1
|
Dorset SR, Daugaard TF, Larsen TV, Nielsen AL. RGMb impacts partial epithelial-mesenchymal transition and BMP2-Induced ID mRNA expression independent of PD-L2 in nonsmall cell lung cancer cells. Cell Biol Int 2023; 47:1799-1812. [PMID: 37434531 DOI: 10.1002/cbin.12071] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 05/26/2023] [Accepted: 07/05/2023] [Indexed: 07/13/2023]
Abstract
PD-1/PD-ligand-axis immunotherapy-mediated activation of T-cells for cancer cell elimination is a promising treatment of nonsmall cell lung cancer (NSCLC). However, the effect of immunotherapy on intracellular signaling pathways in cancer cells still needs further delineation. Repulsive Guidance Molecule b (RGMb), a regulator of Bone Morphogenetic Proteins (BMPs) signaling, interacts with the PD-ligand, PD-L2, at cancer cell membranes. Accordingly, a clarification of the functions of RGMb and its relation to PD-L2 might provide insight into NSCLC cell signaling responses to PD-1/PD-ligand-axis immunotherapy. In this study, the functions of RGMb and PD-L2 were examined using the two NSCLC cell lines HCC827 and A549. CRISPR/Cas9 was used to decrease the expression of RGMb and PD-L2, while lentiviral vectors were used to increase their expression. Downstream effects were examined by RT-qPCR and immunoassays. Ectopic expression of RGMb impacted BMP2-induced expression of ID1 and ID2 messenger RNA (mRNA) independently of PD-L2, while RGMb depletion by CRISPR/Cas9 did not affect the BMP2-mediated induction of ID1, ID2, and ID3 mRNA. However, depletion of RGMb resulted in a partial epithelial-mesenchymal transition (EMT) gene expression profile in HCC827 cells, which was not mimicked by PD-L2 depletion. The results show that RGMb is a coregulator of BMP signaling and hence, ID mRNA expression and that RGMb can control the EMT balance in NSCLC cells. However, RGMb appears to exert these functions independently of PD-L2, and accordingly, the PD-1/PD-ligand axis for immune surveillance in NSCLC cells.
Collapse
|
2
|
Chen FF, Sun N, Wang Y, Xi HY, Yang Y, Yu BZ, Li XJ. miR-212-5p exerts tumor promoter function by regulating the Id3/PI3K/Akt axis in lung adenocarcinoma cells. J Cell Physiol 2020; 235:7273-7282. [PMID: 32039486 DOI: 10.1002/jcp.29627] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Accepted: 01/06/2020] [Indexed: 12/12/2022]
Abstract
microRNAs may function as oncogenes or tumor suppressor genes that play crucial roles in human carcinogenesis and cancer development. Growing evidence revealed that the tumor suppressor Id3 is involved in tumor progression, carcinogenesis, and the tumor microenvironment. We identified miR-212-5p as a negative posttranscriptional modulator of Id3. Dual luciferase reporter assay was used to verify that Id3 is a direct target gene of miR-212-5p. Id3 was lowly expressed and miR-212-5p was highly expressed in non-small-cell lung cancer (NSCLC) tissues and cells. In addition, we found that NSCLC patients having a higher level of miR-212-5p expression had a shorter survival time. Besides this, miR-212-5p could directly target Id3 and reduce its expression. miR-212-5p overexpression significantly accelerated cell proliferation, migration, and invasion by reversing the effects of Id3. Id3 overexpression by silencing miR-212-5p expression suppressed phosphatidylinositol 3 kinase (PI3K)/Akt activity and consequently promoted apoptosis and inhibited cell proliferation in lung cancer cells. Consistent with the in vitro results, a xenograft mouse model was used to validate the fact that miR-212-5p could promote tumorigenesis by targeting Id3 and activate the PI3K/Akt pathway in vivo as well. Taken together, the present results indicated that miR-212-5p may be involved in progression of NSCLC through the PI3K/Akt signaling pathway by targeting Id3.
Collapse
Affiliation(s)
- Fang-Fang Chen
- Jinling Hospital Institute of Clinical Laboratory Science, School of Medicine, Nanjing University, Nanjing, Jiangsu, China
| | - Ning Sun
- Jinling Hospital Institute of Clinical Laboratory Science, School of Medicine, Nanjing University, Nanjing, Jiangsu, China
| | - Yin Wang
- Jinling Hospital Institute of Clinical Laboratory Science, School of Medicine, Nanjing University, Nanjing, Jiangsu, China
| | - Hai-Yan Xi
- Jinling Hospital Institute of Clinical Laboratory Science, School of Medicine, Nanjing University, Nanjing, Jiangsu, China
| | - Yang Yang
- Jinling Hospital Institute of Clinical Laboratory Science, School of Medicine, Nanjing University, Nanjing, Jiangsu, China
| | - Bai-Zeng Yu
- Jinling Hospital Institute of Clinical Laboratory Science, School of Medicine, Nanjing University, Nanjing, Jiangsu, China
| | - Xiao-Jun Li
- Jinling Hospital Institute of Clinical Laboratory Science, School of Medicine, Nanjing University, Nanjing, Jiangsu, China.,State Key Laboratory of Analytical Chemistry for Life Science, Department of Chemistry, Nanjing University, Nanjing, Jiangsu, China
| |
Collapse
|
3
|
Yu X, Yin H, Peng H, Lu G, Liu Z, Dang Z. OPFRs and BFRs induced A549 cell apoptosis by caspase-dependent mitochondrial pathway. CHEMOSPHERE 2019; 221:693-702. [PMID: 30669111 DOI: 10.1016/j.chemosphere.2019.01.074] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 01/04/2019] [Accepted: 01/09/2019] [Indexed: 06/09/2023]
Abstract
Organophosphate flame retardants (OPFRs) and brominated flame retardants (BFRs) are frequently detected in indoor environment at high levels, posing health risks to humans. However, the potential cytotoxicity mediated by OPFRs and BFRs in relevant human cell models is limited. In current study, non-small cell lung cancer A549 cell was employed to investigate toxicity mechanisms of typical OPFRs (i.e., tris (2-chloroethyl) phosphate (TCEP), tris-(2-chloropropyl) phosphate (TCPP), tricresy phosphate (TCP), triphenyl phosphate (TPHP) and BFRs (i.e., 2,2',4,4'-tetrabromodiphenyl ether (BDE-47), 3,3', 5,5'-tetrabromobisphenol A (TBBPA)). It was found that BDE-47 exhibited the strongest cytotoxicity, followed by TBBPA, TPHP, TCP, TCPP and TCEP. OPFRs and BFRs could cause the reduction of cell viability of A549 cell in both dose- and time-dependent manner after exposure for 24 and 48 h. Simultaneously, excessive generation of reactive oxygen species (ROS), mitochondrial membrane potential (MMP) dysfunction, cell apoptosis and overload of intracellular free Ca2+ demonstrated that cytotoxicity induced by OPFRs and BFRs were mediated by oxidative stress. Of note, the survival rate of cell significantly increased when pretreated with Ac-DEVD-CHO, suggesting that caspase-3 dependent mitochondrial pathway may have played a primary role in the process of A549 cell apoptosis.
Collapse
Affiliation(s)
- Xiaolong Yu
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal, School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Hua Yin
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal, School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, China.
| | - Hui Peng
- Department of Chemistry, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Guining Lu
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal, School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Zehua Liu
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal, School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Zhi Dang
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal, School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, China
| |
Collapse
|
4
|
Chen FF, Lv X, Zhao QF, Xu YZ, Song SS, Yu W, Li XJ. Inhibitor of DNA binding 3 reverses cisplatin resistance in human lung adenocarcinoma cells by regulating the PI3K/Akt pathway. Oncol Lett 2018; 16:1634-1640. [PMID: 30008847 PMCID: PMC6036442 DOI: 10.3892/ol.2018.8849] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 01/26/2018] [Indexed: 11/06/2022] Open
Abstract
Inhibitor of DNA-binding 3 (ID3) is a helix-loop-helix transcription factor that is associated with cell proliferation, differentiation and drug resistance in human cancer, and with anticancer effects in certain types of cancer cells. The present study investigated whether and how ID3 was involved in multidrug resistance (MDR) in human cisplatin (DDP)-resistant A549/DDP lung adenocarcinoma cells. The underlying mechanism of action was investigated in vitro. Cell Counting Kit-8 (CCK-8) and flow cytometry assays demonstrated that overexpression of ID3 enhanced chemosensitivity and decreased drug efflux in A549/DDP cells. Reverse transcription-quantitative polymerase chain reaction revealed that the expression of anti-apoptotic gene B-cell lymphoma-2 was significantly downregulated in cells expressing exogenous ID3 (P<0.05). These results indicated that ID3 may synergize with DDP to increase apoptosis in A549/DDP cells. ID3 overexpression modulated the activity of phosphoinositide 3-kinase/RAC serine/threonine-protein kinase signaling and downregulated the expression of multi-drug resistance protein-1, indicating that ID3 expression can reverse multi-drug resistance in A549/DDP cells. Collectively, these results indicate that ID3 is a potential effective chemotherapeutic target for the treatment of human DDP-resistant A549 lung adenocarcinoma therapy.
Collapse
Affiliation(s)
- Fang-Fang Chen
- Center of Clinical Laboratory Science, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Xing Lv
- Center of Clinical Laboratory Science, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Qin-Fei Zhao
- Center of Clinical Laboratory Science, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Yu-Zhong Xu
- Center of Clinical Laboratory Science, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Shu-Sheng Song
- Center of Clinical Laboratory Science, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Wei Yu
- Center of Clinical Laboratory Science, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Xiao-Jun Li
- Center of Clinical Laboratory Science, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu 210002, P.R. China.,State Key Laboratory of Analytical Chemistry for Life Science, Department of Chemistry, Nanjing University, Nanjing, Jiangsu 210093, P.R. China
| |
Collapse
|
5
|
CHEN FANGFANG, ZHAO QINFEI, WANG SHUXIA, WANG HAIYONG, LI XIAOJUN. Upregulation of Id3 inhibits cell proliferation and induces apoptosis in A549/DDP human lung cancer cells in vitro. Mol Med Rep 2016; 14:313-8. [DOI: 10.3892/mmr.2016.5221] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 03/23/2016] [Indexed: 11/06/2022] Open
|
6
|
Effects of upregulation of Id3 in human lung adenocarcinoma cells on proliferation, apoptosis, mobility and tumorigenicity. Cancer Gene Ther 2015; 22:431-7. [PMID: 26384138 DOI: 10.1038/cgt.2015.38] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Revised: 08/04/2015] [Accepted: 08/05/2015] [Indexed: 01/05/2023]
Abstract
The inhibitor of DNA-binding/differentiation 3 (Id3) protein is a helix-loop-helix transcription factor and may have an important role in cell proliferation and differentiation. This study was to evaluate the effects of upregulation of Id3 in human lung adenocarcinoma cells on proliferation, apoptosis, mobility and tumorigenicity. Short interference RNA suppression of Id3 (miRId3) in A549 cells was used to investigate the functional role(s) of Id3. Next, we used in vitro wound-healing assay and trans-well assay to study the effects of overexpressed Id3 on migration and invasion of A549 cells. Furthermore, to explore the influence of overexpressed Id3 on in vivo tumorigenesis, adenoviruses containing Id3 gene (Ad-Id3) and empty vector (Ad-LacZ) were generated. Co-transfection of pcDNA/miRId3 and pEGFP/Id3 into A549 cells reversed the Id3-induced cell proliferation inhibition and apoptosis. Upon Id3 transfection, A549 cells displayed decreased migratory and invasive capabilities, however, co-transfection of miRId3 and Id3 into A549 cells reversed the Id3-induced inhibitions of migratory and invasive capabilities. Three groups of nude mice were inoculated with Ad-LacZ, Ad-Id3 transfectants and untransfected A549 cells, respectively. Twenty-eight days after inoculation, tumors induced by Ad-Id3 transfectants grew much more slowly compared with Ad-LacZ transfectants and control group. This study provides for the first time both in vitro and in vivo proofs that forced expression of Id3 in lung adenocarcinoma cells reduces tumor growth rate and may be a potential target for tumor suppression.
Collapse
|
7
|
MicroRNA-410 promotes cell proliferation by targeting BRD7 in non-small cell lung cancer. FEBS Lett 2015; 589:2218-23. [PMID: 26149213 DOI: 10.1016/j.febslet.2015.06.031] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 06/10/2015] [Accepted: 06/25/2015] [Indexed: 02/07/2023]
Abstract
miR-410 acts as an oncogene or tumor suppressor gene in some malignancies. However, its role in NSCLC is still unknown. In this study, we showed that the expression of miR-410 was up-regulated in both human NSCLC tissues and cells. Overexpression of miR-410 promoted cell proliferation, migration, and invasion of NSCLC. In addition, bromodomain-containing protein 7 (BRD7) was a direct target of miR-410. MiR-410-mediated downregulation of BRD7 led to increase Akt phosphorylation. Inhibition of Akt phosphorylation can rescue the effect of miR-410 on NSCLC cell. The expression of BRD7 was downregulated in NSCLC and was inversely expressed with miR-410 in NSCLC. Our data provided new knowledge regarding the role of miR-410 in the lung cancer progression.
Collapse
|
8
|
Nio-Kobayashi J, Narayanan R, Giakoumelou S, Boswell L, Hogg K, Duncan WC. Expression and localization of inhibitor of differentiation (ID) proteins during tissue and vascular remodelling in the human corpus luteum. Mol Hum Reprod 2012; 19:82-92. [PMID: 23160862 DOI: 10.1093/molehr/gas052] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Members of the transforming growth factor-β (TGF-β) superfamily are likely to have major roles in the regulation of tissue and vascular remodelling in the corpus luteum (CL). There are four inhibitor-of-differentiation (ID1-4) genes that are regulated by members of the TGF-β superfamily and are involved in the transcriptional regulation of cell growth and differentiation. We studied their expression, localization and regulation in dated human corpora lutea from across the luteal phase (n = 22) and after human chorionic gonadotrophin (hCG) administration in vivo (n = 5), and in luteinized granulosa cells (LGCs), using immunohistochemistry and quantitative RT-PCR. ID1-4 can be localized to multiple cell types in the CL across the luteal phase. Endothelial cell ID3 (P < 0.05) and ID4 (P < 0.05) immunostaining intensities peak at the time of angiogenesis but overall ID1 (P < 0.05) and ID3 (P < 0.05) expression peaks at the time of luteolysis, and luteal ID3 expression is inhibited by hCG in vivo (P < 0.01). In LGC cultures in vitro, hCG had no effect on ID1, down-regulated ID3 (P < 0.001), and up-regulated ID2 (P < 0.001) and ID4 (P < 0.01). Bone morphogenic proteins (BMPs) had no effect on ID4 expression but up-regulated ID1 (P < 0.01 to P < 0.005). BMP up-regulation of ID2 (P < 0.05) was additive to the hCG up-regulation of ID2 expression (P < 0.001), while BMP cancelled out the down regulative effect of hCG on ID3 regulation. As well as documenting regulation patterns specific for ID1, ID2, ID3 and ID4, we have shown that IDs are located and differentially regulated in the human CL, suggesting a role in the transcriptional regulation of luteal cells during tissue and vascular remodelling.
Collapse
Affiliation(s)
- Junko Nio-Kobayashi
- MRC Centre for Reproductive Health, The University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | | | | | | | | | | |
Collapse
|
9
|
Li H, Cai Y, Xie P, Chen J, Hao L, Li G, Xiong Q. Identification and expression profile of Id1 in bighead carp in response to microcystin-LR. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2012; 34:324-333. [PMID: 22683524 DOI: 10.1016/j.etap.2012.04.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Revised: 04/21/2012] [Accepted: 04/25/2012] [Indexed: 06/01/2023]
Abstract
Microcystin-LR (MCLR) is a widespread cyanotoxin produced in algal blooms, and has potent hepatotoxicity and tumor-promoting activity. We cloned the full-length cDNA of Id1 in bighead carp. The full-length Id1 cDNA was 954bp and contained a 387bp ORF. Bighead carp Id1 shared high identity with zebrafish Id1 amino acid sequence, and phylogenetic analysis showed that teleost Id1 evolved closely. Bighead carp Id1 constitutively expressed in all tested tissues in normal. When tested at two different time points post exposure and at 3 different MCLR doses, Id1 expression increased in a time-dependent pattern, and Id1 expression in brain was very sensitive to MCLR exposure. The present study will help us to understand more about the evolution of Id1 molecule and its role in the MCLR induced cell differentiation and cancer promoting in bighead carp.
Collapse
Affiliation(s)
- Huiying Li
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| | - Yan Cai
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| | - Ping Xie
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China.
| | - Jun Chen
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| | - Le Hao
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| | - Guangyu Li
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| | - Qian Xiong
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| |
Collapse
|