1
|
Kalosakas G. Drug polymer conjugates: Average release time from thin films. Int J Pharm 2024; 662:124506. [PMID: 39053679 DOI: 10.1016/j.ijpharm.2024.124506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/19/2024] [Accepted: 07/21/2024] [Indexed: 07/27/2024]
Abstract
The reaction-diffusion problem describing the release of drugs conjugated through labile bonds to polymeric thin films has a known analytical solution, when the reaction kinetics is of first order. Using this solution, an exact formula is derived for the average release time of the system. This simple expression provides the characteristic time of release tav as the sum of the corresponding average diffusion time plus the inverse reaction rate constant: tav=(1/12)⋅(L2/D)+(1/k), where L is the slab thickness, D the diffusion coefficient, and k the reaction rate constant. The former term dominates in a diffusion-controlled release, while the latter one in a reaction-controlled delivery. The crossover regime is exactly described by their sum. The obtained result for the average release time is verified by direct numerical integration through the drug release profiles of the analytical solution. The value of fractional drug release at the characteristic average time is between 60-64%. These results can be used for the design of polymer-drug conjugates with a desired delivery time scale, as well as for the experimental determination of the values of microscopic parameters D and k in a conjugated system of interest.
Collapse
Affiliation(s)
- George Kalosakas
- Department of Materials Science, University of Patras, GR-26504 Rio, Greece.
| |
Collapse
|
2
|
Lungu CN, Creteanu A, Mehedinti MC. Endovascular Drug Delivery. Life (Basel) 2024; 14:451. [PMID: 38672722 PMCID: PMC11051410 DOI: 10.3390/life14040451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/12/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
Drug-eluting stents (DES) and balloons revolutionize atherosclerosis treatment by targeting hyperplastic tissue responses through effective local drug delivery strategies. This review examines approved and emerging endovascular devices, discussing drug release mechanisms and their impacts on arterial drug distribution. It emphasizes the crucial role of drug delivery in modern cardiovascular care and highlights how device technologies influence vascular behavior based on lesion morphology. The future holds promise for lesion-specific treatments, particularly in the superficial femoral artery, with recent CE-marked devices showing encouraging results. Exciting strategies and new patents focus on local drug delivery to prevent restenosis, shaping the future of interventional outcomes. In summary, as we navigate the ever-evolving landscape of cardiovascular intervention, it becomes increasingly evident that the future lies in tailoring treatments to the specific characteristics of each lesion. By leveraging cutting-edge technologies and harnessing the potential of localized drug delivery, we stand poised to usher in a new era of precision medicine in vascular intervention.
Collapse
Affiliation(s)
- Claudiu N. Lungu
- Department of Functional and Morphological Science, Faculty of Medicine and Pharmacy, Dunarea de Jos University, 800010 Galati, Romania;
| | - Andreea Creteanu
- Department of Pharmaceutical Technology, University of Medicine and Pharmacy Grigore T Popa, 700115 Iași, Romania
| | - Mihaela C. Mehedinti
- Department of Functional and Morphological Science, Faculty of Medicine and Pharmacy, Dunarea de Jos University, 800010 Galati, Romania;
| |
Collapse
|
3
|
Salvi S, Jain A, Pontrelli G, McGinty S. Modeling Dual Drug Delivery from Eluting Stents: The Influence of Non-Linear Binding Competition and Non-Uniform Drug Loading. Pharm Res 2023; 40:215-230. [PMID: 36473984 DOI: 10.1007/s11095-022-03419-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/15/2022] [Indexed: 12/12/2022]
Abstract
OBJECTIVE There is increasing interest in simultaneous endovascular delivery of more than one drug from a drug-loaded stent into a diseased artery. There may be an opportunity to obtain a therapeutically desirable uptake profile of the two drugs over time by appropriate design of the initial drug distribution in the stent. Due to the non-linear, coupled nature of diffusion and reversible specific/non-specific binding of both drugs as well as competition between the drugs for a fixed binding site density, a comprehensive numerical investigation of this problem is critically needed. METHODS This paper presents numerical computation of dual drug delivery in a stent-artery system, accounting for diffusion as well as specific and non-specific reversible binding. The governing differential equations are discretized in space, followed by integration over time using a stiff numerical solver. Three different cases of initial dual drug distribution are considered. RESULTS For the particular case of sirolimus and paclitaxel, results show that competition for a limited non-specific binding site density and the significant difference in the forward/backward reaction coefficients play a key role in determining the nature of drug uptake. The nature of initial distribution of the two drugs in the stent is also found to influence the binding process, which can potentially be used to engineer a desirable dual drug uptake profile. CONCLUSIONS These results help improve the fundamental understanding of endovascular dual drug delivery. In addition, the numerical technique and results presented here may be helpful for designing and optimizing other drug delivery problems as well.
Collapse
Affiliation(s)
- Swapnil Salvi
- Mechanical and Aerospace Engineering Department, University of Texas at Arlington, 500 W First St, Rm 211, Arlington, TX, 76019, USA
| | - Ankur Jain
- Mechanical and Aerospace Engineering Department, University of Texas at Arlington, 500 W First St, Rm 211, Arlington, TX, 76019, USA.
| | - Giuseppe Pontrelli
- Istituto per le Applicazioni del Calcolo - CNR, Via dei Taurini 19, 00185, Rome, Italy
| | - Sean McGinty
- Division of Biomedical Engineering, University of Glasgow, Glasgow, UK.,Glasgow Computational Engineering Centre, University of Glasgow, Glasgow, UK
| |
Collapse
|
4
|
Anbalakan K, Toh HW, Ang HY, Buist ML, Leo HL. How does the Nature of an Excipient and an Atheroma Influence Drug-Coated Balloon Therapy? Cardiovasc Eng Technol 2022; 13:915-929. [PMID: 35606568 DOI: 10.1007/s13239-022-00626-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 04/19/2022] [Indexed: 01/27/2023]
Abstract
The advent of drug-eluting stents and drug-coated balloons have significantly improved the clinical outcome of patients with vascular occlusions. However, ischemic vascular disease remains the most common cause of death worldwide. Improving the current treatment modalities demands a better understanding of the processes which govern drug uptake and retention in blood vessels. In this study, we evaluated the influence of urea and butyryl-trihexyl citrate, as excipients, on the efficacy of drug-coated balloon therapy. An integrated approach, utilizing both in-vitro and in-silico methods, was used to quantify the tracking loss, vessel adhesion, drug release, uptake, and distribution associated with the treatment. Moreover, a parametric study was used to evaluate the potential influence of different types of lesions on drug-coated balloon therapy. Despite the significantly higher tracking loss (urea: 35.5% vs. butyryl-trihexyl citrate: 8.13%) observed in the urea-based balloons, the drug uptake was almost two times greater than with its hydrophobic counterpart. Non-calcified lesions were found to delay the transmural propagation of sirolimus while calcification was shown to limit the retentive potential of lesions. Ultimately this study helps to elucidate how different excipients and types of lesions may influence the efficacy of drug-coated balloon therapy.
Collapse
Affiliation(s)
- Karthic Anbalakan
- Department of Biomedical Engineering, National University of Singapore, Singapore, 117576, Singapore.
| | - Han Wei Toh
- National Heart Research Institute Singapore, National Heart Center Singapore, Singapore, 169609, Singapore
| | - Hui Ying Ang
- Department of Biomedical Engineering, National University of Singapore, Singapore, 117576, Singapore.,National Heart Research Institute Singapore, National Heart Center Singapore, Singapore, 169609, Singapore.,Department of Cardiovascular & Metabolic Disorders, Duke-NUS Medical School, Singapore, 169857, Singapore
| | - Martin Lindsay Buist
- Department of Biomedical Engineering, National University of Singapore, Singapore, 117576, Singapore.
| | - Hwa Liang Leo
- Department of Biomedical Engineering, National University of Singapore, Singapore, 117576, Singapore.
| |
Collapse
|
5
|
McQueen A, Escuer J, Schmidt AF, Aggarwal A, Kennedy S, McCormick C, Oldroyd K, McGinty S. An intricate interplay between stent drug dose and release rate dictates arterial restenosis. J Control Release 2022; 349:992-1008. [PMID: 35921913 DOI: 10.1016/j.jconrel.2022.07.037] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/14/2022] [Accepted: 07/26/2022] [Indexed: 10/15/2022]
Abstract
Since the introduction of percutaneous coronary intervention (PCI) for the treatment of obstructive coronary artery disease (CAD), patient outcomes have progressively improved. Drug eluting stents (DES) that employ anti-proliferative drugs to limit excess tissue growth following stent deployment have proved revolutionary. However, restenosis and a need for repeat revascularisation still occurs after DES use. Over the last few years, computational models have emerged that detail restenosis following the deployment of a bare metal stent (BMS), focusing primarily on contributions from mechanics and fluid dynamics. However, none of the existing models adequately account for spatiotemporal delivery of drug and the influence of this on the cellular processes that drive restenosis. In an attempt to fill this void, a novel continuum restenosis model coupled with spatiotemporal drug delivery is presented. Our results indicate that the severity and time-course of restenosis is critically dependent on the drug delivery strategy. Specifically, we uncover an intricate interplay between initial drug loading, drug release rate and restenosis, indicating that it is not sufficient to simply ramp-up the drug dose or prolong the time course of drug release to improve stent efficacy. Our model also shows that the level of stent over-expansion and stent design features, such as inter-strut spacing and strut thickness, influence restenosis development, in agreement with trends observed in experimental and clinical studies. Moreover, other critical aspects of the model which dictate restenosis, including the drug binding site density are investigated, where comparisons are made between approaches which assume this to be either constant or proportional to the number of smooth muscle cells (SMCs). Taken together, our results highlight the necessity of incorporating these aspects of drug delivery in the pursuit of optimal DES design.
Collapse
Affiliation(s)
- Alistair McQueen
- Division of Biomedical Engineering, University of Glasgow, Glasgow, UK
| | - Javier Escuer
- Aragón Institute for Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain
| | | | - Ankush Aggarwal
- Glasgow Computational Engineering Centre, Division of Infrastructure and Environment, University of Glasgow, Glasgow, UK
| | - Simon Kennedy
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | | | - Keith Oldroyd
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Sean McGinty
- Division of Biomedical Engineering, University of Glasgow, Glasgow, UK; Glasgow Computational Engineering Centre, Division of Infrastructure and Environment, University of Glasgow, Glasgow, UK.
| |
Collapse
|
6
|
Escuer J, Schmidt AF, Peña E, Martínez MA, McGinty S. Mathematical modelling of endovascular drug delivery: balloons versus stents. Int J Pharm 2022; 620:121742. [DOI: 10.1016/j.ijpharm.2022.121742] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/03/2022] [Accepted: 04/08/2022] [Indexed: 01/15/2023]
|
7
|
Karanasiou GS, Tsompou PI, Tachos N, Karanasiou GE, Sakellarios A, Kyriakidis S, Antonini L, Pennati G, Petrini L, Gijsen F, Nezami FR, Tzafriri R, Fawdry M, Fotiadis DI. An in silico trials platform for the evaluation of effect of the arterial anatomy configuration on stent implantation . ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:4213-4217. [PMID: 34892153 DOI: 10.1109/embc46164.2021.9629950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The introduction of Bioresorbable Vascular Scaffolds (BVS) has revolutionized the treatment of atherosclerosis. InSilc is an in silico clinical trial (ISCT) platform in a Cloud-based environment used for the design, development and evaluation of BVS. Advanced multi-disciplinary and multiscale models are integrated in the platform towards predicting the short/acute and medium/long term scaffold performance. In this study, InSilc platform is employed in a use case scenario and demonstrates how the whole in silico pipeline allows the interpretation of the effect of the arterial anatomy configuration on stent implantation.
Collapse
|
8
|
Colombo M, Corti A, Berceli S, Migliavacca F, McGinty S, Chiastra C. 3D modelling of drug-coated balloons for the treatment of calcified superficial femoral arteries. PLoS One 2021; 16:e0256783. [PMID: 34634057 PMCID: PMC8504744 DOI: 10.1371/journal.pone.0256783] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 07/27/2021] [Indexed: 11/28/2022] Open
Abstract
Background/Objectives Drug-coated balloon therapy for diseased superficial femoral arteries remains controversial. Despite its clinical relevance, only a few computational studies based on simplistic two-dimensional models have been proposed to investigate this endovascular therapy to date. This work addresses the aforementioned limitation by analyzing the drug transport and kinetics occurring during drug-coated balloon deployment in a three-dimensional geometry. Methods An idealized three-dimensional model of a superficial femoral artery presenting with a calcific plaque and treated with a drug-coated balloon was created to perform transient mass transport simulations. To account for the transport of drug (i.e. paclitaxel) released by the device, a diffusion-reaction equation was implemented by describing the drug bound to specific intracellular receptors through a non-linear, reversible reaction. The following features concerning procedural aspects, pathologies and modelling assumptions were investigated: (i) balloon application time (60–180 seconds); (ii) vessel wall composition (healthy vs. calcified wall); (iii) sequential balloon application; and (iv) drug wash-out by the blood stream vs. coating retention, modeled as exponential decay. Results The balloon inflation time impacted both the free and specifically-bound drug concentrations in the vessel wall. The vessel wall composition highly affected the drug concentrations. In particular, the specifically-bound drug concentration was four orders of magnitude lower in the calcific compared with healthy vessel wall portions, primarily as a result of reduced drug diffusion. The sequential application of two drug-coated balloons led to modest differences (~15%) in drug concentration immediately after inflation, which became negligible within 10 minutes. The retention of the balloon coating increased the drug concentration in the vessel wall fourfold. Conclusions The overall findings suggest that paclitaxel kinetics may be affected not only by the geometrical and compositional features of the vessel treated with the drug-coated balloon, but also by balloon design characteristics and procedural aspects that should be carefully considered.
Collapse
Affiliation(s)
- Monika Colombo
- Laboratory of Biological Structure Mechanics (LaBS), Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Milan, Italy
| | - Anna Corti
- Laboratory of Biological Structure Mechanics (LaBS), Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Milan, Italy
| | - Scott Berceli
- Malcom Randall VAMC, Gainesville, Florida, United States of America
- Department of Surgery, University of Florida, Gainesville, Florida, United States of America
| | - Francesco Migliavacca
- Laboratory of Biological Structure Mechanics (LaBS), Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Milan, Italy
| | - Sean McGinty
- Department of Biomedical Engineering, University of Glasgow, Glasgow, United Kingdom
| | - Claudio Chiastra
- Laboratory of Biological Structure Mechanics (LaBS), Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Milan, Italy
- PoliToMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
- * E-mail:
| |
Collapse
|
9
|
Atigh MK, Goel E, Erwin M, Greer R, Ohayon J, Pettigrew RI, Yazdani SK. Precision delivery of liquid therapy into the arterial wall for the treatment of peripheral arterial disease. Sci Rep 2021; 11:18676. [PMID: 34548563 PMCID: PMC8455692 DOI: 10.1038/s41598-021-98063-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/31/2021] [Indexed: 01/04/2023] Open
Abstract
Perfusion catheters have recently emerged as a novel approach to deliver liquid anti-proliferative agents into flow obstructed arterial segments. The purpose of this study was to determine the impact of luminal delivery pressure on liquid drug penetration into the vessel wall. An ex vivo model using harvested porcine carotid arteries and a two-dimensional computational model were utilized to determine the impact of delivery pressure of liquid therapy into the arterial wall. A pig peripheral injury model determined the impact of intra-luminal delivery pressure on drug retention. Ex vivo results demonstrated that depth of fluid penetration varies from 6.93 ± 1.90% at 0 atm to 27.75 ± 6.61% penetration of the medial layer at 0.4 atm. Computational results had similar outcomes, as penetration varied between 4.4% and 22.84%. The in vivo results demonstrated significant increase in drug delivery to the arterial tissue at 0.4 atm versus 0.1 atm at 1 h (23.43 ± 13.59 ng/mg vs. 2.49 ± 1.81 ng/mg, p = 0.026) and 7 days (0.50 ± 0.39 ng/mg vs. 0.018 ± 0.023 ng/mg, p = 0.0496). The result of this study provides an innovative strategic and technical approach to enable targeted liquid therapy.
Collapse
Affiliation(s)
- Marzieh K Atigh
- Department of Mechanical Engineering, University of South Alabama, Mobile, AL, 36688, USA
| | - Emily Goel
- Department of Mechanical Engineering, University of South Alabama, Mobile, AL, 36688, USA
| | - Megan Erwin
- Department of Mechanical Engineering, University of South Alabama, Mobile, AL, 36688, USA
| | - Ricky Greer
- Department of Mechanical Engineering, University of South Alabama, Mobile, AL, 36688, USA
| | - Jacques Ohayon
- Savoie Mont-Blanc University, Polytech Annecy-Chambéry, Le Bourget du Lac, France.,Laboratory TIMC-IMAG, CNRS, UMR 5525, Grenoble-Alpes University, Grenoble, France
| | - Roderic I Pettigrew
- Texas A&M University and Houston Methodist Hospital, Engineering Medicine (EnMed), Houston, TX, USA
| | - Saami K Yazdani
- Department of Engineering, Wake Forest University, Winston-Salem, NC, 27101, USA.
| |
Collapse
|
10
|
McQueen A, Escuer J, Aggarwal A, Kennedy S, McCormick C, Oldroyd K, McGinty S. Do we really understand how drug eluted from stents modulates arterial healing? Int J Pharm 2021; 601:120575. [PMID: 33845150 DOI: 10.1016/j.ijpharm.2021.120575] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 01/04/2023]
Abstract
The advent of drug-eluting stents (DES) has revolutionised the treatment of coronary artery disease. These devices, coated with anti-proliferative drugs, are deployed into stenosed or occluded vessels, compressing the plaque to restore natural blood flow, whilst simultaneously combating the evolution of restenotic tissue. Since the development of the first stent, extensive research has investigated how further advancements in stent technology can improve patient outcome. Mathematical and computational modelling has featured heavily, with models focussing on structural mechanics, computational fluid dynamics, drug elution kinetics and subsequent binding within the arterial wall; often considered separately. Smooth Muscle Cell (SMC) proliferation and neointimal growth are key features of the healing process following stent deployment. However, models which depict the action of drug on these processes are lacking. In this article, we start by reviewing current models of cell growth, which predominantly emanate from cancer research, and available published data on SMC proliferation, before presenting a series of mathematical models of varying complexity to detail the action of drug on SMC growth in vitro. Our results highlight that, at least for Sodium Salicylate and Paclitaxel, the current state-of-the-art nonlinear saturable binding model is incapable of capturing the proliferative response of SMCs across a range of drug doses and exposure times. Our findings potentially have important implications on the interpretation of current computational models and their future use to optimise and control drug release from DES and drug-coated balloons.
Collapse
Affiliation(s)
- Alistair McQueen
- Division of Biomedical Engineering, University of Glasgow, Glasgow, UK
| | - Javier Escuer
- Aragón Institute for Engineering Research (I3A), University of Zaragoza, Spain
| | - Ankush Aggarwal
- Glasgow Computational Engineering Centre, Division of Infrastructure and Environment, University of Glasgow, Glasgow, UK
| | - Simon Kennedy
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | | | - Keith Oldroyd
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Sean McGinty
- Division of Biomedical Engineering, University of Glasgow, Glasgow, UK; Glasgow Computational Engineering Centre, Division of Infrastructure and Environment, University of Glasgow, Glasgow, UK.
| |
Collapse
|
11
|
Nazarkina ZK, Chelobanov BP, Kuznetsov KA, Shutov AV, Romanova IV, Karpenko AA, Laktionov PP. Influence of Elongation of Paclitaxel-Eluting Electrospun-Produced Stent Coating on Paclitaxel Release and Transport through the Arterial Wall after Stenting. Polymers (Basel) 2021; 13:1165. [PMID: 33916436 PMCID: PMC8038586 DOI: 10.3390/polym13071165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 12/30/2022] Open
Abstract
It was previously shown that polycaprolactone (PCL)-based electrospun-produced paclitaxel (PTX)-enriched matrices exhibit long-term drug release kinetics and can be used as coatings for drug-eluting stents (DES). The installation of vascular stents involves a twofold increase in stent diameter and, therefore, an elongation of the matrices covering the stents, as well as the arterial wall in a stented area. We studied the influence of matrix elongation on its structure and PTX release using three different electrospun-produced matrices. The data obtained demonstrate that matrix elongation during stent installation does not lead to fiber breaks and does not interfere with the kinetics of PTX release. To study PTX diffusion through the expanded artery wall, stents coated with 5%PCL/10%HSA/3%DMSO/PTX and containing tritium-labeled PTX were installed into the freshly obtained iliac artery of a rabbit. The PTX passing through the artery wall was quantified using a scintillator β-counter. The artery retained the PTX and decreased its release from the coating. The retention of PTX by the arterial wall was more efficient when incubated in blood plasma in comparison with PBS. The retention/accumulation of PTX by the arterial wall provides a prolonged drug release and allows for the reduction in the dose of the drugs in electrospun-produced stent coatings.
Collapse
Affiliation(s)
- Zhanna K. Nazarkina
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia; (B.P.C.); (K.A.K.); (I.V.R.); (P.P.L.)
| | - Boris P. Chelobanov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia; (B.P.C.); (K.A.K.); (I.V.R.); (P.P.L.)
| | - Konstantin A. Kuznetsov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia; (B.P.C.); (K.A.K.); (I.V.R.); (P.P.L.)
| | - Alexey V. Shutov
- Lavrentyev Institute of Hydrodynamics, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia;
| | - Irina V. Romanova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia; (B.P.C.); (K.A.K.); (I.V.R.); (P.P.L.)
| | - Andrey A. Karpenko
- Meshalkin National Medical Research Center, Ministry of Health of the Russian Federation, 630055 Novosibirsk, Russia;
| | - Pavel P. Laktionov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia; (B.P.C.); (K.A.K.); (I.V.R.); (P.P.L.)
- Meshalkin National Medical Research Center, Ministry of Health of the Russian Federation, 630055 Novosibirsk, Russia;
| |
Collapse
|
12
|
Escuer J, Aznar I, McCormick C, Peña E, McGinty S, Martínez MA. Influence of vessel curvature and plaque composition on drug transport in the arterial wall following drug-eluting stent implantation. Biomech Model Mechanobiol 2021; 20:767-786. [PMID: 33533998 DOI: 10.1007/s10237-020-01415-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 12/21/2020] [Indexed: 01/03/2023]
Abstract
In the last decade, many computational models have been developed to describe the transport of drug eluted from stents and the subsequent uptake into arterial tissue. Each of these models has its own set of limitations: for example, models typically employ simplified stent and arterial geometries, some models assume a homogeneous arterial wall, and others neglect the influence of blood flow and plasma filtration on the drug transport process. In this study, we focus on two common limitations. Specifically, we provide a comprehensive investigation of the influence of arterial curvature and plaque composition on drug transport in the arterial wall following drug-eluting stent implantation. The arterial wall is considered as a three-layered structure including the subendothelial space, the media and the adventitia, with porous membranes separating them (endothelium, internal and external elastic lamina). Blood flow is modelled by the Navier-Stokes equations, while Darcy's law is used to calculate plasma filtration through the porous layers. Our findings demonstrate that arterial curvature and plaque composition have important influences on the spatiotemporal distribution of drug, with potential implications in terms of effectiveness of the treatment. Since the majority of computational models tend to neglect these features, these models are likely to be under- or over-estimating drug uptake and redistribution in arterial tissue.
Collapse
Affiliation(s)
- Javier Escuer
- Aragón Institute for Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain
| | - Irene Aznar
- Aragón Institute for Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain
| | | | - Estefanía Peña
- Aragón Institute for Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain.,Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Zaragoza, Spain
| | - Sean McGinty
- Division of Biomedical Engineering, University of Glasgow, Glasgow, UK
| | - Miguel A Martínez
- Aragón Institute for Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain. .,Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Zaragoza, Spain. .,, María de Luna, 3, 50018, Zaragoza, Spain.
| |
Collapse
|
13
|
Gagliardi M. Numerical analysis of paclitaxel-eluting coronary stents: Mechanics and drug release properties. Med Eng Phys 2020; 82:78-85. [PMID: 32709268 DOI: 10.1016/j.medengphy.2020.06.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 04/14/2020] [Accepted: 06/15/2020] [Indexed: 10/23/2022]
Abstract
Since theoretical models provide data that cannot be otherwise gathered, numerical methods applied to medical devices analysis have emerged as fundamental tool in preclinical development. Large efforts were done to study mechanical and drug-eluting properties in stents but often the coating modelling is neglected. This work presents a finite element framework to calculate mechanical loads and drug distribution in three commercial drug-eluting stents (Palmaz-Schatz, Palmaz Genesis and Multi Link Vision), to check coatings strength and drug distribution maps in biological tissues. The promising copolymer poly(methylmethacrylate-co-n-butylmethacrylate), loaded with paclitaxel, is analyzed. Results demonstrated that the coating undergoes localized plastic phenomena, and calculated stresses are lower than the ultimate stress, ensuring coating integrity. Computed drug concentration depends on stent geometry and its values are in all cases lower than the toxicity level for this drug.
Collapse
|
14
|
Sarifuddin, Roy S, Mandal PK. Computational model of stent-based delivery from a half-embedded two-layered coating. Comput Methods Biomech Biomed Engin 2020; 23:815-831. [PMID: 32588648 DOI: 10.1080/10255842.2020.1767775] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
An attempt is made in the present investigation to develop a computational model for the purpose of studying the effect of interstitial flow in the porous media on the distribution of drug eluted from a half-embedded drug-eluting stent and its retention in the presence of two-layered coating of the stent. The transport of free drug inside the coatings is considered as an unsteady diffusion process while that in the tissue as an unsteady convection-diffusion-reaction process. The bound drug is governed by an unsteady reaction process only. Immersed boundary method (IBM) in the staggered grid formulation, popularly known as marker and cell (MAC) method, has been leveraged to tackle numerically the governing equations. This model highlights the benefits of consideration of two-layered coating and does predict underlying mechanism for better efficacy by tweaking the kinetics parameters. Comparisons are also made with the results available for stent-based delivery.
Collapse
Affiliation(s)
- Sarifuddin
- Department of Mathematics, Berhampore College, Berhampore, West Bengal, India
| | - Somnath Roy
- Department of Mechanical Engineering, Indian Institute of Technology, Kharagpur, West Bengal, India
| | | |
Collapse
|
15
|
Hyndman L, McKee S, Mottram NJ, Singh B, Webb SD, McGinty S. Mathematical modelling of fluid flow and solute transport to define operating parameters for in vitro perfusion cell culture systems. Interface Focus 2020; 10:20190045. [PMID: 32194930 PMCID: PMC7061945 DOI: 10.1098/rsfs.2019.0045] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 11/14/2019] [Indexed: 01/20/2023] Open
Abstract
In recent years, there has been a move away from the use of static in vitro two-dimensional cell culture models for testing the chemical safety and efficacy of drugs. Such models are increasingly being replaced by more physiologically relevant cell culture systems featuring dynamic flow and/or three-dimensional structures of cells. While it is acknowledged that such systems provide a more realistic environment within which to test drugs, progress is being hindered by a lack of understanding of the physical and chemical environment that the cells are exposed to. Mathematical and computational modelling may be exploited in this regard to unravel the dependency of the cell response on spatio-temporal differences in chemical and mechanical cues, thereby assisting with the understanding and design of these systems. In this paper, we present a mathematical modelling framework that characterizes the fluid flow and solute transport in perfusion bioreactors featuring an inlet and an outlet. To demonstrate the utility of our model, we simulated the fluid dynamics and solute concentration profiles for a variety of different flow rates, inlet solute concentrations and cell types within a specific commercial bioreactor chamber. Our subsequent analysis has elucidated the basic relationship between inlet flow rate and cell surface flow speed, shear stress and solute concentrations, allowing us to derive simple but useful relationships that enable prediction of the behaviour of the system under a variety of experimental conditions, prior to experimentation. We describe how the model may used by experimentalists to define operating parameters for their particular perfusion cell culture systems and highlight some operating conditions that should be avoided. Finally, we critically comment on the limitations of mathematical and computational modelling in this field, and the challenges associated with the adoption of such methods.
Collapse
Affiliation(s)
- Lauren Hyndman
- Division of Biomedical Engineering, University of Glasgow, Glasgow G12 8QQ, UK
| | - Sean McKee
- Department of Mathematics and Statistics, University of Strathclyde, Glasgow G1 1XH, UK
| | - Nigel J. Mottram
- Department of Mathematics and Statistics, University of Strathclyde, Glasgow G1 1XH, UK
| | - Bhumika Singh
- Kirkstall Ltd, York House, Outgang Lane, Osbaldwick, York YO19 5UP, UK
| | - Steven D. Webb
- Department of Applied Mathematics, Liverpool John Moores University, Liverpool L3 5UA, UK
| | - Sean McGinty
- Division of Biomedical Engineering, University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|
16
|
Escuer J, Cebollero M, Peña E, McGinty S, Martínez MA. How does stent expansion alter drug transport properties of the arterial wall? J Mech Behav Biomed Mater 2020; 104:103610. [DOI: 10.1016/j.jmbbm.2019.103610] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/23/2019] [Accepted: 12/29/2019] [Indexed: 11/28/2022]
|
17
|
Wu H, Song Y, Li J, Lei X, Zhang S, Gao Y, Cheng P, Liu B, Miao S, Bi L, Yang L, Pei G. Blockade of adrenergic β-receptor activation through local delivery of propranolol from a 3D collagen/polyvinyl alcohol/hydroxyapatite scaffold promotes bone repair in vivo. Cell Prolif 2019; 53:e12725. [PMID: 31746058 PMCID: PMC6985692 DOI: 10.1111/cpr.12725] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 10/19/2019] [Accepted: 10/31/2019] [Indexed: 12/14/2022] Open
Abstract
Objectives Activation of the sympathetic system and adrenergic β‐receptors following traumatic bone defects negatively impairs bone regeneration. Whether preventing β‐receptor activation could potentially improve bone defect repair is unknown. In this study, we investigated the effect of systematic administration and local delivery of propranolol through composite scaffolds on bone healing. Materials and methods Collagen/PVA/propranolol/hydroxyapatite(CPPH)composite scaffolds were fabricated with 3D printing technique and characterized by scanning electron microscope (SEM). Micro‐CT analysis and bone formation histology were performed to detect new bone formation. Osteogenic differentiation of bone marrow stromal cells (BMSCs) and osteoclastogenesis of bone marrow monocytes cultured with scaffolds extract were performed for further verification. Results Intraperitoneal injection of propranolol did not significantly improve bone repair, as indicated by micro‐CT analysis and bone formation histology. However, CPPH scaffolds exhibited sustained release of propranolol in vitro and significantly enhanced bone regeneration compared with vehicle collagen/PVA/hydroxyapatite (CPH) scaffolds in vivo. Moreover, in vitro experiments indicated the scaffolds containing propranolol promoted the osteogenic differentiation and migration of rat BMSCs and inhibited osteoclastogenesis by preventing β‐receptor activation. Conclusions This study demonstrates that local adrenergic β‐receptor blockade can effectively enhance the treatment of bone defects by stimulating osteogenic differentiation, inhibiting osteoclastogenesis and enhancing BMSCs migration.
Collapse
Affiliation(s)
- Hao Wu
- Department of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Yue Song
- Department of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Junqin Li
- Department of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Xing Lei
- Department of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, China.,Department of Orthopedic Surgery, Linyi People's Hospital, Linyi, China
| | - Shuaishuai Zhang
- Department of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Yi Gao
- Department of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Pengzhen Cheng
- Department of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Bin Liu
- Department of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Sheng Miao
- Department of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Long Bi
- Department of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Liu Yang
- Department of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Guoxian Pei
- Department of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
18
|
Taking paclitaxel coated balloons to a higher level: Predicting coating dissolution kinetics, tissue retention and dosing dynamics. J Control Release 2019; 310:94-102. [PMID: 31430500 DOI: 10.1016/j.jconrel.2019.08.019] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 08/16/2019] [Indexed: 11/20/2022]
Abstract
Paclitaxel coated balloons (PCBs) are a promising non-implantable alternative to drug-eluting stents, whereby drug is delivered to the arterial wall in solid form as a semi-continuous solid coating or as micro drug depots. To date, it has been impossible to predict or even infer local tissue dosing levels and persistence, making it difficult to compare in vivo performance of different devices in healthy animals or to extrapolate such data to diseased human arteries. Here we derive and analyze a coupled reaction diffusion model that accounts for coating dissolution and tissue distribution, and predicts the concentration of dissolved drug in the tissue during and post dissolution. Time scale analysis and numerical simulations based on estimated diffusion coefficients in healthy animal and diseased human arteries both imply that dissolution of crystalline paclitaxel coating is mass transfer coefficient-limited, and can therefore be solved for independently of the tissue transport equations. Specifically, coating retention is predicted to follow piecewise linear kinetics, reflecting the differential and faster dissolution of lumenal versus tissue-embedded coating owing to a disparity in convective forces. This prediction is consistent with published data on a range of PCBs and allowed for the estimation of the associated dissolution rate-constants and the maximal soluble drug concentration in the tissue during coating dissolution. Maximal soluble drug concentration in the tissue scales as the product of the solubility and ratio of the dissolution and diffusion rate-constants. Thus, coatings characterized by micromolar solubilities give rise to nanomolar soluble concentrations in healthy animal arteries and ~0.1 micromolar in calcified atherosclerotic arteries owing to slower tissue diffusion. During dissolution, retention in porcine iliofemoral arteries is predicted to be dominated by solid coating, whereas post dissolution it is dominated by receptor-bound drug (3.7 ng receptors/g tissue). Paclitaxel coating dissolution and dosing kinetics can now be modeled based upon accepted principles of surface dissolution and tissue transport to provide insights into the dependence of clinical efficacy on device properties and the interplay of lesion complexity and procedural parameters.
Collapse
|
19
|
Mathematical modelling of liposomal drug release to tumour. Math Biosci 2018; 306:82-96. [PMID: 30391313 DOI: 10.1016/j.mbs.2018.10.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 07/31/2018] [Accepted: 10/29/2018] [Indexed: 11/22/2022]
Abstract
The primary aim of liposomal drug delivery is to wisely modulate the drug delivery system in order to target diseased tissues. Temperature-sensitive liposomes function as a prospective weapon to combat toxic side effects corresponding to direct infusion of anticancer drugs. The main objective of the present study is to model liposomal drug release, subsequent drug transport in solid tumour along with integrated actions of tumour cell surface and endosomal events. Generalized mathematical model for liposomal drug delivery is proposed in which vital physical phenomena, such as kinetics of liposome-encapsulated drug, free drug release from liposomes, transport of both liposomal drug and free drug into the tumour compartment, plasma clearance, protein-drug interactions, drug-tumour cell receptor interactions, internalization of drug through endocytosis along with corresponding endosomal events. The model is expressed through a system of coupled partial differential equations along with appropriate set of initial, interface and boundary conditions which is solved numerically. Simulated results are compared with respective existing experimental data to demonstrate the potency and reliability of the proposed model. Graphical representations of time variant concentration profiles are illustrated to understand the underlying phenomena in details. Moreover, the model speaks for the sensitivity of important drug kinetic parameters, such as advection coefficients, drug release coefficient, plasma clearance rate and internalization parameters through graphical portrayals. The proposed model and the simulated results act as a tool in designing a more effective drug delivery system for cancerous tumours.
Collapse
|
20
|
Saha R. A Computational Approach for Stent Elution Rate Determined Specific Drug Binding and Receptor-mediated Effects in Arterial Tissue. JOURNAL OF EXPLORATORY RESEARCH IN PHARMACOLOGY 2018; 3:105-118. [DOI: 10.14218/jerp.2018.00018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
21
|
Chakravarty K, Dalal DC. A Nonlinear Mathematical Model of Drug Delivery from Polymeric Matrix. Bull Math Biol 2018; 81:105-130. [PMID: 30298197 DOI: 10.1007/s11538-018-0519-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 09/28/2018] [Indexed: 12/30/2022]
Abstract
The objective of the present study is to mathematically model the integrated kinetics of drug release in a polymeric matrix and its ensuing drug transport to the encompassing biological tissue. The model embodies drug diffusion, dissolution, solubilization, polymer degradation and dissociation/recrystallization phenomena in the polymeric matrix accompanied by diffusion, advection, reaction, internalization and specific/nonspecific binding in the biological tissue. The model is formulated through a system of nonlinear partial differential equations which are solved numerically in association with pertinent set of initial, interface and boundary conditions using suitable finite difference scheme. After spatial discretization, the system of nonlinear partial differential equations is reduced to a system of nonlinear ordinary differential equations which is subsequently solved by the fourth-order Runge-Kutta method. The model simulations deal with the comparison between a drug delivery from a biodegradable polymeric matrix and that from a biodurable polymeric matrix. Furthermore, simulated results are compared with corresponding existing experimental data to manifest the efficaciousness of the advocated model. A quantitative analysis is performed through numerical computation relied on model parameter values. The numerical results obtained reveal an estimate of the effects of biodegradable and biodurable polymeric matrices on drug release rates. Furthermore, through graphical representations, the sensitized impact of the model parameters on the drug kinetics is illustrated so as to assess the model parameters of significance.
Collapse
Affiliation(s)
- Koyel Chakravarty
- Department of Mathematics, Indian Institute of Technology Guwahati, Guwahati, 781039, India.
| | - D C Dalal
- Department of Mathematics, Indian Institute of Technology Guwahati, Guwahati, 781039, India
| |
Collapse
|
22
|
The effect of plaque eccentricity on blood hemodynamics and drug release in a stented artery. Med Eng Phys 2018; 60:47-60. [DOI: 10.1016/j.medengphy.2018.07.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 07/20/2018] [Accepted: 07/24/2018] [Indexed: 11/17/2022]
|
23
|
Saha R, Mandal PK. Modelling Time-dependent Release Kinetics in Stent-based Delivery. JOURNAL OF EXPLORATORY RESEARCH IN PHARMACOLOGY 2018; 3:61-70. [DOI: 10.14218/jerp.2018.00001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
24
|
Effect of Interstitial Fluid Flow on Drug-Coated Balloon Delivery in a Patient-Specific Arterial Vessel with Heterogeneous Tissue Composition: A Simulation Study. Cardiovasc Eng Technol 2018; 9:251-267. [PMID: 29508375 DOI: 10.1007/s13239-018-0345-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 02/23/2018] [Indexed: 11/27/2022]
Abstract
Angioplasty with drug-coated balloons (DCBs) using excipients as drug carriers is emerging as a potentially viable strategy demonstrating clinical efficacy and proposing additional compliance for the treatment of obstructive vascular diseases. An attempt is made to develop an improved computational model where attention has been paid to the effect of interstitial flow, that is, plasma convection and internalization of bound drug. The present model is capable of capturing the phenomena of the transport of free drug and its retention, and also the internalization of drug in the process of endocytosis to atherosclerotic vessel of heterogeneous tissue composition comprising of healthy tissue, as well as regions of fibrous cap, fibro-fatty, calcified and necrotic core lesions. Image processing based on an unsupervised clustering technique is used for color-based segmentation of a patient-specific longitudinal image of atherosclerotic vessel obtained from intravascular ultrasound derived virtual histology. As the residence time of drug in a stent-based delivery within the arterial tissue is strongly influenced by convective forces, effect of interstitial fluid flow in case of DCB delivery can not be ruled out, and has been investigated by modeling it through unsteady Navier-Stokes equations. Transport of free drug is modeled by considering unsteady advection-reaction-diffusion process, while the bound drug, assuming completely immobilized in the tissue, by unsteady reaction process. The model also takes into account the internalization of drug through the process of endocytosis which gets degraded by the lysosomes and finally recycled into the extracellular fluid. All the governing equations representing the flow of interstitial fluid, the transport of free drug, the metabolization of free drug into bound phase and the process of internalization along with the physiologically realistic boundary and initial conditions are solved numerically using marker and cell method satisfying necessary stability criteria. Simulated results obtained predict that faster drug transfer promotes rapid saturation of binding sites despite perivascular wash out and the concentrations of all drug forms are modulated by the presence of interstitial flow. Such premier attempt of its kind would certainly be of great help in the optimization of therapeutic efficacy of drug.
Collapse
|
25
|
Mandal AP, Mandal PK. Distribution and retention of drug through an idealised atherosclerotic plaque eluted from a half-embedded stent. ACTA ACUST UNITED AC 2017. [DOI: 10.1007/s40435-017-0372-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
26
|
Naghipoor J, Rabczuk T. A mechanistic model for drug release from PLGA-based drug eluting stent: A computational study. Comput Biol Med 2017; 90:15-22. [DOI: 10.1016/j.compbiomed.2017.09.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 09/01/2017] [Accepted: 09/01/2017] [Indexed: 11/15/2022]
|
27
|
Tzafriri AR, Garcia-Polite F, Zani B, Stanley J, Muraj B, Knutson J, Kohler R, Markham P, Nikanorov A, Edelman ER. Calcified plaque modification alters local drug delivery in the treatment of peripheral atherosclerosis. J Control Release 2017; 264:203-210. [PMID: 28867375 DOI: 10.1016/j.jconrel.2017.08.037] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 08/07/2017] [Accepted: 08/29/2017] [Indexed: 12/01/2022]
Abstract
BACKGROUND Calcific atherosclerosis is a major challenge to intraluminal drug delivery in peripheral artery disease (PAD). OBJECTIVES We evaluated the effects of orbital atherectomy on intraluminal paclitaxel delivery to human peripheral arteries with substantial calcified plaque. METHODS Diagnostic angiography and 3-D rotational imaging of five fresh human lower limbs revealed calcification in all main arteries. The proximal or distal segment of each artery was treated using an orbital atherectomy system (OAS) under simulated blood flow and fluoroscopy. Explanted arterial segments underwent either histomorphometric assessment of effect or tracking of 14C-labeled or fluorescent-labeled paclitaxel. Radiolabeled drug quantified bulk delivery and fluorescent label established penetration of drug over finer spatial domain in serial microscopic sections. Results were interpreted using a mathematical model of binding-diffusion mediated arterial drug distribution. RESULTS Lesion composition affected paclitaxel absorption and distribution in cadaveric human peripheral arteries. Pretreatment imaging calcium scores in control femoropopliteal arterial segments correlated with a log-linear decline in the bulk absorption rate-constant of 14C-labeled, declining 5.5-fold per calcified quadrant (p=0.05, n=7). Compared to controls, OAS-treated femoropopliteal segments exhibited 180μm thinner intima (p<0.001), 45% less plaque calcification, and 2 log orders higher paclitaxel bulk absorption rate-constants. Correspondingly, fluorescent paclitaxel penetrated deeper in OAS-treated femoropopliteal segments compared to controls, due to a 70% increase in diffusivity (p<0.001). CONCLUSIONS These data illustrate that calcified plaque limited intravascular drug delivery, and controlled OAS treatment of calcific plaques resulted in greater drug permeability and improved adjunct drug delivery to diseased arteries.
Collapse
Affiliation(s)
- Abraham R Tzafriri
- CBSET Inc., 500 Shire Way, Lexington, MA, USA; IMES, MIT, 77 Massachusetts Avenue, Cambridge, MA, USA.
| | - Fernando Garcia-Polite
- CBSET Inc., 500 Shire Way, Lexington, MA, USA; IMES, MIT, 77 Massachusetts Avenue, Cambridge, MA, USA
| | - Brett Zani
- CBSET Inc., 500 Shire Way, Lexington, MA, USA
| | | | - Benny Muraj
- CBSET Inc., 500 Shire Way, Lexington, MA, USA
| | - Jennifer Knutson
- CBSET Inc., 500 Shire Way, Lexington, MA, USA; Cardiovascular Systems, Inc., 1225 Old Hwy 8NW, Saint Paul, MN, USA
| | - Robert Kohler
- Cardiovascular Systems, Inc., 1225 Old Hwy 8NW, Saint Paul, MN, USA
| | | | | | - Elazer R Edelman
- IMES, MIT, 77 Massachusetts Avenue, Cambridge, MA, USA; Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
28
|
Kolandaivelu K, Bailey L, Buzzi S, Zucker A, Milleret V, Ziogas A, Ehrbar M, Khattab AA, Stanley JRL, Wong GK, Zani B, Markham PM, Tzafriri AR, Bhatt DL, Edelman ER. Ultra-hydrophilic stent platforms promote early vascular healing and minimise late tissue response: a potential alternative to second-generation drug-eluting stents. EUROINTERVENTION 2017; 12:2148-2156. [PMID: 27993749 DOI: 10.4244/eij-d-15-00497] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
AIMS Simple surface modifications can enhance coronary stent performance. Ultra-hydrophilic surface (UHS) treatment of contemporary bare metal stents (BMS) was assessed in vivo to verify whether such stents can provide long-term efficacy comparable to second-generation drug-eluting stents (DES) while promoting healing comparably to BMS. METHODS AND RESULTS UHS-treated BMS, untreated BMS and corresponding DES were tested for three commercial platforms. A thirty-day and a 90-day porcine coronary model were used to characterise late tissue response. Three-day porcine coronary and seven-day rabbit iliac models were used for early healing assessment. In porcine coronary arteries, hydrophilic treatment reduced intimal hyperplasia relative to the BMS and corresponding DES platforms (1.5-fold to threefold reduction in 30-day angiographic and histological stenosis; p<0.04). Endothelialisation was similar on UHS-treated BMS and untreated BMS, both in swine and rabbit models, and lower on DES. Elevation in thrombotic indices was infrequent (never observed with UHS, rare with BMS, most often with DES), but, when present, correlated with reduced endothelialisation (p<0.01). CONCLUSIONS Ultra-hydrophilic surface treatment of contemporary stents conferred good healing while moderating neointimal and thrombotic responses. Such surfaces may offer safe alternatives to DES, particularly when rapid healing and short dual antiplatelet therapy (DAPT) are crucial.
Collapse
Affiliation(s)
- Kumaran Kolandaivelu
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Vo T, Lee W, Peddle A, Meere M. Modelling chemistry and biology after implantation of a drug-eluting stent. Part I: Drug transport. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2017; 14:491-509. [PMID: 27879111 DOI: 10.3934/mbe.2017030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Drug-eluting stents have been used widely to prevent restenosis of arteries following percutaneous balloon angioplasty. Mathematical modelling plays an important role in optimising the design of these stents to maximise their efficiency. When designing a drug-eluting stent system, we expect to have a sufficient amount of drug being released into the artery wall for a sufficient period to prevent restenosis. In this paper, a simple model is considered to provide an elementary description of drug release into artery tissue from an implanted stent. From the model, we identified a parameter regime to optimise the system when preparing the polymer coating. The model provides some useful order of magnitude estimates for the key quantities of interest. From the model, we can identify the time scales over which the drug traverses the artery wall and empties from the polymer coating, as well as obtain approximate formulae for the total amount of drug in the artery tissue and the fraction of drug that has released from the polymer. The model was evaluated by comparing to in-vivo experimental data and good agreement was found.
Collapse
Affiliation(s)
- Tuoi Vo
- Mathematics Applications Consortium for Science and Industry, University of Limerick, Castletroy, Co. Limerick, Ireland.
| | | | | | | |
Collapse
|
30
|
Ferreira JA, Gonçalves L, Naghipoor J, de Oliveira P, Rabczuk T. The influence of atherosclerotic plaques on the pharmacokinetics of a drug eluted from bioabsorbable stents. Math Biosci 2017; 283:71-83. [DOI: 10.1016/j.mbs.2016.11.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 09/03/2016] [Accepted: 11/05/2016] [Indexed: 11/28/2022]
|
31
|
Computational Model of Drug-Coated Balloon Delivery in a Patient-Specific Arterial Vessel with Heterogeneous Tissue Composition. Cardiovasc Eng Technol 2016; 7:406-419. [PMID: 27443840 DOI: 10.1007/s13239-016-0273-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 07/06/2016] [Indexed: 01/23/2023]
Abstract
Balloon angioplasty followed by local delivery of antiproliferative drugs to target tissue is increasingly being considered for the treatment of obstructive arterial disease, and yet there is much to appreciate regarding pharmacokinetics in arteries of non-uniform disease. We developed a computational model capable of simulating drug-coated balloon delivery to arteries of heterogeneous tissue composition comprising healthy tissue, as well as regions of fibrous, fibro-fatty, calcified and necrotic core lesions. Image processing using an unsupervised clustering technique was used to reconstruct an arterial geometry from a single, patient-specific color image obtained from intravascular ultrasound-derived virtual histology. Transport of free drug was modeled using a time-dependent reaction-diffusion model and the bound, immobilized drug using the time-dependent reaction equation. The governing equations representing the transport of free as well as bound drug along with a set of initial settings and boundary conditions were solved numerically using an explicit finite difference scheme that satisfied the Courant-Friedrichs-Lewy stability criterion. Our results support previous findings related to the transport and binding of drug in arteries where tissue retention is strongly dependent on local pharmacologic properties. Additionally, modeling results indicate that non-uniform disease composition leads to heterogeneous arterial drug distribution patterns, although further validation using animal studies is required to fully appreciate pharmacokinetics in disease-laden arteries.
Collapse
|
32
|
Tzafriri AR, Edelman ER. Endovascular Drug Delivery and Drug Elution Systems: First Principles. Interv Cardiol Clin 2016; 5:307-320. [PMID: 28582029 DOI: 10.1016/j.iccl.2016.02.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Endovascular drug delivery continues to revolutionize the treatment of atherosclerosis in coronary and peripheral vasculature. The key has been to identify biologic agents that can counter the hyperplastic tissue responses to device expansion/implantation and to develop effective local delivery strategies that can maintain efficacious drug levels across the artery wall over the course of device effects. This article reviews the evolution of endovascular drug delivery technology, explains the mechanisms they use for drug release, and provides a quantitative mechanistic framework for relating drug release mode to arterial drug distribution and effect.
Collapse
Affiliation(s)
- Abraham Rami Tzafriri
- Department of Applied Sciences, CBSET, Lexington, MA, USA; IMES, MIT, 77 Massachusetts Avenue, Building E25-438, Cambridge, MA 02139, USA.
| | - Elazer Reuven Edelman
- IMES, MIT, 77 Massachusetts Avenue, Building E25-438, Cambridge, MA 02139, USA; Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| |
Collapse
|
33
|
McKittrick CM, Kennedy S, Oldroyd KG, McGinty S, McCormick C. Modelling the Impact of Atherosclerosis on Drug Release and Distribution from Coronary Stents. Ann Biomed Eng 2016; 44:477-87. [PMID: 26384667 PMCID: PMC4764635 DOI: 10.1007/s10439-015-1456-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 09/09/2015] [Indexed: 11/24/2022]
Abstract
Although drug-eluting stents (DES) are now widely used for the treatment of coronary heart disease, there remains considerable scope for the development of enhanced designs which address some of the limitations of existing devices. The drug release profile is a key element governing the overall performance of DES. The use of in vitro, in vivo, ex vivo, in silico and mathematical models has enhanced understanding of the factors which govern drug uptake and distribution from DES. Such work has identified the physical phenomena determining the transport of drug from the stent and through tissue, and has highlighted the importance of stent coatings and drug physical properties to this process. However, there is limited information regarding the precise role that the atherosclerotic lesion has in determining the uptake and distribution of drug. In this review, we start by discussing the various models that have been used in this research area, highlighting the different types of information they can provide. We then go on to describe more recent methods that incorporate the impact of atherosclerotic lesions.
Collapse
Affiliation(s)
- C M McKittrick
- Department of Biomedical Engineering, University of Strathclyde, Glasgow, UK
| | - S Kennedy
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - K G Oldroyd
- West of Scotland Region Heart and Lung Centre, Golden Jubilee National Hospital, Dunbartonshire, UK
| | - S McGinty
- Department of Mathematics and Statistics, University of Strathclyde, Glasgow, UK
| | - C McCormick
- Department of Biomedical Engineering, University of Strathclyde, Glasgow, UK.
| |
Collapse
|
34
|
Seo T, Lafont A, Choi SY, Barakat AI. Drug-Eluting Stent Design is a Determinant of Drug Concentration at the Endothelial Cell Surface. Ann Biomed Eng 2016; 44:302-14. [PMID: 26821272 DOI: 10.1007/s10439-015-1531-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 12/02/2015] [Indexed: 10/22/2022]
Abstract
Although drug-eluting stents (DES) have greatly reduced arterial restenosis, there are persistent concerns about stent thrombosis. DES thrombosis is attributable to retarded vascular re-endothelialization due to both stent-induced flow disturbance and the inhibition by the eluted drug of endothelial cell proliferation and migration. The present computational study aims to determine the effect of DES design on both stent-induced flow disturbance and the concentration of eluted drug at the arterial luminal surface. To this end, we consider three closed-cell stent designs that resemble certain commercial stents as well as three "idealized" stents that provide insight into the impact of specific characteristics of stent design. To objectively compare the different stents, we introduce the Stent Penalty Index (SPI), a dimensionless quantity whose value increases with both the extent of flow disturbance and luminal drug concentration. Our results show that among the three closed-cell designs studied, wide cell designs lead to lower SPI and are thus expected to have a less adverse effect on vascular re-endothelialization. For the idealized stent designs, a spiral stent provides favorable SPI values, whereas an intertwined ring stent leads to an elevated SPI. The present findings shed light onto the effect of stent design on the concentration of the eluted drug at the arterial luminal surface, an important consideration in the assessment of DES performance.
Collapse
Affiliation(s)
- Taewon Seo
- School of Mechanical Engineering, Andong National University, Andong, Korea
| | - Antoine Lafont
- Department of Cardiology, European Georges Pompidou Hospital, University of Paris-Descartes, Paris, France.,Hydrodynamics Laboratory (LadHyX), CNRS UMR7646, Ecole Polytechnique, Route de Saclay, 91128, Palaiseau Cedex, France
| | - Sun-Young Choi
- Department of Radiology and Medical Research Institute, School of Medicine, Ewha Womans University, Seoul, Korea
| | - Abdul I Barakat
- Hydrodynamics Laboratory (LadHyX), CNRS UMR7646, Ecole Polytechnique, Route de Saclay, 91128, Palaiseau Cedex, France.
| |
Collapse
|
35
|
McGinty S, Pontrelli G. A general model of coupled drug release and tissue absorption for drug delivery devices. J Control Release 2015; 217:327-36. [DOI: 10.1016/j.jconrel.2015.09.025] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 08/24/2015] [Accepted: 09/14/2015] [Indexed: 11/26/2022]
|
36
|
Integrated Stent Models Based on Dimension Reduction: Review and Future Perspectives. Ann Biomed Eng 2015; 44:604-17. [PMID: 26452562 DOI: 10.1007/s10439-015-1459-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 09/12/2015] [Indexed: 10/22/2022]
Abstract
Stent modeling represents a challenging task from both the theoretical and numerical viewpoints, due to its multi-physics nature and to the complex geometrical configuration of these devices. In this light, dimensional model reduction enables a comprehensive geometrical and physical description of stenting at affordable computational costs. In this work, we aim at reviewing dimensional model reduction of stent mechanics and drug release. Firstly, we address model reduction techniques for the description of stent mechanics, aiming to illustrate how a three-dimensional stent model can be transformed into a collection of interconnected one-dimensional rods, called a "stent net". Secondly, we review available model reduction methods similarly applied to drug release, in which the "stent net" concept is adopted for modeling of drug elution. As a result, drug eluting stents are described as a distribution of concentrated drug release sources located on a graph that fully represents the stent geometry. Lastly, new results about the extension of these model reduction approaches to biodegradable stents are also discussed.
Collapse
|
37
|
Ferdous J, Kolachalama VB, Kolandaivelu K, Shazly T. Degree of bioresorbable vascular scaffold expansion modulates loss of essential function. Acta Biomater 2015; 26:195-204. [PMID: 26277377 PMCID: PMC4584207 DOI: 10.1016/j.actbio.2015.08.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 07/03/2015] [Accepted: 08/11/2015] [Indexed: 11/20/2022]
Abstract
Drug-eluting bioresorbable vascular scaffolds (BVSs) have the potential to restore lumen patency, enable recovery of the native vascular environment, and circumvent late complications associated with permanent endovascular devices. To ensure therapeutic effects persist for sufficient times prior to scaffold resorption and resultant functional loss, many factors dictating BVS performance must be identified, characterized and optimized. While some factors relate to BVS design and manufacturing, others depend on device deployment and intrinsic vascular properties. Importantly, these factors interact and cannot be considered in isolation. The objective of this study is to quantify the extent to which degree of radial expansion modulates BVS performance, specifically in the context of modifying device erosion kinetics and evolution of structural mechanics and local drug elution. We systematically varied degree of radial expansion in model BVS constructs composed of poly dl-lactide-glycolide and generated in vitro metrics of device microstructure, degradation, erosion, mechanics and drug release. Experimental data permitted development of computational models that predicted transient concentrations of scaffold-derived soluble species and drug in the arterial wall, thus enabling speculation on the short- and long-term effects of differential expansion. We demonstrate that degree of expansion significantly affects scaffold properties critical to functionality, underscoring its relevance in BVS design and optimization. STATEMENT OF SIGNIFICANCE Bioresorbable vascular scaffold (BVS) therapy is beginning to transform the treatment of obstructive artery disease, owing to effective treatment of short term vessel closure while avoiding long term consequences such as in situ, late stent thrombosis - a fatal event associated with permanent implants such as drug-eluting stents. As device scaffolding and drug elution are temporary for BVS, the notion of using this therapy in lieu of existing, clinically approved devices seems attractive. However, there is still a limited understanding regarding the optimal lifetime and performance characteristics of erodible endovascular implants. Several engineering criteria must be met and clinical endpoints confirmed to ensure these devices are both safe and effective. In this manuscript, we sought to establish general principles for the design and deployment of erodible, drug-eluting endovascular scaffolds, with focus on how differential expansion can modulate device performance.
Collapse
Affiliation(s)
- Jahid Ferdous
- Biomedical Engineering Program, College of Engineering and Computing, University of South Carolina, Columbia, SC 29208, USA
| | - Vijaya B Kolachalama
- Charles Stark Draper Laboratory, Cambridge, MA 02139, USA; Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Cardiovascular Division, Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, USA
| | - Kumaran Kolandaivelu
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Cardiovascular Division, Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, USA
| | - Tarek Shazly
- Biomedical Engineering Program, College of Engineering and Computing, University of South Carolina, Columbia, SC 29208, USA; Department of Mechanical Engineering, College of Engineering and Computing, University of South Carolina, Columbia, SC 29208, USA.
| |
Collapse
|
38
|
Sustained Efficacy and Arterial Drug Retention by a Fast Drug Eluting Cross-Linked Fatty Acid Coronary Stent Coating. Ann Biomed Eng 2015; 44:276-86. [PMID: 26314990 DOI: 10.1007/s10439-015-1435-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Accepted: 08/18/2015] [Indexed: 10/23/2022]
Abstract
The long held assumption that sustained drug elution from stent coatings over weeks to months is imperative for clinical efficacy has limited the choice for stent coating materials. We developed and evaluated an omega-3 fatty acid (O3FA) based stent coating that is 85% absorbed and elutes 97% of its Sirolimus analog (Corolimus) load within 8d of implantation. O3FA coated stents sustained drug levels in porcine coronary arteries similarly to those achieved by slow-eluting durable coated Cypher Select Plus Stents and with significantly lower levels of granuloma formation and luminal stenosis. Computational modeling confirmed that diffusion and binding constants of Corolimus and Sirolimus are identical and explained that the sustained retention of Corolimus was facilitated by binding to high affinity intracellular receptors (FKBP12). First in man outcomes were positive-unlike Cypher stents where late lumen loss drops over 6 month, there was a stable effect without diminution in the presence of O3FA. These results speak to a new paradigm whereby the safety of drug eluting stents can be optimized through the use of resorbable biocompatible coating materials with resorption kinetics that coincide with the dissociation and tissue elimination of receptor-bound drug.
Collapse
|
39
|
Fernández-Parra R, Laborda A, Lahuerta C, Lostalé F, Aramayona J, de Blas I, de Gregorio MA. Pharmacokinetic Study of Paclitaxel Concentration after Drug-Eluting Balloon Angioplasty in the Iliac Artery of Healthy and Atherosclerotic Rabbit Models. J Vasc Interv Radiol 2015; 26:1380-7.e1. [PMID: 26190185 DOI: 10.1016/j.jvir.2015.05.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 05/18/2015] [Accepted: 05/18/2015] [Indexed: 11/18/2022] Open
Abstract
PURPOSE To assess whether the presence of an atherosclerotic lesion may alter the deposition kinetics of paclitaxel on the arterial wall after drug-eluting balloon (DEB) angioplasty, as well as paclitaxel concentrations in serum and in the recovered balloons. MATERIALS AND METHODS Three New Zealand White rabbit models were created: an atheroma group (arterial mechanical injury and hyperlipidic diet; group A), a prelesional group (fat arterial infiltration, hyperlipidic diet; group B), and a control healthy group (group C). Forty-five animals underwent DEB angioplasty in the iliac artery. Arteries and serum samples were analyzed by liquid chromatography/tandem mass spectrometry at 1, 24, 48, 72, and 96 hours (arteries) and at 1, 6, 12, and 24 hours (serum). Recovered balloons were analyzed by UV chromatography. Histologic and statistical analyses were also performed. RESULTS Group A showed significantly higher arterial paclitaxel concentrations in the first hour after DEB angioplasty (632.05 ng/mg ± 125.75 in group A vs 179.55 ng/mg ± 45.64 and 168.54 ng/mg ± 83.48 in groups B and C, respectively; P < .05). Paclitaxel was undetectable in serum at 24 hours in all groups, but the amount was significantly higher (P < .05) in group B at 1, 6, and 12 hours. The paclitaxel amount in navigated balloons from group A was significantly lower than in other groups (P < .05). CONCLUSIONS Paclitaxel concentration in an atherosclerotic lesion model immediately after DEB angioplasty is nearly fourfold higher than in a healthy artery. Paclitaxel remains in the bloodstream longer when a universal state of fat arterial infiltration is achieved. These findings could have clinical implications, as studies testing commercial drug-eluting devices on healthy animals may be underestimating paclitaxel arterial uptake.
Collapse
Affiliation(s)
- Rocío Fernández-Parra
- Department of Animal Pathology, Universidad de Zaragoza, Zaragoza, Spain; Group Interventional Technics Minimal Invasive (GITMI), Zaragoza, Spain.
| | - Alicia Laborda
- Department of Animal Pathology, Universidad de Zaragoza, Zaragoza, Spain; Group Interventional Technics Minimal Invasive (GITMI), Zaragoza, Spain
| | - Celia Lahuerta
- Group Interventional Technics Minimal Invasive (GITMI), Zaragoza, Spain
| | - Fernando Lostalé
- Faculty of Veterinary Sciences, Universidad de Zaragoza, Zaragoza, Spain; Group Interventional Technics Minimal Invasive (GITMI), Zaragoza, Spain
| | - Jose Aramayona
- Department of Pharmacology, Faculty of Veterinary Sciences, Universidad de Zaragoza, Zaragoza, Spain
| | - Ignacio de Blas
- Department of Animal Pathology, Universidad de Zaragoza, Zaragoza, Spain
| | - Miguel A de Gregorio
- Faculty of Veterinary Sciences, Universidad de Zaragoza, Zaragoza, Spain; Group Interventional Technics Minimal Invasive (GITMI), Zaragoza, Spain; CIBER-BBN I3A, Zaragoza, Spain
| |
Collapse
|
40
|
Diffuse Interface Methods for Modeling Drug-Eluting Stent Coatings. Ann Biomed Eng 2015; 44:548-59. [DOI: 10.1007/s10439-015-1375-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 06/24/2015] [Indexed: 10/23/2022]
|
41
|
Bozsak F, Gonzalez-Rodriguez D, Sternberger Z, Belitz P, Bewley T, Chomaz JM, Barakat AI. Optimization of Drug Delivery by Drug-Eluting Stents. PLoS One 2015; 10:e0130182. [PMID: 26083626 PMCID: PMC4470631 DOI: 10.1371/journal.pone.0130182] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 05/18/2015] [Indexed: 01/30/2023] Open
Abstract
Drug-eluting stents (DES), which release anti-proliferative drugs into the arterial wall in a controlled manner, have drastically reduced the rate of in-stent restenosis and revolutionized the treatment of atherosclerosis. However, late stent thrombosis remains a safety concern in DES, mainly due to delayed healing of the endothelial wound inflicted during DES implantation. We present a framework to optimize DES design such that restenosis is inhibited without affecting the endothelial healing process. To this end, we have developed a computational model of fluid flow and drug transport in stented arteries and have used this model to establish a metric for quantifying DES performance. The model takes into account the multi-layered structure of the arterial wall and incorporates a reversible binding model to describe drug interaction with the cells of the arterial wall. The model is coupled to a novel optimization algorithm that allows identification of optimal DES designs. We show that optimizing the period of drug release from DES and the initial drug concentration within the coating has a drastic effect on DES performance. Paclitaxel-eluting stents perform optimally by releasing their drug either very rapidly (within a few hours) or very slowly (over periods of several months up to one year) at concentrations considerably lower than current DES. In contrast, sirolimus-eluting stents perform optimally only when drug release is slow. The results offer explanations for recent trends in the development of DES and demonstrate the potential for large improvements in DES design relative to the current state of commercial devices.
Collapse
Affiliation(s)
- Franz Bozsak
- Laboratoire d’Hydrodynamique (LadHyX), École Polytechnique—CNRS, Palaiseau cedex, France
| | | | - Zachary Sternberger
- Laboratoire d’Hydrodynamique (LadHyX), École Polytechnique—CNRS, Palaiseau cedex, France
| | - Paul Belitz
- UCSD Flow Control and Coordinated Robotics Labs Dept of MAE, UC San Diego, La Jolla, CA, USA
| | - Thomas Bewley
- UCSD Flow Control and Coordinated Robotics Labs Dept of MAE, UC San Diego, La Jolla, CA, USA
| | - Jean-Marc Chomaz
- Laboratoire d’Hydrodynamique (LadHyX), École Polytechnique—CNRS, Palaiseau cedex, France
| | - Abdul I. Barakat
- Laboratoire d’Hydrodynamique (LadHyX), École Polytechnique—CNRS, Palaiseau cedex, France
- * E-mail:
| |
Collapse
|
42
|
Vo TTN, Meere MG. A Mathematical Model for the Release of Peptide-Binding Drugs from Affinity Hydrogels. Cell Mol Bioeng 2015. [DOI: 10.1007/s12195-014-0375-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
43
|
A decade of modelling drug release from arterial stents. Math Biosci 2014; 257:80-90. [DOI: 10.1016/j.mbs.2014.06.016] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 05/16/2014] [Accepted: 06/26/2014] [Indexed: 11/20/2022]
|
44
|
Semmling B, Nagel S, Sternberg K, Weitschies W, Seidlitz A. Impact of different tissue-simulating hydrogel compartments on in vitro release and distribution from drug-eluting stents. Eur J Pharm Biopharm 2014; 87:570-8. [DOI: 10.1016/j.ejpb.2014.04.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 03/13/2014] [Accepted: 04/27/2014] [Indexed: 12/21/2022]
|
45
|
Morlacchi S, Chiastra C, Cutrì E, Zunino P, Burzotta F, Formaggia L, Dubini G, Migliavacca F. Stent deformation, physical stress, and drug elution obtained with provisional stenting, conventional culotte and Tryton-based culotte to treat bifurcations: a virtual simulation study. EUROINTERVENTION 2014; 9:1441-53. [DOI: 10.4244/eijv9i12a242] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
46
|
Bozsak F, Chomaz JM, Barakat AI. Modeling the transport of drugs eluted from stents: physical phenomena driving drug distribution in the arterial wall. Biomech Model Mechanobiol 2014; 13:327-47. [DOI: 10.1007/s10237-013-0546-4] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2013] [Accepted: 12/12/2013] [Indexed: 01/09/2023]
|
47
|
Maslov MY, Edelman ER, Wei AE, Pezone MJ, Lovich MA. High concentrations of drug in target tissues following local controlled release are utilized for both drug distribution and biologic effect: an example with epicardial inotropic drug delivery. J Control Release 2013; 171:201-7. [PMID: 23872515 DOI: 10.1016/j.jconrel.2013.06.038] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 06/28/2013] [Accepted: 06/29/2013] [Indexed: 12/16/2022]
Abstract
Local drug delivery preferentially loads target tissues with a concentration gradient from the surface or point of release that tapers down to more distant sites. Drug that diffuses down this gradient must be in unbound form, but such drug can only elicit a biologic effect through receptor interactions. Drug excess loads tissues, increasing gradients and driving penetration, but with limited added biological response. We examined the hypothesis that local application reduces dramatically systemic circulating drug levels but leads to significantly higher tissue drug concentration than might be needed with systemic infusion in a rat model of local epicardial inotropic therapy. Epinephrine was infused systemically or released locally to the anterior wall of the heart using a novel polymeric platform that provides steady, sustained release over a range of precise doses. Epinephrine tissue concentration, upregulation of cAMP, and global left ventricular response were measured at equivalent doses and at doses equally effective in raising indices of contractility. The contractile stimulation by epinephrine was linked to drug tissue levels and commensurate cAMP upregulation for IV systemic infusion, but not with local epicardial delivery. Though cAMP was a powerful predictor of contractility with local application, tissue epinephrine levels were high and variable--only a small fraction of the deposited epinephrine was utilized in second messenger signaling and biologic effect. The remainder of deposited drug was likely used in diffusive transport and distribution. Systemic side effects were far more profound with IV infusion which, though it increased contractility, also induced tachycardia and loss of systemic vascular resistance, which were not seen with local application. Local epicardial inotropic delivery illustrates then a paradigm of how target tissues differentially handle and utilize drug compared to systemic infusion.
Collapse
Affiliation(s)
- Mikhail Y Maslov
- Tufts University School of Medicine, Department of Anesthesiology and Pain Medicine, Steward St. Elizabeth's Medical Center, Boston, MA 02135, USA.
| | | | | | | | | |
Collapse
|
48
|
Kolachalama VB, Pacetti SD, Franses JW, Stankus JJ, Zhao HQ, Shazly T, Nikanorov A, Schwartz LB, Tzafriri AR, Edelman ER. Mechanisms of tissue uptake and retention in zotarolimus-coated balloon therapy. Circulation 2013; 127:2047-55. [PMID: 23584359 DOI: 10.1161/circulationaha.113.002051] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Drug-coated balloons are increasingly used for peripheral vascular disease, and, yet, mechanisms of tissue uptake and retention remain poorly characterized. Most systems to date have used paclitaxel, touting its propensity to associate with various excipients that can optimize its transfer and retention. We examined zotarolimus pharmacokinetics. METHODS AND RESULTS Animal studies, bench-top experiments, and computational modeling were integrated to quantify arterial distribution after zotarolimus-coated balloon use. Drug diffusivity and binding parameters for use in computational modeling were estimated from the kinetics of zotarolimus uptake into excised porcine femoral artery specimens immersed in radiolabeled drug solutions. Like paclitaxel, zotarolimus exhibited high partitioning into the arterial wall. Exposure of intimal tissue to drug revealed differential distribution patterns, with zotarolimus concentration decreasing with transmural depth as opposed to the multiple peaks displayed by paclitaxel. Drug release kinetics was measured by inflating zotarolimus-coated balloons in whole blood. In vivo drug uptake in swine arteries increased with inflation time but not with balloon size. Simulations coupling transmural diffusion and reversible binding to tissue proteins predicted arterial distribution that correlated with in vivo uptake. Diffusion governed drug distribution soon after balloon expansion, but binding determined drug retention. CONCLUSIONS A large bolus of zotarolimus releases during balloon inflation, some of which pervades the tissue, and a fraction of the remaining drug adheres to the tissue-lumen interface. As a result, the duration of delivery modulates tissue uptake where diffusion and reversible binding to tissue proteins determine drug transport and retention, respectively.
Collapse
|
49
|
Stark JR, Gorman JM, Sparrow EM, Abraham JP, Kohler RE. Controlling the rate of penetration of a therapeutic drug into the wall of an artery by means of a pressurized balloon. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/jbise.2013.65067] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
50
|
Semmling B, Nagel S, Sternberg K, Weitschies W, Seidlitz A. Long-term stable hydrogels for biorelevant dissolution testing of drug-eluting stents. ACTA ACUST UNITED AC 2013. [DOI: 10.7243/2050-120x-2-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|