: 10.1186/1746-1596-6-100] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Accepted: 10/21/2011] [Indexed: 12/19/2022] Open
Abstract
Background To study the expression of MK-1 and RegⅣ and to detect their pathological significances in benign and malignant lesions of gallbladder. Methods The expression of MK-1 and RegⅣ was detected by immunohistochemical method in paraffin-embedded sections of surgical resected specimens from gallbladder adenocarcinoma (n = 108), peritumoral tissues (n = 46), adenomatous polyp (n = 15), and chronic cholecystitis (n = 35). Results The positive rate of MK-1 or RegⅣ expression was significantly higher in gallbladder adenocarcinoma than that in peritumoral tissues (χ2MK-1 = 18.76, P < 0.01; χ2RegⅣ = 9.92, P < 0.01), denomatous polyp (χ2MK-1 = 9.49, P < 0.01; χ2RegⅣ = 8.59, P < 0.01) and chronic cholecystitis (χ2MK-1 = 24.11, P < 0.01; χ2RegⅣ = 19.24, P < 0.01). The positive cases of MK-1 and/or RegⅣ in the benign lesions showed moderately- or severe-atypical hyperplasia of gallbladder epitheli. The positive rates of MK-1 were significantly higher in the cases of well-differentiated adenocarcinoma, no-metastasis of lymph node, and no-invasiveness of regional tissues than those in the ones of differentiated adenocarcinoma, metastasis of lymph node, and invasiveness of regional tissues in gallbladder adenocarcinoma (P < 0.05 or P < 0.01). On the contrary, the positive rates of RegⅣ were significantly lower in the cases of well-differentiated adenocarcinoma, no-metastasis of lymph node, and no-invasiveness of regional tissues than those in the ones of differentiated adenocarcinoma, metastasis of lymph node, and invasiveness of regional tissues in gallbladder adenocarcinoma (P < 0.05 or P < 0.01). Univariate Kaplan-Meier analysis showed that decreased expression of MK-1 (P = 0.09) or increased expression of RegⅣ (P = 0.003) was associated with decreased overall survival. Multivariate Cox regression analysis showed that decreased expression of MK-1 (P = 0.033) and increased expression of RegⅣ (P = 0.008) was an independent prognostic predictor in gallbladder adenocarcinoma. Conclusions The expression of MK-1 and/or RegⅣ might be closely related to the carcinogenesis, clinical biological behaviors, and prognosis of gallbladder adenocarcinoma.
Collapse
|
27
|
Moon JH, Fujiwara Y, Nakamura Y, Okada K, Hanada H, Sakakura C, Takiguchi S, Nakajima K, Miyata H, Yamasaki M, Kurokawa Y, Mori M, Doki Y. REGIV as a potential biomarker for peritoneal dissemination in gastric adenocarcinoma. J Surg Oncol 2011; 105:189-94. [PMID: 21780125 DOI: 10.1002/jso.22021] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Accepted: 06/16/2011] [Indexed: 11/10/2022]
Abstract
BACKGROUND This study examined the clinical significance of regenerating islet-derived family member 4 (REGIV) in surgically resected gastric tumors. The potential of REGIV as a biomarker in gastric cancer was also assessed including its predictive value for prognosis and recurrence after surgery. METHODS Immunohistochemistry was performed to assess the clinical significance of REGIV expression status in surgically resected specimens. The quantitative genetic diagnostic method, transcription-reverse transcription concerted reaction (TRC) that targeted REGIV mRNA was applied for prediction of peritoneal recurrence in gastric cancer. RESULTS Positive immunostaining for REGIV was observed in 85 cases (52.5%), and correlated significantly with diffuse type histopathology (P = 0.001), advanced T stage (P = 0.022), and frequent peritoneal recurrence (P = 0.009). Multivariate analysis identified advanced T stage (P < 0.001) and REGIV expression (P = 0.034) as independent prognostic factors for peritoneal recurrence-free survival. Overexpression of REGIV protein was evident in the majority of peritoneal tumors (93.8%). REGIV mRNA assessed by TRC could be a predictive marker for peritoneal recurrence after curative operation. CONCLUSIONS REGIV overexpression is common in primary gastric tumors and a potentially suitable marker of diffuse type histopathology and peritoneal dissemination. Overexpression of REGIV mRNA, assessed by the TRC method, is a potentially suitable marker of peritoneal recurrence after curative resection.
Collapse
Affiliation(s)
- Jeong-Ho Moon
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Vanderlaag K, Wang W, Fayadat-Dilman L, Wagner J, Bald L, Grein J, Janatpour MJ. Regenerating islet-derived family member, 4 modulates multiple receptor tyrosine kinases and mediators of drug resistance in cancer. Int J Cancer 2011; 130:1251-63. [DOI: 10.1002/ijc.26089] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2010] [Accepted: 02/25/2011] [Indexed: 01/20/2023]
|
29
|
Wang F, Xu L, Guo C, Ke A, Hu G, Xu X, Mo W, Yang L, Huang Y, He S, Wang X. Identification of RegIV as a novel GLI1 target gene in human pancreatic cancer. PLoS One 2011; 6:e18434. [PMID: 21494603 PMCID: PMC3073946 DOI: 10.1371/journal.pone.0018434] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2010] [Accepted: 03/04/2011] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND AND AIMS GLI1 is the key transcriptional factor in the Hedgehog signaling pathway in pancreatic cancer. RegIV is associated with regeneration, and cell growth, survival, adhesion and resistance to apoptosis. We aimed to study RegIV expression in pancreatic cancer and its relationship to GLI1. METHODS GLI1 and RegIV expression were evaluated in tumor tissue and adjacent normal tissues of pancreatic cancer patients and 5 pancreatic cancer cell lines by qRT-PCR, Western blot, and immunohistochemistry (IHC), and the correlation between them. The GLI1-shRNA lentiviral vector was constructed and transfected into PANC-1, and lentiviral vector containing the GLI1 expression sequence was constructed and transfected into BxPC-3. GLI1 and RegIV expression were evaluated by qRT-PCR and Western blot. Finally we demonstrated RegIV to be the target of GLI1 by chromatin immunoprecipitation (CHIP) and electrophoretic mobility shift assays (EMSA). RESULTS The results of IHC and qRT-PCR showed that RegIV and GLI1 expression was higher in pancreatic cancer tissues versus adjacent normal tissues (p<0.001). RegIV expression correlated with GLI1 expression in these tissues (R = 0.795, p<0.0001). These results were verified for protein (R = 0.939, p = 0.018) and mRNA expression (R = 0.959, p = 0.011) in 5 pancreatic cancer cell lines. RegIV mRNA and protein expression was decreased (94.7±0.3%, 84.1±0.5%; respectively) when GLI1 was knocked down (82.1±3.2%, 76.7±2.2%; respectively) by the RNAi technique. GLI1 overexpression in mRNA and protein level (924.5±5.3%, 362.1±3.5%; respectively) induced RegIV overexpression (729.1±4.3%, 339.0±3.7%; respectively). Moreover, CHIP and EMSA assays showed GLI1 protein bound to RegIV promotor regions (GATCATCCA) in pancreatic cancer cells. CONCLUSION GLI1 promotes RegIV transcription by binding to the RegIV gene promoter in pancreatic cancer.
Collapse
Affiliation(s)
- Feng Wang
- Department of Gastroenterology, The First People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Ling Xu
- Department of Gastroenterology, The Tenth People's Hospital of Shanghai, Tongji University, Shanghai, People's Republic of China
| | - Chuanyong Guo
- Department of Gastroenterology, The Tenth People's Hospital of Shanghai, Tongji University, Shanghai, People's Republic of China
| | - Aiwu Ke
- Department of Gastroenterology, The Tenth People's Hospital of Shanghai, Tongji University, Shanghai, People's Republic of China
| | - Guoyong Hu
- Department of Gastroenterology, The Tenth People's Hospital of Shanghai, Tongji University, Shanghai, People's Republic of China
| | - Xuanfu Xu
- Department of Gastroenterology, The Tenth People's Hospital of Shanghai, Tongji University, Shanghai, People's Republic of China
| | - Wenhui Mo
- Department of Gastroenterology, The Tenth People's Hospital of Shanghai, Tongji University, Shanghai, People's Republic of China
| | - Lijuan Yang
- Department of Gastroenterology, The First People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Yinshi Huang
- Department of Gastroenterology, The Tenth People's Hospital of Shanghai, Tongji University, Shanghai, People's Republic of China
| | - Shanshan He
- Department of Gastroenterology, The Tenth People's Hospital of Shanghai, Tongji University, Shanghai, People's Republic of China
| | - Xingpeng Wang
- Department of Gastroenterology, The First People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- Department of Gastroenterology, The Tenth People's Hospital of Shanghai, Tongji University, Shanghai, People's Republic of China
| |
Collapse
|
30
|
Tao HQ, He XJ, Ma YY, Wang HJ, Xia YJ, Ye ZY, Zhao ZS. Evaluation of REG4 for early diagnosis and prognosis of gastric cancer. Hum Pathol 2011; 42:1401-9. [PMID: 21419474 DOI: 10.1016/j.humpath.2010.08.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2010] [Revised: 07/30/2010] [Accepted: 08/03/2010] [Indexed: 12/14/2022]
Abstract
We explored the correlation between the development of gastric cancer and the concentration of REG4 and hence the suitability of REG4 as an indicator of the prognosis of patients with GC. Real-time polymerase chain reaction was conducted to detect REG4 messenger RNA expression. The amount of the REG4 protein was measured by immunohistochemistry staining of tissue and enzyme-linked immunosorbent assay of serum. Serum carcinoembryonic antigen and carbohydrate antigen 19-9 concentrations were measured using a commercial automated immunoassay. Real-time polymerase chain reaction results confirmed that REG4 was significantly up-regulated in gastric cancer compared with paired normal mucosa (P < .001). Immunohistochemistry staining revealed that high expression of REG4 correlated with diffuse type, poor differentiation, lymph node metastasis, distant metastasis, and TNM stage III or IV. The mean survival time for patients in the REG4-positive group was significantly less than that in the REG4-negative group (P = .013). The percentage of serum samples that were REG4 positive was 44.0%, which was higher than that for serum carcinoembryonic antigen (P = .039) or carbohydrate antigen 19-9 (P = .012) in TNM stage I and was significantly higher (P = .031) than that in TNM stage II. Thus, REG4 may be not only a prognostic indicator but also a better serum marker than carcinoembryonic antigen and carbohydrate antigen 19-9 for early diagnosis of gastric cancer.
Collapse
Affiliation(s)
- Hou-Quan Tao
- Key Laboratory of Gastroenterology of Zhejiang Province, Hangzhou, 310014, China.
| | | | | | | | | | | | | |
Collapse
|
31
|
Jin CX, Hayakawa T, Ko SBH, Ishiguro H, Kitagawa M. Pancreatic stone protein/regenerating protein family in pancreatic and gastrointestinal diseases. Intern Med 2011; 50:1507-16. [PMID: 21804274 DOI: 10.2169/internalmedicine.50.5362] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Pancreatic stone protein (PSP; reported in 1979), pancreatitis-associated protein (PAP; 1984) and regenerating protein (Reg I; 1988) were discovered independently in the fields of the exocrine (pancreatitis) and endocrine (diabetes) pancreas. Subsequent analysis revealed that PSP and Reg I are identical and PAP belongs to the same protein family. PSP/Reg I and PAP share a selective and specific trypsin cleavage site and result in insoluble fibrils (PTP, PATP). Search for a functional role of PSP had led to the idea that it might serve as an inhibitor in pancreatic stone formation and PSP was renamed lithostathine. Inhibitory effects of lithostathine in stone formation have been questioned. Evidence so far obtained can support a lithogenic role rather than a lithostatic role of PSP. PAP and its isoforms have been investigated mainly regarding responses to inflammation and stress. Reg I and its isoforms have been examined on regeneration, growth and mitogenesis in gastrointestinal neoplastic diseases as well as diabetes. Evidence obtained can be applied in the prediction of prognosis and therapy for inflammatory and neoplastic diseases.
Collapse
Affiliation(s)
- Chun Xiang Jin
- The First Clinical College of Norman Bethune Medical Division, Jilin University, China
| | | | | | | | | |
Collapse
|
32
|
Rajkumar T, Vijayalakshmi N, Gopal G, Sabitha K, Shirley S, Raja UM, Ramakrishnan SA. Identification and validation of genes involved in gastric tumorigenesis. Cancer Cell Int 2010; 10:45. [PMID: 21092330 PMCID: PMC3004887 DOI: 10.1186/1475-2867-10-45] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Accepted: 11/24/2010] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Gastric cancer is one of the common cancers seen in south India. Unfortunately more than 90% are advanced by the time they report to a tertiary centre in the country. There is an urgent need to characterize these cancers and try to identify potential biomarkers and novel therapeutic targets. MATERIALS AND METHODS We used 24 gastric cancers, 20 Paired normal (PN) and 5 apparently normal gastric tissues obtained from patients with non-gastric cancers (Apparently normal - AN) for the microarray study followed by validation of the significant genes (n = 63) by relative quantitation using Taqman Low Density Array Real Time PCR. We then used a custom made Quantibody protein array to validate the expression of 15 proteins in gastric tissues (4 AN, 9 PN and 9 gastric cancers). The same array format was used to study the plasma levels of these proteins in 58 patients with gastric cancers and 18 from patients with normal/non-malignant gastric conditions. RESULTS Seventeen genes (ASPN, CCL15/MIP-1δ, MMP3, SPON2, PRSS2, CCL3, TMEPAI/PMEPAI, SIX3, MFNG, SOSTDC1, SGNE1, SST, IGHA1, AKR1B10, FCGBP, ATP4B, NCAPH2) were shown to be differentially expressed between the tumours and the paired normal, for the first time. EpCAM (p = 0.0001), IL8 (p = 0.0003), CCL4/MIP-1β (p = 0.0026), CCL20/MIP-3α (p = 0.039) and TIMP1 (p = 0.0017) tissue protein levels were significantly different (Mann Whitney U test) between tumours versus AN & PN. In addition, median plasma levels of IL8, CXCL9/MIG, CCL3/MIP-1α, CCL20/MIP-3α, PDGFR-B and TIMP1 proteins were significantly different between the non-malignant group and the gastric cancer group. The post-surgical levels of EpCAM, IGFBP3, IL8, CXCL10/IP10, CXCL9/MIG, CCL3/MIP-1α, CCL20/MIP-3α, SPP1/OPN and PDGFR-B showed a uniform drop in all the samples studied. CONCLUSIONS Our study has identified several genes differentially expressed in gastric cancers, some for the first time. Some of these have been confirmed at the protein level, as well. Some of these proteins will need to be evaluated further for their potential as diagnostic biomarkers in gastric cancers and some could be useful as follow-up markers in gastric cancer.
Collapse
Affiliation(s)
- Thangarajan Rajkumar
- Dept. of Molecular Oncology, Cancer Institute (WIA), 38, Sardar Patel Road, Chennai - 600036, India
| | | | - Gopisetty Gopal
- Dept. of Molecular Oncology, Cancer Institute (WIA), 38, Sardar Patel Road, Chennai - 600036, India
| | - Kesavan Sabitha
- Dept. of Molecular Oncology, Cancer Institute (WIA), 38, Sardar Patel Road, Chennai - 600036, India
| | - Sundersingh Shirley
- Dept. of Pathology, Cancer Institute (WIA), 38, Sardar Patel Road, Chennai - 600036, India
| | - Uthandaraman M Raja
- Dept. of Molecular Oncology, Cancer Institute (WIA), 38, Sardar Patel Road, Chennai - 600036, India
| | - Seshadri A Ramakrishnan
- Dept. of Surgical Oncology, Cancer Institute (WIA), 38, Sardar Patel Road, Chennai - 600036, India
| |
Collapse
|
33
|
Luo Y, Ohmori H, Fujii K, Moriwaka Y, Sasahira T, Kurihara M, Tatsumoto N, Sasaki T, Yamashita Y, Kuniyasu H. HMGB1 attenuates anti-metastatic defence of the liver in colorectal cancer. Eur J Cancer 2009; 46:791-9. [PMID: 20018503 DOI: 10.1016/j.ejca.2009.11.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2009] [Revised: 11/12/2009] [Accepted: 11/19/2009] [Indexed: 12/15/2022]
Abstract
High mobility group box (HMGB) 1 induces apoptosis of monocyte-lineage cells. We examined the effect of HMGB1 on Kupffer cells (KCs). In 50 Dukes C and 12 liver-metastasised Dukes D colorectal cancers (CRCs), higher HMGB1 concentration in the primary tumours and metastatic foci, and fewer KCs were found in Dukes D cases than in Dukes C cases. The portal blood HMGB1 concentration was higher in Dukes D cases than in Dukes C cases. HMGB1 induced growth inhibition and apoptosis in mouse KCs in a dose-dependent manner, which was associated with the phosphorylation of c-Jun N-terminal kinase (JNK). JNK inhibition and knockdown of HMGB1 receptor abrogated growth inhibition and apoptosis. In a nude mouse liver metastasis model, the caecal administration of HMGB1 decreased the number of KCs and increased the embedment of Colo320 CRC cells in a dose-dependent manner. HMGB1 transfection increased the liver metastasis of Colo320 cells, and the metastasis was inhibited by anti-HMGB1 antibody administration. These results suggest that HMGB1 secreted from primary tumours decreases the number of KCs and attenuates the anti-metastatic defence of the liver in patients with CRCs.
Collapse
Affiliation(s)
- Yi Luo
- Department of Molecular Pathology, Nara Medical University, Kashihara, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Legoffic A, Calvo E, Cano C, Folch-Puy E, Barthet M, Delpero JR, Ferrés-Masó M, Dagorn JC, Closa D, Iovanna J. The reg4 gene, amplified in the early stages of pancreatic cancer development, is a promising therapeutic target. PLoS One 2009; 4:e7495. [PMID: 19834624 PMCID: PMC2760775 DOI: 10.1371/journal.pone.0007495] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2009] [Accepted: 09/28/2009] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The aim of our work was to identify the genes specifically altered in pancreatic adenocarcinoma and especially those that are altered early in cancer development. METHODOLOGY/PRINCIPAL FINDINGS Gene copy number was systematically assessed with an ultra-high resolution CGH oligonucleotide microarray in DNA from samples of pancreatic cancer. Several new cancer-associated variations were observed. In this work we focused on one of them, involving the reg4 gene. Gene copy number gain of the reg4 gene was confirmed by qPCR in 14 cancer samples. It was also found with increased copy number in most PanIN3 samples. The relationship betweena gain in reg4 gene copy number and cancer development was investigated on the human pancreatic cancer cell line Mia-PaCa2 xenografted under the skin of nude mice. When cells were transfected with a vector allowing reg4 expression, they generated tumors almost twice larger in size. In addition, these tumors were more resistant to gemcitabine treatment than control tumors. Interestingly, weekly intraperitoneal administration of a monoclonal antibody to reg4 halved the size of tumors generated by Mia-PaCa2 cells, suggesting that the antibody interfered with a paracrine/autocrine mechanism involving reg4 and stimulating cancer progression. The addition of gemcitabine resulted in further reduction, tumors becoming 5 times smaller than control. Exposure to reg4 antibody resulted in a significant decrease in intra-tumor levels of pAkt, Bcl-xL, Bcl-2, survivin and cyclin D1. CONCLUSIONS/SIGNIFICANCE It was concluded that adjuvant therapies targeting reg4 could improve the standard treatment of pancreatic cancer with gemcitabine.
Collapse
Affiliation(s)
- Aude Legoffic
- INSERM U.624, Stress Cellulaire, Parc Scientifique et Technologique de Luminy, Marseille France
| | - Ezequiel Calvo
- Molecular Endocrinology and Oncology Research Center, CHUL Research Center, Québec, Canada
| | - Carla Cano
- INSERM U.624, Stress Cellulaire, Parc Scientifique et Technologique de Luminy, Marseille France
| | - Emma Folch-Puy
- Experimental Pathology Department, IIBB-CSIC-IDIBAPS, CIBERehd, Barcelona, Spain
| | - Marc Barthet
- INSERM U.624, Stress Cellulaire, Parc Scientifique et Technologique de Luminy, Marseille France
| | - Jean Robert Delpero
- Département de Chirurgie Oncologique, Institut Paoli-Calmettes, Marseille, France
| | - Montse Ferrés-Masó
- Experimental Pathology Department, IIBB-CSIC-IDIBAPS, CIBERehd, Barcelona, Spain
| | - Jean Charles Dagorn
- INSERM U.624, Stress Cellulaire, Parc Scientifique et Technologique de Luminy, Marseille France
| | - Daniel Closa
- Experimental Pathology Department, IIBB-CSIC-IDIBAPS, CIBERehd, Barcelona, Spain
| | - Juan Iovanna
- INSERM U.624, Stress Cellulaire, Parc Scientifique et Technologique de Luminy, Marseille France
- * E-mail:
| |
Collapse
|
35
|
Zheng HC, Xu XY, Yu M, Takahashi H, Masuda S, Takano Y. The role of Reg IV gene and its encoding product in gastric carcinogenesis. Hum Pathol 2009; 41:59-69. [PMID: 19740514 DOI: 10.1016/j.humpath.2009.06.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2009] [Revised: 06/18/2009] [Accepted: 06/19/2009] [Indexed: 02/06/2023]
Abstract
Although the biologic function of Reg IV is poorly understood, it has been reported that Reg IV is a potent activator of the epidermal growth factor receptor/Akt/AP-1 signaling pathway in colon cancer cells and closely linked with the inhibition of apoptosis. To clarify the role of Reg IV in gastric carcinogenesis and subsequent progression, we examined its expression by immunohistochemistry and in situ hybridization on tissue microarray containing gastric carcinoma, adjacent nonneoplastic mucosa, adenoma, intestinal metaplasia, or gastritis. Gastric carcinoma cell lines (MKN28, AGS, MKN45, KATO-III, and HGC-27) were studied for Reg IV expression by Western blot and reverse transcriptase-polymerase chain reaction followed by sequencing. Frozen samples of gastric carcinoma and adjacent nonneoplastic mucosa were subjected to Western blot, and patient serum, to enzyme-linked immunosorbent assay for Reg IV. Gastric carcinoma cell lines showed different levels of Reg IV mRNA and its encoding protein. The Reg IV protein expression was gradually decreased from intestinal metaplasia, adenoma, and carcinoma to gastritis (P < .05). The positive rate of its mRNA was higher in intestinal metaplasia than carcinoma or nonneoplastic mucosa (P < .05). Elevated serum Reg IV level in gastric carcinoma patients was detected in comparison with that in health individuals (P < .05). Reg IV expression was significantly correlated with the MUC-2 and MUC-5AC expression (P < .05). Among histologic subtypes of the World Health Organization, signet ring cell carcinoma more frequently expressed Reg IV than the others (P < .05), whereas it is the converse for the poorly differentiated group (P < .05). Our study indicated that Reg IV expression experienced up-regulation in gastric intestinal metaplasia and adenoma and then down-regulation with malignant transformation of gastric epithelial cells. It was suggested that Reg IV expression should be considered as a good biomarker for gastric precancerous lesions and was especially related to the histogenic pathway of signet ring cell carcinoma.
Collapse
MESH Headings
- Adenocarcinoma/genetics
- Adenocarcinoma/metabolism
- Adenocarcinoma/secondary
- Adenoma/genetics
- Adenoma/metabolism
- Adenoma/pathology
- Aged
- Biomarkers, Tumor/metabolism
- Blotting, Western
- Carcinoma, Signet Ring Cell/genetics
- Carcinoma, Signet Ring Cell/metabolism
- Carcinoma, Signet Ring Cell/secondary
- Cell Line, Tumor
- Cell Transformation, Neoplastic
- DNA, Neoplasm/analysis
- Female
- Gastric Mucosa/metabolism
- Gastritis/genetics
- Gastritis/metabolism
- Gastritis/pathology
- Gene Expression Regulation, Neoplastic
- Humans
- In Situ Hybridization
- Lectins, C-Type/genetics
- Lectins, C-Type/metabolism
- Male
- Middle Aged
- Neoplasm Staging
- Pancreatitis-Associated Proteins
- Precancerous Conditions
- Sequence Analysis, DNA
- Stomach Neoplasms/genetics
- Stomach Neoplasms/metabolism
- Stomach Neoplasms/pathology
- Tissue Array Analysis
Collapse
Affiliation(s)
- Hua-Chuan Zheng
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, China Medical University, Shenyang, 110001 China.
| | | | | | | | | | | |
Collapse
|
36
|
Gao YL, Ren JL. Advances in RegIV and alimentary system neoplasms. Shijie Huaren Xiaohua Zazhi 2009; 17:1855-1859. [DOI: 10.11569/wcjd.v17.i18.1855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
RegIV, a novel member of regenerating gene family, is located at 1p12-13.1, encoding a 17-kDa secreted protein, which is constitutively expressed in the epithelium of normal pancreas and gastrointestinal tract, whereas the expression is up-regulated in inflammatory or neoplastic tissues. RegIV is involved in the carcinogenesis, progression, metastasis and drug resistance of alimentary system neoplasms, and is thought to be useful to make a forecast of the prognosis. It may serve as a new important target for the prevention, diagnosis and treatment of gastrointestinal neoplasms.
Collapse
|
37
|
Yasui W, Oue N, Sentani K, Sakamoto N, Motoshita J. Transcriptome dissection of gastric cancer: identification of novel diagnostic and therapeutic targets from pathology specimens. Pathol Int 2009; 59:121-36. [PMID: 19261089 DOI: 10.1111/j.1440-1827.2009.02329.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Gastric cancer is the fourth most common malignancy in the world, and mortality due to gastric cancer is second only to that from lung cancer. 'Transcriptome dissection' is a detailed analysis of the entire expressed transcripts from a cancer, for the purpose of understanding the precise molecular mechanism of pathogenesis. Serial analysis of gene expression (SAGE) is a suitable technique for performing transcriptome dissection. Gastric cancers of different stages and histology were analyzed on SAGE, and one of the largest gastric cancer SAGE libraries in the world was created (GEO accession number GSE 545). Through SAGE, many candidate genes have been identified as potential diagnostic and therapeutic targets for the treatment of gastric cancer. Regenerating islet-derived family, member 4 (Reg IV) participated in 5-fluorouracil (5-FU) resistance and peritoneal metastasis, and its expression was associated with an intestinal phenotype of gastric cancer and with endocrine differentiation. GW112 expression correlated with advanced tumor stage. Measurement of Reg IV and GW112 levels in sera indicated a sensitivity of 57% for detection of cancer. SPC18 participated in tumor growth and invasion through transforming tumor growth factor-alpha upregulation. Palate, lung, and nasal epithelium carcinoma-associated protein (PLUNC) was a useful marker for gastric hepatoid adenocarcinoma. Expression of SOX9, HOXA10, CDH17, and loss of claudin-18 expression were associated with an intestinal phenotype of gastric cancer. Information obtained from transcriptome dissection greatly contributes to diagnosis and treatment of gastric cancer.
Collapse
Affiliation(s)
- Wataru Yasui
- Department of Molecular Pathology, Hiroshima University Graduate School of Biomedical Sciences, Hiroshima, Japan.
| | | | | | | | | |
Collapse
|