1
|
A systematic review of anti-cancer roles and mechanisms of kaempferol as a natural compound. Cancer Cell Int 2022; 22:260. [PMID: 35986346 PMCID: PMC9392350 DOI: 10.1186/s12935-022-02673-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 08/02/2022] [Indexed: 12/13/2022] Open
Abstract
It has been shown in multiple experimental and biological investigations that kaempferol, an edible flavonoid generated from plants, may be used as an anti-cancer drug and has been shown to have anti-cancer properties. Many signaling pathways are altered in cancer cells, resulting in cell growth inhibition and death in various tumor types. Cancer is a multifaceted illness coordinated by multiple external and internal mechanisms. Natural extracts with the fewest side effects have piqued the attention of researchers in recent years, attempting to create cancer medicines based on them. An extensive array of natural product-derived anti-cancer agents have been examined to find a successful method. Numerous fruits and vegetables have high levels of naturally occurring flavonoid kaempferol, and its pharmacological and biological effects have been studied extensively. Certain forms of cancer are sensitive to kaempferol-mediated anti-cancer activity, although complete research is needed. We have endeavored to concentrate our review on controlling carcinogenic pathways by kaempferol in different malignancies. Aside from its extraordinary ability to modify cell processes, we have also discussed how kaempferol has the potential to be an effective therapy for numerous tumors.
Collapse
|
2
|
Gadouche L, Zerrouki K, Zidane A, Ababou A, Bachir Elazaar I, Merabet D, Henniche W, Ikhlef S. Genoprotective, antimutagenic, and antioxidant effect of methanolic leaf extract of Rhamnus alaternus L. from the Bissa mountains in Algeria. FOODS AND RAW MATERIALS 2022. [DOI: 10.21603/2308-4057-2022-2-530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Rhamnus alaternus L. is a Rhamnaceae shrub and a popular traditional medicine in Algeria. The present research objective was to investigate the antioxidant, genotoxic, and antigenotoxic properties of R. alaternus methanolic leaf extract.
Antiradical scavenging activity was tested by α, α-diphenyl-β-picrylhydrazyl free radical scavenging and β-carotene bleaching method. DNA damage and repair were measured by the Allium cepa test with sodium azide as a mutagenic agent. Mitotic index and chromosomal aberrations were calculated by microscopy of meristem roots stained with 2% carmine acetic.
The methanolic extract of R. alaternus leaves inhibited the free radical DPPH (IC50 = 0.74 ± 0.3 mg/mL) and prevented the oxidation of β-carotene (50.71 ± 4.17%). The root phenotyping showed that sodium azide changed their color and shape, decreased their stiffness, and significantly reduced their length. The roots treated with both R. alaternus leaf extract and sodium azide demonstrated a better root growth. The roots treated with the methanolic extract were much longer than the control roots (P < 0.001). The microscopy images of root meristem treated with the sodium azide mitodepressant agent showed significant chromosomal aberrations, which indicated a disruption of the cell cycle.
The R. alaternus leaf extract appeared to have a beneficial effect on cytotoxicity. The antioxidant properties of R. alaternus L. makes this plant an excellent genoportector.
Collapse
|
3
|
Patel DK. Biological Importance and Therapeutic Benefit of Rhamnocitrin: A Review of Pharmacology and Analytical Aspects. DRUG METABOLISM AND BIOANALYSIS LETTERS 2022; 15:150-158. [PMID: 35794741 DOI: 10.2174/2949681015666220609100336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 03/07/2022] [Accepted: 03/29/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Humans have a long history of the uses of plant based products, including extracts and pure phytoconstituents for the treatment of human diseases in the different system of medicine. In the developing countries, phytoproducts play an important role in the healthcare systems due to their medicinal importance and pharmacological activities. Flavonoids class phytochemicals are beneficial for human beings because of their free radical scavenging properties and trace metals chelating potential. Flavonoids have inhibitory potential for the growth of bacteria and virus mainly through enzyme inhibition functions and viral translation. Rhamnocitrin is also called 7- methyl-kaempferol is important flavonoids, which has been isolated from different medicinal plants and has pharmacological activities in the medicine. METHODS Present paper describes the biological potential and health beneficial aspects of rhamnocitrin in the medicine through the data analysis of published papers in the recent years in the field of medicine and modern medical sciences. Scientific data on rhamnocitrin have been collected from electronic databases such as PubMed, Google Scholar, Google, Scopus and Science Direct in the present investigation and analyzed to know the biological importance and pharmacological activities of rhamnocitrin. Pharmacological scientific data of rhamnocitrin have been collected and analyzed in the present work with their analytical aspects. RESULTS Literature data analysis of different scientific work on rhamnocitrin revealed the biological importance of rhamnocitrin in medicine. Rhamnocitrin is known to be a promising phytoconstituents found to be present in medicinal plants with a wide range of biological activities. Rhamnocitrin was found to have pharmacological activities, including anti-atherogenic, anti-oxidant, anti-cancer, anti-bacterial, anti-inflammatory, enzymatic and neuroprotective potential. Further biological effect of rhamnocitrin on adipocyte differentiation has been also studied in the present work. Analytical data on rhamnocitrin signified the application of different analytical techniques for the separation, isolation and identification of rhamnocitrin in medicine. CONCLUSION Literature data analysis of different scientific research works revealed the biological importance and therapeutic benefit of rhamnocitrin in medicine.
Collapse
Affiliation(s)
- Dinesh Kumar Patel
- Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, Uttar Pradesh, India
| |
Collapse
|
4
|
NİGUSSİE G, MELAK H, ENDALE ANNİSA M. Traditional Medicinal Uses, Phytochemicals, and Pharmacological Activities of Genus Rhamnus: A review. JOURNAL OF THE TURKISH CHEMICAL SOCIETY, SECTION A: CHEMISTRY 2021. [DOI: 10.18596/jotcsa.929188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
5
|
Razavi-Azarkhiavi K, Iranshahy M, Sahebkar A, Shirani K, Karimi G. The Protective Role of Phenolic Compounds Against Doxorubicin-induced Cardiotoxicity: A Comprehensive Review. Nutr Cancer 2016; 68:892-917. [PMID: 27341037 DOI: 10.1080/01635581.2016.1187280] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Although doxorubicin (DOX) is among the most widely used anticancer agents, its clinical application is hampered owing to its cardiotoxicity. Adjuvant therapy with an antioxidant has been suggested as a promising strategy to reduce DOX-induced adverse effects. In this context, many phenolic compounds have been reported to protect against DOX-induced cardiotoxicity. The cardioprotective effects of phenolic compounds are exerted via multiple mechanisms including inhibition of reactive oxygen species generation, apoptosis, NF-κB, p53, mitochondrial dysfunction, and DNA damage. In this review, we present a summary of the in vitro, in vivo, and clinical findings on the protective mechanisms of phenolic compounds against DOX-induced cardiotoxicity.
Collapse
Affiliation(s)
- Kamal Razavi-Azarkhiavi
- a Department of Pharmacodynamy and Toxicology , Faculty of Pharmacy, Mashhad University of Medical Sciences , Mashhad , Iran
| | - Milad Iranshahy
- b Biotechnology Research Center and School of Pharmacy, Mashhad University of Medical Sciences , Mashhad , Iran
| | - Amirhossein Sahebkar
- c Biotechnology Research Center, Mashhad University of Medical Sciences , Mashhad , Iran
| | - Kobra Shirani
- d Department of Pharmacodynamy and Toxicology , Faculty of Pharmacy, Mashhad University of Medical Sciences , Mashhad , Iran
| | - Gholamreza Karimi
- e Department of Pharmacodynamy and Toxicology , Faculty of Pharmacy, Mashhad University of Medical Sciences , Mashhad , Iran.,f Pharmaceutical Research Center and Pharmacy School, Mashhad University of Medical Sciences
| |
Collapse
|
6
|
Boussahel S, Speciale A, Dahamna S, Amar Y, Bonaccorsi I, Cacciola F, Cimino F, Donato P, Ferlazzo G, Harzallah D, Cristani M. Flavonoid profile, antioxidant and cytotoxic activity of different extracts from Algerian Rhamnus alaternus L. bark. Pharmacogn Mag 2015; 11:S102-9. [PMID: 26109754 PMCID: PMC4461948 DOI: 10.4103/0973-1296.157707] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 09/18/2014] [Accepted: 05/27/2015] [Indexed: 01/24/2023] Open
Abstract
Background: Rhamnus alaternus (Rhamnaceae) L. has been traditionally used for treatment of many diseases. Objective: In this study, we determined the antioxidant/free radical scavenger properties, the flavonoid profile and the cytotoxicity of aqueous and methanolic extracts obtained by maceration from Algerian R. alaternus bark, like also of aqueous extract prepared by decoction according to the traditional method. This to estimate the usefulness of the drug traditional preparation and compare it with those made in the laboratory. Materials and Methods: The antioxidant activity of the extracts was evaluated using five different redox-based assays, all involving one redox reaction with the oxidant. High-performance liquid chromatography/diode array detection/electrospray ionization mass spectrometry analysis was used to identify and quantify the flavonoids content. Cytotoxicity on human monocytic leukemia cells (U937) was also carried out. Results: All the extracts tested showed a good antioxidant/free radical scavenger activity and a similar flavonoid fingerprint. However, the methanolic one presented the best antioxidant activity that can be due to the highest flavonoid amount and significantly reduced the proliferation of leukemia cells. The results confirm that the extract prepared by decoction contains efficient antioxidant compounds and this justifies in part the therapeutic and preventive usefulness. Moreover, the methanolic extract exerted excellent cytotoxicity on U937 that could be attributed to kaempferol and rhamnocitrin glycosides.
Collapse
Affiliation(s)
- Soulef Boussahel
- Laboratory of Phytotherapy Applied to Chronic Diseases, Department of Biology and Animal Physiology, Faculty of Nature Sciences and Life, University Setif 1, 19000, Algeria
| | - Antonio Speciale
- Department of Drug Sciences and Health Products, University of Messina, Viale Annunziata, 98168 Messina, Messina, Italy
| | - Saliha Dahamna
- Laboratory of Phytotherapy Applied to Chronic Diseases, Department of Biology and Animal Physiology, Faculty of Nature Sciences and Life, University Setif 1, 19000, Algeria
| | - Yacine Amar
- Department of Human Pathology, Laboratory of Immunology and Biotherapy, University of Messina, Messina, Italy
| | - Irene Bonaccorsi
- Department of Human Pathology, Laboratory of Immunology and Biotherapy, University of Messina, Messina, Italy
| | - Francesco Cacciola
- Department of Environmental Science, Territorial, Food and Health Security, University of Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Francesco Cimino
- Department of Drug Sciences and Health Products, University of Messina, Viale Annunziata, 98168 Messina, Messina, Italy
| | - Paola Donato
- Department of Environmental Science, Territorial, Food and Health Security, University of Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Guido Ferlazzo
- Department of Human Pathology, Laboratory of Immunology and Biotherapy, University of Messina, Messina, Italy
| | - Daoud Harzallah
- Laboratory of Phytotherapy Applied to Chronic Diseases, Department of Biology and Animal Physiology, Faculty of Nature Sciences and Life, University Setif 1, 19000, Algeria
| | - Mariateresa Cristani
- Department of Drug Sciences and Health Products, University of Messina, Viale Annunziata, 98168 Messina, Messina, Italy
| |
Collapse
|
7
|
Boubaker J, Wissem B, Mohammed BS, Ines B, Mounira K, Ines S, Genviève DFM, Kamel G, Leila CG. Flavonoids Products fromNitraria retusaLeaves Promote Lymphoblastoid Cells Apoptosis. Nutr Cancer 2012; 64:1095-102. [DOI: 10.1080/01635581.2012.717680] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
8
|
Xiao J, Sun GB, Sun B, Wu Y, He L, Wang X, Chen RC, Cao L, Ren XY, Sun XB. Kaempferol protects against doxorubicin-induced cardiotoxicity in vivo and in vitro. Toxicology 2011; 292:53-62. [PMID: 22155320 DOI: 10.1016/j.tox.2011.11.018] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Revised: 11/11/2011] [Accepted: 11/25/2011] [Indexed: 11/24/2022]
Abstract
The long-term clinical usefulness of doxorubicin (DOX), an anthracycline with potent antitumor activity, is limited by DOX-induced cardiotoxicity. Kaempferol, one of the most common dietary flavonoids, is known to have anti-apoptotic, anti-oxidative, and anti-inflammatory properties. The current study aimed to investigate the possible protective effect of kaempferol against DOX-induced cardiotoxicity and the underlying mechanisms. Rats were intraperitoneally (i.p.) treated with DOX (3 mg/kg) every other day for a cumulative dose of 9 mg/kg. After 28 days, DOX caused retarded body and heart growth, oxidative stress, apoptotic damage, mitochondrial dysfunction, and Bcl-2 expression disturbance. In contrast, kaempferol pretreatment (10 mg/kg i.p. before DOX administration) attenuated the DOX-induced apoptotic damage in heart tissues. In vitro studies also indicated that kaempferol may have used the mitochondrion-dependent pathway to counteract the DOX-induced cardiotoxicity. This counteraction was achieved by inhibiting p53 expression and its binding to the promoter region of the Bax proapoptotic gene, but not to the Bcl-2 antiapoptotic gene. Kaempferol also effectively suppressed DOX-induced extracellular signal-regulated kinase (ERK) 1/2 activation, but had no effect on p38 and JNK. Therefore, kaempferol protected against DOX-induced cardiotoxicity, at least, partially, by inhibiting the activation of p53-mediated, mitochondrion-dependent apoptotic signaling, and by being involved in an ERK-dependent mitogen-activated protein kinase pathway. These findings elucidated the potential of kaempferol as a promising reagent for treating DOX-induced cardiotoxicity, and may have implications in the long-term clinical usefulness of DOX.
Collapse
Affiliation(s)
- Jing Xiao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Boubaker J, Bhouri W, Ben Sghaier M, Ghedira K, Dijoux Franca MG, Chekir-Ghedira L. Ethyl acetate extract and its major constituent, isorhamnetin 3-O-rutinoside, from Nitraria retusa leaves, promote apoptosis of human myelogenous erythroleukaemia cells. Cell Prolif 2011; 44:453-61. [PMID: 21951288 DOI: 10.1111/j.1365-2184.2011.00772.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
OBJECTIVE Fractionation of ethyl acetate extract (EA) obtained from Nitraria retusa leaves was assessed using different methods of chromatography, and isorhamnetin3-O-rutinoside (I3-O-R) was isolated from this extract. Its structure was determined using data obtained from (1) H and (13) C NMR spectra, as well as by various correlation experiments (COSY, HMQC and HMBC). Both EA extract and I3-O-R were investigated for their ability to induce apoptosis in human chronic myelogenous erythroleukaemia cells (K562). MATERIALS AND METHODS Apoptosis of cells from the K562 line was detected by DNA fragmentation, PARP cleavage and by evaluating activities of caspases 3 and 8. RESULTS Apoptosis, revealed by DNA fragmentation and PARP cleavage, was observed after 48-h incubation of these human myelogenous erythroleukaemia cells (K562), with the tested products. Likewise, caspase 3 and caspase 8 activities were induced in the presence of the EA extract and I3-O-R after 48 h of incubation. CONCLUSION Our results strongly suggest the involvement of the extrinsic pathway of apoptosis in cells treated by both the original EA extract and its major component, I3-O-R.
Collapse
Affiliation(s)
- J Boubaker
- Laboratory of Cellular and Molecular Biology, Faculty of Dental Medicine, University of Monastir, Monastir, Tunisia
| | | | | | | | | | | |
Collapse
|