1
|
He Q, Chen Y, Li Y, Cheng X, Li X, Wu M, Wan J, Luo P, Wang Y, Gu J, Zhang Y. Single immunization of non-adjuvanted recombinant TTFC-mi3 nanoparticle vaccine elicited a rapid and potent protective immunity against tetanus. Vaccine 2024; 42:125976. [PMID: 38824085 DOI: 10.1016/j.vaccine.2024.05.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/30/2024] [Accepted: 05/13/2024] [Indexed: 06/03/2024]
Abstract
The conventional inactivated tetanus toxin plays an instrumental role in preventing tetanus. Nevertheless, the challenges associated with its production process, the potential for adverse reactions, and reduced effectiveness in vulnerable populations such as neonates and the elderly rise the need for a novel tetanus toxin vaccine. Recombinant subunit vaccine offer a viable solution, and the tetanus toxin fragment C (TTFC) is emerging as a promising candidate. In this study, through spontaneous isopeptide bond formation we conjugated the recombinant TTFC to self-assembled mi3 nanoparticle, which derived from an optimized KDPG aldolase, and generated the TTFC-mi3 protein nanoparticle vaccine. We found that TTFC-mi3 is stable, uniform spherical nanoparticles. Comparing with the free TTFC alone, TTFC-mi3 enhances the uptake and subsequent activation of dendric cells (DCs). In addition, a single dose of adjuvant-free TTFC-mi3 elicited a more rapid and potent protective immunity in mice. Moreover, TTFC-mi3 is of favorable safety in vitro and in vivo. Our findings indicate that TTFC-mi3 is a rapid-response, non-aluminum-adjuvanted vaccine against tetanus.
Collapse
Affiliation(s)
- Qinggang He
- School of Medicine and Pharmacy, Ocean University of China, Key Laboratory of Marine Drugs, MOE, Qingdao, 266003, China; National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing 400038, China
| | - Yuan Chen
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing 400038, China
| | - Yuhang Li
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing 400038, China
| | - Xin Cheng
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing 400038, China
| | - Xiaoyan Li
- Department of Geriatrics, People's Liberation Army The General Hospital of Western Theater Command, Chengdu 610083, China
| | - Meilin Wu
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing 400038, China
| | - Jiqing Wan
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing 400038, China
| | - Ping Luo
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing 400038, China
| | - Yi Wang
- School of Medicine and Pharmacy, Ocean University of China, Key Laboratory of Marine Drugs, MOE, Qingdao, 266003, China.
| | - Jiang Gu
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing 400038, China.
| | - Yi Zhang
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing 400038, China.
| |
Collapse
|
2
|
Geng X, Xue J, Zheng H, Suo L, Zeng H, Zhao M, Song S, Liu Y, Zhao C, Yang P. The association between CD46 expression in B cells and the pathogenesis of airway allergy. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166845. [PMID: 37579982 DOI: 10.1016/j.bbadis.2023.166845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/05/2023] [Accepted: 08/08/2023] [Indexed: 08/16/2023]
Abstract
CD46 can facilitate the production of IgE. Activation of CD46 may contribute to the pathogenesis of allergic diseases. The aim of this study is to elucidate the association between CD46 expression in B cells and the pathogenesis of airway allergy. In this study, peripheral B cells were collected from a group of patients suffering from allergic rhinitis (AR). An AR mouse model was established to test the role of CD46 in the development of airway allergy. The results showed elevated amounts of IGE in peripheral CD46+ B cells of AR patients. CD46+ B cells of AR patients showed high reticulum endoplasmic (ER) stress status. The expression of CD46 in peripheral B cells was positively associated with the AR response in patients. The production of IgE in mice with airway allergy was prevented by ablating CD46 expression in B cells. Exposure to aluminum hydroxide up regulated the expression of Cd46 in B cells through exacerbating ER stress. Administration of Cd46 shRNA carrying nanoparticles attenuated experimental airway allergy. In conclusion, peripheral B cells in AR patients display elevated CD46 expression. Cd46 ablation in B cells can mitigate the production of IgE in mice and attenuate experimental airway allergy.
Collapse
Affiliation(s)
- Xiaorui Geng
- Department of Otolaryngology, Longgang ENT Hospital and Shenzhen ENT Institute, Shenzhen, China
| | - Jinmei Xue
- Department of Otolaryngology, Head & Neck Surgery, Second Hospital, Shanxi Medical University, Taiyuan, China
| | - Haoyue Zheng
- Shenzhen Clinical School of Medicine, Guangzhou University of Chinese Medicine, Shenzhen, China; Institute of Allergy & Immunology of Shenzhen University, State Key Laboratory of Respiratory Diseases Allergy Division at Shenzhen University, Shenzhen, China
| | - Limin Suo
- Department of Otolaryngology, Head & Neck Surgery, Second Hospital, Shanxi Medical University, Taiyuan, China
| | - Haotao Zeng
- Department of Otolaryngology, Longgang ENT Hospital and Shenzhen ENT Institute, Shenzhen, China
| | - Miao Zhao
- Department of Otolaryngology, Longgang ENT Hospital and Shenzhen ENT Institute, Shenzhen, China
| | - Shuo Song
- Institute of Allergy & Immunology of Shenzhen University, State Key Laboratory of Respiratory Diseases Allergy Division at Shenzhen University, Shenzhen, China; Department of General Practical Medicine, Third Affiliated Hospital, Shenzhen University, Shenzhen, China
| | - Yu Liu
- Institute of Allergy & Immunology of Shenzhen University, State Key Laboratory of Respiratory Diseases Allergy Division at Shenzhen University, Shenzhen, China.
| | - Changqing Zhao
- Department of Otolaryngology, Head & Neck Surgery, Second Hospital, Shanxi Medical University, Taiyuan, China.
| | - Pingchang Yang
- Shenzhen Clinical School of Medicine, Guangzhou University of Chinese Medicine, Shenzhen, China.
| |
Collapse
|
3
|
Ramírez W, Torralba D, Bourg V, Lastre M, Perez O, Jacquet A, Labrada A. Immunogenicity of a novel anti-allergic vaccine based on house dust mite purified allergens and a combination adjuvant in a murine prophylactic model. FRONTIERS IN ALLERGY 2022; 3:1040076. [PMID: 36479436 PMCID: PMC9720566 DOI: 10.3389/falgy.2022.1040076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/18/2022] [Indexed: 10/14/2023] Open
Abstract
The outer-membrane-derived proteoliposome (PL) of Neisseria meningitidis has been reported as a potent vaccine adjuvant, inducing a Th1-skewed response. This work aimed to assess the immunogenicity of a novel anti-allergic vaccine candidate based on allergens from Dermatophagoides siboney house dust mite and a combination adjuvant containing PL and Alum. In a preventative experimental setting, BALB/c mice were administered with three doses containing 2 µg of Der s1 and 0.4 µg Der s2 allergen, PL and Alum, at 7 days intervals, by subcutaneous route. Furthermore, mice were subjected to an allergen aerosol challenge for 6 consecutive days. Serum IgE, IgG1, and IgG2a allergen-specific antibodies were assessed by ELISA. Cytokine levels in supernatants of D. siboney stimulated lymphocyte cultures and in bronchoalveolar lavage (BAL) were measured by ELISA. Lung tissues were subjected to histological examination. The vaccine prevented the development of both, systemic (IgE) and local allergic responses (featuring lower IL-4, and IL-5 levels in BAL) upon allergen exposure by the inhalant route. Histological examination showed also a diminished allergic inflammatory response in the lungs. After the allergen challenge, cytokine levels in stimulated lymphocyte cultures showed lower values of IL-13 and augmented IFN-γ and IL-10. The vaccine induced a mixed IgG2a/IgG1 antibody response; although only IgG2a was PL-dependent. Both, IgG1/IgE and IgG2a/IgE ratios, showed significantly greater values in vaccinated mice. The findings support a preventative anti-allergic effect associated with the induction of a Th1-like IFN-γ/IL-10 response. IgG1/IgE and IgG2a/IgE ratios could be useful biomarkers for translation into clinical trials.
Collapse
Affiliation(s)
- Wendy Ramírez
- Department of Allergens, Allergens Lab, Centro Nacional de Biopreparados (BIOCEN), Bejucal, Mayabeque, Cuba
| | - Damarys Torralba
- Department of Allergens, Allergens Lab, Centro Nacional de Biopreparados (BIOCEN), Bejucal, Mayabeque, Cuba
| | - Virgilio Bourg
- Department of Allergens, Allergens Lab, Centro Nacional de Biopreparados (BIOCEN), Bejucal, Mayabeque, Cuba
| | - Miriam Lastre
- Department of Immunology, Havana University of Medical Sciences, Havana, Cuba
| | - Oliver Perez
- Department of Immunology, Havana University of Medical Sciences, Havana, Cuba
| | - Alain Jacquet
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Alexis Labrada
- Department of Allergens, Allergens Lab, Centro Nacional de Biopreparados (BIOCEN), Bejucal, Mayabeque, Cuba
| |
Collapse
|
4
|
Modeling Asthma in Mice Using Common Aeroallergens. Methods Mol Biol 2022; 2506:1-18. [PMID: 35771460 PMCID: PMC9721467 DOI: 10.1007/978-1-0716-2364-0_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Aeroallergens are common inducers of asthma in humans and are widely used in experimental research to generate animal models of this disease. In this chapter, we describe four mouse models of aeroallergen-induced asthma. These models differ in type and number of allergens used, route and duration of allergen exposure, and utilization of an adjuvant, representing different mechanistic variants of asthma. In addition, we describe several basic methods that are commonly used in mechanistic studies of asthma in mice. These methods include tracheotomy and bronchoalveolar lavage, cytospin and morphologic analysis of bronchoalveolar lavage cells, and lung harvest and digestion for generation of single-cell suspension.
Collapse
|
5
|
CpG-ODN Signaling via Dendritic Cells-Expressing MyD88, but Not IL-10, Inhibits Allergic Sensitization. Vaccines (Basel) 2021; 9:vaccines9070743. [PMID: 34358159 PMCID: PMC8310155 DOI: 10.3390/vaccines9070743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/21/2021] [Accepted: 06/23/2021] [Indexed: 11/17/2022] Open
Abstract
Allergen-specific T helper (Th)2 cells orchestrate upon allergen challenge the development of allergic eosinophilic lung inflammation. Sensitization with alum adjuvant, a type 2 adjuvant, has been used extensively in animal models of allergic lung disease. In contrast, type 1 adjuvants like CpG-ODN, a synthetic toll-like receptor 9 agonist, inhibit the development of Th2 immunity. CpG-ODN induce type 1 and suppressive cytokines that influence Th2 cell differentiation. Here, we investigated the immune modulatory effect of CpG-ODN on allergic sensitization to OVA with alum focusing on dendritic cells (DCs) expressing the MyD88 molecule and the suppressive IL-10 cytokine. Using mice with specific cell deletion of MyD88 molecule, we showed that CpG-ODN suppressed allergic sensitization and consequent lung allergic inflammation signaling through the MyD88 pathway on dendritic cells, but not on B-cells. This inhibition was associated with an increased production of IL-10 in the bronchoalveolar lavage fluid. Sensitization to OVA with CpG-ODN of IL-10-deficient, but not wild-type mice, induced a shift towards Th1 pattern of inflammation. Employing bone marrow-derived dendritic cells (BM-DCs) pulsed with OVA for sensitizations with or without CpG-ODN, we showed that IL-10 is dispensable for the inhibition of allergic lung Th2 responses by CpG-ODN. Moreover, the lack of IL-10 on DCs was not sufficient for the CpG-ODN-induced immune-deviation towards a Th1 pattern. Accordingly, we confirmed directly the role of MyD88 pathway on DCs in the inhibition of allergic sensitization.
Collapse
|
6
|
Zhang X, Zhang M, Li L, Chen W, Zhou W, Gao J. IRAK-M knockout promotes allergic airway inflammation, but not airway hyperresponsiveness, in house dust mite-induced experimental asthma model. J Thorac Dis 2021; 13:1413-1426. [PMID: 33841934 PMCID: PMC8024803 DOI: 10.21037/jtd-20-2133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Background IL-1 receptor associated-kinase (IRAK)-M, expressed by airway epithelium and macrophages, was shown to regulate acute and chronic airway inflammation exhibiting a biphasic response in an OVA-based animal model. House dust mite (HDM) is a common real-life aeroallergen highly relevant to asthma pathogenesis. The role of IRAK-M in HDM-induced asthma remains unknown. This study was aimed to investigate the effect of IRAK-M on allergic airway inflammation induced by HDM using IRAK-M knockout (KO) mice and the potential underlying mechanisms. Methods IRAK-M KO and wild-type (WT) mice were sensitized and challenged with HDM. The differences in airway inflammation were evaluated 24 hours after the last challenge between the two genotypes of mice using a number of cellular and molecular biological techniques. In vitro mechanistic investigation was also involved. Results Lung expression of IRAK-M was significantly upregulated by HDM in the WT mice. Compared with the WT controls, HDM-treated IRAK-M KO mice showed exacerbated infiltration of inflammatory cells, particularly Th2 cells, in the airways and mucus overproduction, higher epithelial mediators IL-25, IL-33 and TSLP and Th2 cytokines in bronchoalveolar lavage (BAL) fluid. Lung IRAK-M KO macrophages expressed higher percentage of costimulatory molecules OX40L and CD 80 and exhibited enhanced antigen uptake. However, IRAK-M KO didn’t impact the airway hyperreactivity (AHR) indirectly induced by HDM. Conclusions The findings indicate that IRAK-M protects allergic airway inflammation, not AHR, by modifying activation and antigen uptake of lung macrophages following HDM stimulation. Optimal regulation of IRAK-M might indicate an intriguing therapeutic avenue for allergic airway inflammation.
Collapse
Affiliation(s)
- Xudong Zhang
- Departments of Pulmonary and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Mingqiang Zhang
- Departments of Pulmonary and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Lun Li
- Departments of Pulmonary and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Wei Chen
- Departments of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Wexun Zhou
- Departments of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jinming Gao
- Departments of Pulmonary and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
7
|
Mirershadi F, Ahmadi M, Rezabakhsh A, Rajabi H, Rahbarghazi R, Keyhanmanesh R. Unraveling the therapeutic effects of mesenchymal stem cells in asthma. Stem Cell Res Ther 2020; 11:400. [PMID: 32933587 PMCID: PMC7493154 DOI: 10.1186/s13287-020-01921-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 08/27/2020] [Accepted: 09/02/2020] [Indexed: 12/13/2022] Open
Abstract
Asthma is a chronic inflammatory disease associated with airway hyper-responsiveness, chronic inflammatory response, and excessive structural remodeling. The current therapeutic strategies in asthmatic patients are based on controlling the activity of type 2 T helper lymphocytes in the pulmonary tissue. However, most of the available therapies are symptomatic and expensive and with diverse side outcomes in which the interruption of these modalities contributes to the relapse of asthmatic symptoms. Up to date, different reports highlighted the advantages and beneficial outcomes regarding the transplantation of different stem cell sources, and relevant products from for the diseases' alleviation and restoration of injured sites. However, efforts to better understand by which these cells elicit therapeutic effects are already underway. The precise understanding of these mechanisms will help us to translate stem cells into the clinical setting. In this review article, we described current knowledge and future perspectives related to the therapeutic application of stem cell-based therapy in animal models of asthma, with emphasis on the underlying therapeutic mechanisms.
Collapse
Affiliation(s)
- Fatemeh Mirershadi
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Daneshgah St, Tabriz, 51666-14766, Iran.,Department of Physiology, Ardabil Branch, Islamic Azad University, Ardabil, Iran
| | - Mahdi Ahmadi
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Daneshgah St, Tabriz, 51666-14766, Iran.,Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aysa Rezabakhsh
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hadi Rajabi
- Koc University Research Center for Translational Medicine (KUTTAM), Koc University School of Medicine, Istanbul, Turkey.,Department of Pulmonary Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. .,Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Daneshgah St, Tabriz, 51548-53431, Iran.
| | - Rana Keyhanmanesh
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Daneshgah St, Tabriz, 51666-14766, Iran. .,Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. .,Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
8
|
Nunes FPB, Alberca-Custódio RW, Gomes E, Fonseca DM, Yokoyama NH, Labrada A, Russo M. TLR9 agonist adsorbed to alum adjuvant prevents asthma-like responses induced by Blomia tropicalis mite extract. J Leukoc Biol 2019; 106:653-664. [PMID: 31329326 DOI: 10.1002/jlb.ma1218-475rr] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 06/24/2019] [Accepted: 06/27/2019] [Indexed: 11/08/2022] Open
Abstract
Blomia tropicalis mite is highly prevalent in tropical and subtropical regions and it is associated with allergic diseases such as rhinitis and asthma. By using an OVA-model of allergic lung disease, we have previously shown that sensitization in the presence of toll like receptors (TLRs) agonists attenuates subsequent OVA-induced allergic responses. Here, we evaluated the effect of CpG-ODN, a specific synthetic TLR-9 agonist, on the development of experimental asthma induced by Blomia tropicalis extract, a relevant source of aeroallergens. Among different protocols of Blomia tropicalis extract sensitization, the subcutaneous sensitization in the presence of alum adjuvant induced the highest Th2 responses, including high IgE levels. Adsorption of CpG to Blomia tropicalis extract/Alum attenuated the airway hyperreactivity, the infiltration of inflammatory cells including eosinophils, and the IL-5 content in BAL. In addition, lung peribronchial inflammatory infiltrate, mucus production and IL-5-producing CD3+ CD4+ T cells were significantly reduced in the Blomia tropicalis extract/Alum+CpG group. Importantly, CpG inhibited total IgE production as well as active systemic or cutaneous anaphylaxis reactions. Inhibition of pulmonary Th2 responses was associated with increased IL-10 production but not with IFN-γ production. Notably, in IL-10-deficient mice, sensitization with OVA/Alum+CpG resulted in intense lung neutrophilia and IFN-γ production, indicating that IL-10 is necessary to inhibit subsequent Th1 immunity. Our work highlights the mechanisms of allergy attenuation by CpG and it indicates the potential use of Alum-based formulation with CpG to treat allergic processes.
Collapse
Affiliation(s)
- Fernanda P B Nunes
- Laboratory of Immunobiology, Department of Immunology, Institute of Biomedical Science, University of São Paulo (ICB/USP), São Paulo, Brazil
| | - Ricardo Wesley Alberca-Custódio
- Laboratory of Immunobiology, Department of Immunology, Institute of Biomedical Science, University of São Paulo (ICB/USP), São Paulo, Brazil
| | - Eliane Gomes
- Laboratory of Immunobiology, Department of Immunology, Institute of Biomedical Science, University of São Paulo (ICB/USP), São Paulo, Brazil
| | - Denise M Fonseca
- Laboratory of Immunobiology, Department of Immunology, Institute of Biomedical Science, University of São Paulo (ICB/USP), São Paulo, Brazil
| | - Nicole H Yokoyama
- Laboratory of Immunobiology, Department of Immunology, Institute of Biomedical Science, University of São Paulo (ICB/USP), São Paulo, Brazil
| | - Alexis Labrada
- Centro Nacional De Biopreparados, Department of Allergens, Havana, Cuba
| | - Momtchilo Russo
- Laboratory of Immunobiology, Department of Immunology, Institute of Biomedical Science, University of São Paulo (ICB/USP), São Paulo, Brazil
| |
Collapse
|
9
|
Gheibi Hayat SM, Darroudi M. Nanovaccine: A novel approach in immunization. J Cell Physiol 2019; 234:12530-12536. [PMID: 30633361 DOI: 10.1002/jcp.28120] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 12/20/2018] [Indexed: 01/19/2023]
Abstract
Despite great advances in the field of vaccination, there are still needs for novel and effective vaccines because still no effective vaccines have been produced for some diseases such as malaria, acquired immune deficiency syndrome (AIDS), and tuberculosis. Furthermore, many of the existing vaccines have disadvantages such as failure to stimulate completely the immune system, in vivo instability, high toxicity, the need for cold chain, and multiple administrations. Nanotechnology has been raised as a powerful tool for solving these problems in this regard. Generally, nanovaccines are a new generation of vaccines using nanoparticles (NPs) as carriers and/or adjuvants. Due to the similar scale (size) between the NPs and pathogens, the immune system can be stimulated well, resulting in triggered cellular and humoral immunity responses. Other benefits of the nanovaccines include their better stability in blood flow to increase the shelf life in blood, enhanced immune system stimulation, no need for booster doses, no need to maintain the cold chain, and ability to create active targeting. In addition, nanovaccines have raised the hope to treat diseases such as rheumatoid arthritis, AIDS, malaria, and chronic autoimmune, and so forth.
Collapse
Affiliation(s)
- Seyed Mohammad Gheibi Hayat
- Department of Medical Genetics, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Majid Darroudi
- Department of Modern Sciences and Technologies, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
10
|
Marco-Martín G, La Rotta Hernández A, Vázquez de la Torre M, Higaki Y, Zubeldia JM, Baeza ML. Differences in the Anaphylactic Response between C3H/HeOuJ and BALB/c Mice. Int Arch Allergy Immunol 2017; 173:204-212. [DOI: 10.1159/000478983] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 06/26/2017] [Indexed: 01/14/2023] Open
|
11
|
Camps-Bossacoma M, Franch À, Pérez-Cano FJ, Castell M. Influence of Hesperidin on the Systemic and Intestinal Rat Immune Response. Nutrients 2017; 9:nu9060580. [PMID: 28587283 PMCID: PMC5490559 DOI: 10.3390/nu9060580] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 05/30/2017] [Accepted: 06/03/2017] [Indexed: 12/02/2022] Open
Abstract
Polyphenols, widely found in edible plants, influence the immune system. Nevertheless, the immunomodulatory properties of hesperidin, the predominant flavanone in oranges, have not been deeply studied. To establish the effect of hesperidin on in vivo immune response, two different conditions of immune system stimulations in Lewis rats were applied. In the first experimental design, rats were intraperitoneally immunized with ovalbumin (OVA) plus Bordetella pertussis toxin and alum as the adjuvants, and orally given 100 or 200 mg/kg hesperidin. In the second experimental design, rats were orally sensitized with OVA together with cholera toxin and fed a diet containing 0.5% hesperidin. In the first approach, hesperidin administration changed mesenteric lymph node lymphocyte (MLNL) composition, increasing the TCRαβ+ cell percentage and decreasing that of B lymphocytes. Furthermore, hesperidin enhanced the interferon (IFN)-γ production in stimulated MLNL. In the second approach, hesperidin intake modified the lymphocyte composition in the intestinal epithelium (TCRγδ+ cells) and the lamina propria (TCRγδ+, CD45RA+, natural killer, natural killer T, TCRαβ+CD4+, and TCRαβ+CD8+ cells). Nevertheless, hesperidin did not modify the level of serum anti-OVA antibodies in either study. In conclusion, hesperidin does possess immunoregulatory properties in the intestinal immune response, but this effect is not able to influence the synthesis of specific antibodies.
Collapse
Affiliation(s)
- Mariona Camps-Bossacoma
- Section of Physiology, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona (UB), 08028 Barcelona, Spain.
- Nutrition and Food Safety Research Institute (INSA-UB), 08921 Santa Coloma de Gramenet, Spain.
| | - Àngels Franch
- Section of Physiology, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona (UB), 08028 Barcelona, Spain.
- Nutrition and Food Safety Research Institute (INSA-UB), 08921 Santa Coloma de Gramenet, Spain.
| | - Francisco J Pérez-Cano
- Section of Physiology, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona (UB), 08028 Barcelona, Spain.
- Nutrition and Food Safety Research Institute (INSA-UB), 08921 Santa Coloma de Gramenet, Spain.
| | - Margarida Castell
- Section of Physiology, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona (UB), 08028 Barcelona, Spain.
- Nutrition and Food Safety Research Institute (INSA-UB), 08921 Santa Coloma de Gramenet, Spain.
| |
Collapse
|
12
|
Bortolatto J, Mirotti L, Rodriguez D, Gomes E, Russo M. Adsorption of Toll-Like Receptor 4 Agonist to Alum-Based Tetanus Toxoid Vaccine Dampens Pro-T Helper 2 Activities and Enhances Antibody Responses. J Immunol Res 2015; 2015:280238. [PMID: 26380316 PMCID: PMC4562177 DOI: 10.1155/2015/280238] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 01/04/2015] [Indexed: 12/15/2022] Open
Abstract
Aluminum salts gels (alum) are TLR-independent adjuvants and have been used to boost antibody responses in alum-based vaccines such as diphtheria, pertussis, and tetanus toxoid (DPT) triple vaccine. However, the pro-Th2 activity of alum-based vaccine formulations has not been fully appreciated. Here we found that alum-based tetanus toxoid (TT) vaccine was biased toward a Th-2 profile as shown by TT-induced airway eosinophilic inflammation, type 2 cytokine production, and high levels of IgE anaphylactic antibodies. The adsorption into alum of prototypic TLR4 agonists such as lipopolysaccharides (LPS) derived from Escherichia coli consistently dampened TT-induced Th2 activities without inducing IFNγ or Th1-like responses in the lung. Conversely, adsorption of monophosphoryl lipid A (MPLA) extracted from Salmonella minnesota, which is a TIR-domain-containing adapter-inducing interferon-β- (TRIF-) biased TLR4 agonist, was less effective in decreasing Th-2 responses. Importantly, in a situation with antigenic competition (OVA plus TT), TT-specific IgG1 or IgG2a was decreased compared with TT sensitization. Notably, LPS increased the production of IgG1 and IgG2a TT-specific antibodies. In conclusion, the addition of LPS induces a more robust IgG1 and IgG2a TT-specific antibody production and concomitantly decreases Th2-cellular and humoral responses, indicating a potential use of alum/TLR-based vaccines.
Collapse
Affiliation(s)
- Juliana Bortolatto
- Department of Immunology, Institute of Biomedical Science, University of São Paulo, 05508-000 São Paulo, SP, Brazil
| | - Luciana Mirotti
- Department of Immunology, Institute of Biomedical Science, University of São Paulo, 05508-000 São Paulo, SP, Brazil
| | - Dunia Rodriguez
- Department of Immunology, Institute of Biomedical Science, University of São Paulo, 05508-000 São Paulo, SP, Brazil
| | - Eliane Gomes
- Department of Immunology, Institute of Biomedical Science, University of São Paulo, 05508-000 São Paulo, SP, Brazil
| | - Momtchilo Russo
- Department of Immunology, Institute of Biomedical Science, University of São Paulo, 05508-000 São Paulo, SP, Brazil
| |
Collapse
|
13
|
McSorley HJ, Blair NF, Robertson E, Maizels RM. Suppression of OVA-alum induced allergy by Heligmosomoides polygyrus products is MyD88-, TRIF-, regulatory T- and B cell-independent, but is associated with reduced innate lymphoid cell activation. Exp Parasitol 2015; 158:8-17. [PMID: 25728231 DOI: 10.1016/j.exppara.2015.02.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 02/09/2015] [Accepted: 02/22/2015] [Indexed: 02/06/2023]
Abstract
The murine intestinal nematode Heligmosomoides polygyrus exerts multiple immunomodulatory effects in the host, including the suppression of allergic inflammation in mice sensitized to allergen presented with alum adjuvant. Similar suppression is attained by co-administration of H. polygyrus excretory/secretory products (HES) with the sensitizing dose of ovalbumin (OVA) in alum. We investigated the mechanism of suppression by HES in this model, and found it was maintained in MyD88xTRIF-deficient mice, implying no role for helminth- or host-derived TLR ligands, or IL-1 family cytokines that signal in a MyD88- or TRIF-dependent manner. We also found suppression was unchanged in µMT mice, which lack B2 B cells, and that suppression was not abrogated when regulatory T cells were depleted in Foxp3.LuciDTR-4 mice. However, reduced IL-5 production was seen in the first 12 h after injection of OVA-alum when HES was co-administered, associated with reduced activation of IL-5(+) and IL-13(+) group 2 innate lymphoid cells. Thus, the suppressive effects of HES on alum-mediated OVA sensitization are reflected in the very earliest innate response to allergen exposure in vivo.
Collapse
Affiliation(s)
- Henry J McSorley
- Institute of Immunology and Infection Research, and Centre for Immunity, Infection and Evolution, School of Biological Sciences, Ashworth Laboratories, University of Edinburgh, West Mains Road, Edinburgh EH9 3JT, UK; Centre for Inflammation Research, University of Edinburgh, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK.
| | - Natalie F Blair
- Institute of Immunology and Infection Research, and Centre for Immunity, Infection and Evolution, School of Biological Sciences, Ashworth Laboratories, University of Edinburgh, West Mains Road, Edinburgh EH9 3JT, UK
| | - Elaine Robertson
- Institute of Immunology and Infection Research, and Centre for Immunity, Infection and Evolution, School of Biological Sciences, Ashworth Laboratories, University of Edinburgh, West Mains Road, Edinburgh EH9 3JT, UK
| | - Rick M Maizels
- Institute of Immunology and Infection Research, and Centre for Immunity, Infection and Evolution, School of Biological Sciences, Ashworth Laboratories, University of Edinburgh, West Mains Road, Edinburgh EH9 3JT, UK
| |
Collapse
|
14
|
Liu D, Rhebergen AM, Eisenbarth SC. Licensing Adaptive Immunity by NOD-Like Receptors. Front Immunol 2013; 4:486. [PMID: 24409181 PMCID: PMC3873523 DOI: 10.3389/fimmu.2013.00486] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 12/10/2013] [Indexed: 12/30/2022] Open
Abstract
The innate immune system is composed of a diverse set of host defense molecules, physical barriers, and specialized leukocytes and is the primary form of immune defense against environmental insults. Another crucial role of innate immunity is to shape the long-lived adaptive immune response mediated by T and B lymphocytes. The activation of pattern recognition receptors (PRRs) from the Toll-like receptor family is now a classic example of innate immune molecules influencing adaptive immunity, resulting in effective antigen presentation to naïve T cells. More recent work suggests that the activation of another family of PRRs, the NOD-like receptors (NLRs), induces a different set of innate immune responses and accordingly, drives different aspects of adaptive immunity. Yet how this unusually diverse family of molecules (some without canonical PRR function) regulates immunity remains incompletely understood. In this review, we discuss the evidence for and against NLR activity orchestrating adaptive immune responses during infectious as well as non-infectious challenges.
Collapse
Affiliation(s)
- Dong Liu
- Department of Laboratory Medicine, Yale University School of Medicine , New Haven, CT , USA ; Department of Immunobiology, Yale University School of Medicine , New Haven, CT , USA ; Department of Internal Medicine, Yale University School of Medicine , New Haven, CT , USA
| | - Anne Marie Rhebergen
- Department of Laboratory Medicine, Yale University School of Medicine , New Haven, CT , USA ; Department of Immunobiology, Yale University School of Medicine , New Haven, CT , USA ; Department of Internal Medicine, Yale University School of Medicine , New Haven, CT , USA
| | - Stephanie C Eisenbarth
- Department of Laboratory Medicine, Yale University School of Medicine , New Haven, CT , USA ; Department of Immunobiology, Yale University School of Medicine , New Haven, CT , USA ; Department of Internal Medicine, Yale University School of Medicine , New Haven, CT , USA
| |
Collapse
|
15
|
Rodrigues AM, Schmidt CZP, Gualdi LP, Cao RG, Souza RGD, Pereira AC, Nuñez NK, Schleich AP, Pitrez PMC. Proposed short-term model of acute allergic response, without adjuvant use, in the lungs of mice. J Bras Pneumol 2013; 38:595-604. [PMID: 23147052 DOI: 10.1590/s1806-37132012000500009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Accepted: 08/03/2012] [Indexed: 01/10/2023] Open
Abstract
OBJECTIVE To determine whether a short-term protocol using subcutaneous sensitization with ovalbumin, without the use of adjuvants, would induce an eosinophilic response in the lungs of mice similar to that observed in previous, well-established protocols. METHODS Adult female BALB/c mice were randomized and divided into groups according to the number of sensitizations with ovalbumin and the number/dosage of intranasal ovalbumin challenges. The short-term protocol (10 days) consisted of one sensitization with ovalbumin and three ovalbumin challenges (100 µg). Total and differential cell counts in BAL fluid, levels of eosinophil peroxidase in lung tissue, and histopathological examination of the lungs were performed 24 h after the last ovalbumin challenge. RESULTS No significant differences were found among the groups regarding the variables studied. The short-term protocol, as well as the other protocols studied, induced an eosinophilic response similar to that obtained in the positive control. CONCLUSIONS Subcutaneous sensitization with ovalbumin and without the use of adjuvants resulted in a significant allergic response in the lungs of mice, even in the short-term protocol group. Our findings suggest that this short-term protocol can be used as a first-line pre-clinical test for the study of new medications, reducing the costs and observation periods.
Collapse
|
16
|
Barry J, Loh Z, Collison A, Mazzone S, Lalwani A, Zhang V, Davidson S, Wybacz E, Garlanda C, Mantovani A, Mattes J, Foster PS, Phipps S. Absence of Toll-IL-1 receptor 8/single immunoglobulin IL-1 receptor-related molecule reduces house dust mite-induced allergic airway inflammation in mice. Am J Respir Cell Mol Biol 2013; 49:481-90. [PMID: 23614768 DOI: 10.1165/rcmb.2012-0425oc] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Allergic asthma is a chronic inflammatory disease predominately associated with the activation of CD4(+) T helper Type 2 (Th2) cells. Innate pattern recognition receptors are widely acknowledged to shape the adaptive immune response. For example, the activation of airway epithelial Toll-like receptor-4 (TLR4) is necessary for the generation of house dust mite (HDM)-specific Th2 responses and the development of asthma in mice. Here we sought to determine whether the absence of Toll-interleukin-1 receptor (TIR)-8, a negative regulator of TLR4 signaling that is highly expressed in airway epithelial cells, would exacerbate HDM-induced asthma in a murine model. We found that Th2 but not Th1 or Th17 cytokine expression was significantly reduced in the lung and draining lymph nodes in HDM-sensitized/challenged TIR8 gene-deleted mice. Mucus-producing goblet cells, HDM-specific IgG1, and airway hyperreactivity were also significantly reduced in HDM-exposed, TIR8-deficient mice. Consistent with the attenuated Th2 response, eotaxin-2/CCL24 expression and airway and peribronchial eosinophils were significantly reduced in the absence of TIR8. In contrast, IL-17A-responsive chemokines and neutrophil numbers were unaffected. Similar findings were obtained for cockroach allergen. HDM sensitization alone up-regulated the expression of IL-1F5, a putative TIR8 ligand and inducer of IL-4. Of note, innate IL-4, IL-5, IL-13, and IL-33 cytokine expression was reduced during HDM sensitization in the absence of TIR8, as was the recruitment of conventional dendritic cells and basophils to the draining lymph nodes. Our findings suggest that TIR8 enhances the development of HDM-induced innate and adaptive Th2, but not Th1 or Th17 type immunity.
Collapse
Affiliation(s)
- Jessica Barry
- Centre for Asthma and Respiratory Diseases and Hunter Medical Research Institute, University of Newcastle, Newcastle, New South Wales, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Barboza R, Câmara NOS, Gomes E, Sá-Nunes A, Florsheim E, Mirotti L, Labrada A, Alcântara-Neves NM, Russo M. Endotoxin Exposure during Sensitization to Blomia tropicalis Allergens Shifts TH2 Immunity Towards a TH17-Mediated Airway Neutrophilic Inflammation: Role of TLR4 and TLR2. PLoS One 2013; 8:e67115. [PMID: 23805294 PMCID: PMC3689683 DOI: 10.1371/journal.pone.0067115] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 05/15/2013] [Indexed: 02/07/2023] Open
Abstract
Experimental evidence and epidemiological studies indicate that exposure to endotoxin lipopolysaccharide (eLPS) or other TLR agonists prevent asthma. We have previously shown in the OVA-model of asthma that eLPS administration during alum-based allergen sensitization blocked the development of lung TH2 immune responses via MyD88 pathway and IL-12/IFN-γ axis. In the present work we determined the effect of eLPS exposure during sensitization to a natural airborne allergen extract derived from the house dust mite Blomia tropicalis (Bt). Mice were subcutaneously sensitized with Bt allergens co-adsorbed onto alum with or without eLPS and challenged twice intranasally with Bt. Cellular and molecular parameters of allergic lung inflammation were evaluated 24 h after the last Bt challenge. Exposure to eLPS but not to ultrapure LPS (upLPS) preparation during sensitization to Bt allergens decreased the influx of eosinophils and increased the influx of neutrophils to the airways. Inhibition of airway eosinophilia was not observed in IFN-γdeficient mice while airway neutrophilia was not observed in IL-17RA-deficient mice as well in mice lacking MyD88, CD14, TLR4 and, surprisingly, TLR2 molecules. Notably, exposure to a synthetic TLR2 agonist (PamCSK4) also induced airway neutrophilia that was dependent on TLR2 and TLR4 molecules. In the OVA model, exposure to eLPS or PamCSK4 suppressed OVA-induced airway inflammation. Our results suggest that B. tropicalis allergens engage TLR4 that potentiates TLR2 signaling. This dual TLR activation during sensitization results in airway neutrophilic inflammation associated with increased frequency of lung TH17 cells. Our work highlight the complex interplay between bacterial products, house dust mite allergens and TLR signaling in the induction of different phenotypes of airway inflammation.
Collapse
Affiliation(s)
- Renato Barboza
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Niels Olsen Saraiva Câmara
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Eliane Gomes
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Anderson Sá-Nunes
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Esther Florsheim
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Luciana Mirotti
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Alexis Labrada
- Departmento de Alergenos, Centro Nacional de Biopreparados, La Habana, Cuba
| | | | - Momtchilo Russo
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
18
|
Ather JL, Ckless K, Martin R, Foley KL, Suratt BT, Boyson JE, Fitzgerald KA, Flavell RA, Eisenbarth SC, Poynter ME. Serum amyloid A activates the NLRP3 inflammasome and promotes Th17 allergic asthma in mice. THE JOURNAL OF IMMUNOLOGY 2011; 187:64-73. [PMID: 21622869 DOI: 10.4049/jimmunol.1100500] [Citation(s) in RCA: 187] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
IL-1β is a cytokine critical to several inflammatory diseases in which pathogenic Th17 responses are implicated. Activation of the NLRP3 inflammasome by microbial and environmental stimuli can enable the caspase-1-dependent processing and secretion of IL-1β. The acute-phase protein serum amyloid A (SAA) is highly induced during inflammatory responses, wherein it participates in systemic modulation of innate and adaptive immune responses. Elevated levels of IL-1β, SAA, and IL-17 are present in subjects with severe allergic asthma, yet the mechanistic relationship among these mediators has yet to be identified. In this study, we demonstrate that Saa3 is expressed in the lungs of mice exposed to several mixed Th2/Th17-polarizing allergic sensitization regimens. SAA instillation into the lungs elicits robust TLR2-, MyD88-, and IL-1-dependent pulmonary neutrophilic inflammation. Furthermore, SAA drives production of IL-1α, IL-1β, IL-6, IL-23, and PGE(2), causes dendritic cell (DC) maturation, and requires TLR2, MyD88, and the NLRP3 inflammasome for secretion of IL-1β by DCs and macrophages. CD4(+) T cells polyclonally stimulated in the presence of conditioned media from SAA-exposed DCs produced IL-17, and the capacity of polyclonally stimulated splenocytes to secrete IL-17 is dependent upon IL-1, TLR2, and the NLRP3 inflammasome. Additionally, in a model of allergic airway inflammation, administration of SAA to the lungs functions as an adjuvant to sensitize mice to inhaled OVA, resulting in leukocyte influx after Ag challenge and a predominance of IL-17 production from restimulated splenocytes that is dependent upon IL-1R signaling.
Collapse
Affiliation(s)
- Jennifer L Ather
- Vermont Lung Center, Division of Pulmonary Disease and Critical Care, Department of Medicine, University of Vermont, Burlington, VT 05405, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Demento SL, Siefert AL, Bandyopadhyay A, Sharp FA, Fahmy TM. Pathogen-associated molecular patterns on biomaterials: a paradigm for engineering new vaccines. Trends Biotechnol 2011; 29:294-306. [PMID: 21459467 DOI: 10.1016/j.tibtech.2011.02.004] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Revised: 02/21/2011] [Accepted: 02/23/2011] [Indexed: 12/28/2022]
Abstract
Vaccine development has progressed significantly and has moved from whole microorganisms to subunit vaccines that contain only their antigenic proteins. Subunit vaccines are often less immunogenic than whole pathogens; therefore, adjuvants must amplify the immune response, ideally establishing both innate and adaptive immunity. Incorporation of antigens into biomaterials, such as liposomes and polymers, can achieve a desired vaccine response. The physical properties of these platforms can be easily manipulated, thus allowing for controlled delivery of immunostimulatory factors and presentation of pathogen-associated molecular patterns (PAMPs) that are targeted to specific immune cells. Targeting antigen to immune cells via PAMP-modified biomaterials is a new strategy to control the subsequent development of immunity and, in turn, effective vaccination. Here, we review the recent advances in both immunology and biomaterial engineering that have brought particulate-based vaccines to reality.
Collapse
Affiliation(s)
- Stacey L Demento
- Department of Biomedical Engineering, Yale University, Malone Engineering Center, 55 Prospect Street, New Haven, CT 06511, USA
| | | | | | | | | |
Collapse
|
20
|
Da Silva CA, Pochard P, Lee CG, Elias JA. Chitin particles are multifaceted immune adjuvants. Am J Respir Crit Care Med 2010; 182:1482-91. [PMID: 20656945 DOI: 10.1164/rccm.200912-1877oc] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
RATIONALE Chitin is a ubiquitous polysaccharide in fungi, insects, allergens, and parasites that is released at sites of infection. Its role in the generation of tissue inflammation, however, is not fully understood. OBJECTIVES We hypothesized that chitin is an important adjuvant for adaptive immunity. METHODS Mice were injected with a solution of ovalbumin and chitin. MEASUREMENTS AND MAIN RESULTS We used in vivo and ex vivo/in vitro approaches to characterize the ability of chitin fragments to foster adaptive immune responses against ovalbumin and compared these responses to those induced by aluminum hydroxide (alum). In vivo, ovalbumin challenge caused an eosinophil-rich pulmonary inflammatory response, Th2 cytokine elaboration, IgE induction, and mucus metaplasia in mice that had been sensitized with ovalbumin plus chitin or ovalbumin plus alum. Toll-like receptor-2, MyD88, and IL-17A played critical roles in the chitin-induced responses, and MyD88 and IL-17A played critical roles in the alum-induced responses. In vitro, CD4(+) T cells from mice sensitized with ovalbumin plus chitin were incubated with ovalbumin-stimulated bone marrow-derived dendritic cells. In these experiments, CD4(+) T-cell proliferation, IL-5, IL-13, IFN-γ, and IL-17A production were appreciated. Toll-like receptor-2, MyD88, and IL-17A played critical roles in these in vitro adjuvant properties of chitin. TLR-2 was required for cell proliferation, whereas IL-17 and TLR-2 were required for cytokine elaboration. IL-17A also inhibited the generation of adaptive Th1 responses. CONCLUSIONS These studies demonstrate that chitin is a potent multifaceted adjuvant that induces adaptive Th2, Th1, and Th17 immune responses. They also demonstrate that the adjuvant properties of chitin are mediated by a pathway(s) that involves and is regulated by TLR-2, MyD88, and IL-17A.
Collapse
Affiliation(s)
- Carla A Da Silva
- Yale University School of Medicine, New Haven, CT 06519-1612, USA
| | | | | | | |
Collapse
|
21
|
Eisenbarth SC, Flavell RA. Innate instruction of adaptive immunity revisited: the inflammasome. EMBO Mol Med 2010; 1:92-8. [PMID: 20049709 PMCID: PMC3378119 DOI: 10.1002/emmm.200900014] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The innate immune system regulates initial responses to pathogen invasion through a set of conserved pattern recognition receptors (PRR). The best-characterized PRRs are the Toll-like receptors, which regulate not only the initial pathogen defense response, but also adaptive immune responses. Thus, insight into the function of PRRs has major implications for our understanding of the physiology of vaccination and the pathophysiology of human disease. Recent advances in our understanding of a new class of pattern recognition receptors--NOD-like receptors (NLR)--have similarly provided insight into both innate and adaptive immunity. In particular, the NLR Nlrp3 (also known as Nalp3 or Cias1) forms an intracellular multimolecular complex with active caspase-1, called an inflammasome, creating a platform for regulating secretion of interleukin-1 (IL-1) family members. Given the important role of IL-1 in inflammatory diseases, from gout to rheumatoid arthritis, the importance of understanding the regulation of such a cytokine cannot be underestimated. In this review, we address new evidence supporting a role for adaptive immune activation by recently identified NLR agonists, with a particular focus on Nlrp3. Basic questions in our understanding of Nlrp3 inflammasome activation are also presented.
Collapse
Affiliation(s)
- Stephanie C Eisenbarth
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | | |
Collapse
|
22
|
Phipps S, Hansbro N, Lam CE, Foo SY, Matthaei KI, Foster PS. Allergic sensitization is enhanced in early life through toll-like receptor 7 activation. Clin Exp Allergy 2009; 39:1920-8. [PMID: 19735273 DOI: 10.1111/j.1365-2222.2009.03335.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
BACKGROUND Prospective cohort studies suggest that children hospitalized in early life with severe infections are significantly more likely to develop recurrent wheezing and asthma. OBJECTIVE Using an inhalational mouse model of allergic airways inflammation, we sought to determine the effect of viral and bacterial-associated molecular patterns on the magnitude of the allergic inflammatory response and whether this effect was age dependent. METHODS BALB/c mice were sensitized by intranasal administration of endotoxin(low) ovalbumin (OVA) in the absence or presence of viral single-stranded (ss)RNA, lipoteichoic acid or flagellin as neonates (within the first 24 h of life) or as weanlings (4 weeks of age). Mice were challenged four times with OVA at 6 weeks of age and end-points (bronchoalveolar lavage cytology, histology, antigen-specific T and B cell responses) determined at 7 weeks of age. RESULTS Inhalational sensitization (<24 h or 4 weeks of age) and challenge with OVA induced a mild allergic inflammatory response in the airways as indicated by increased numbers of eosinophils and mucus cells, elevated serum OVA-specific IgG1, and production of T helper 2 (Th2) cytokines. Mice sensitized to endotoxin(low) OVA at birth in the presence of ssRNA or lipoteichoic acid, but not flagellin, showed an increase in the numbers of airway and tissue eosinophils, mucus producing cells and antigen-specific production of IL-13 as compared with mice exposed only to endotoxin(low) OVA. By contrast, all three TLR ligands failed to increase the magnitude of OVA-induced allergic inflammation in mice sensitized as weanlings. CONCLUSIONS Recognition of distinct microbial-associated patterns in early life may preferentially promote the de novo differentiation of bystander, antigen-specific CD4(+) T cells toward a Th2 phenotype, and promote an asthma-like phenotype upon cognate antigen exposure in later life.
Collapse
Affiliation(s)
- S Phipps
- Centre for Asthma and Respiratory Diseases (CARD) and Hunter Medical Research Institute (HMRI), School of Biomedical Sciences, University of Newcastle, Newcastle, NSW, Australia.
| | | | | | | | | | | |
Collapse
|
23
|
Novel cellular and molecular mechanisms of induction of immune responses by aluminum adjuvants. Trends Pharmacol Sci 2009; 30:287-95. [DOI: 10.1016/j.tips.2009.03.005] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2009] [Revised: 03/05/2009] [Accepted: 03/16/2009] [Indexed: 12/15/2022]
|
24
|
Conrad ML, Yildirim AO, Sonar SS, Kiliç A, Sudowe S, Lunow M, Teich R, Renz H, Garn H. Comparison of adjuvant and adjuvant-free murine experimental asthma models. Clin Exp Allergy 2009; 39:1246-54. [PMID: 19438585 PMCID: PMC2728898 DOI: 10.1111/j.1365-2222.2009.03260.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Introduction The most widely used protocol for the induction of experimental allergic airway inflammation in mice involves sensitization by intraperitoneal (i.p.) injections of the antigen ovalbumin (OVA) used in conjunction with the adjuvant aluminium hydroxide (alum). Although adjuvants are frequently used, there are questions regarding the necessity of alum for murine asthma studies due to the non-physiological nature of this chemical. Objective The objective of this study was to compare experimental asthma phenotypes between adjuvant and adjuvant-free protocols of murine allergic airway inflammation in an attempt to develop a standardized alternative to adjuvant use. Method An adjuvant-free OVA model of experimental asthma was investigated in BALB/c mice using i.p. or subcutaneous (s.c.) sensitization routes. For the s.c. sensitization, β-galactosidase (β-gal) was also tested as an antigen. In addition, OVA adjuvant and adjuvant-free sensitization protocols were compared in BALB/c and C57BL/6 mice. Open-field testing was performed to assess the effect of alum on mouse behaviour. Results Comparison of adjuvant vs. adjuvant-free and i.p. vs. s.c. protocols revealed that both adjuvant use and route of antigen application significantly influenced OVA-specific antibody production. Comparison of adjuvant and adjuvant-free protocols in this study clearly demonstrated the non-requirement of alum for the induction of acute allergic airway inflammation, as both protocols induce a similar disease phenotype. BALB/c mice were significantly more susceptible than C57BL/6 mice to sensitization. Using the improved s.c. adjuvant-free protocol, it was demonstrated that alternative antigens such as β-gal can also be utilized. Behavioural studies indicated severe distress in mice treated with alum. Conclusion The OVA s.c. adjuvant-free protocol used in this study generates a phenotype comparable to the benchmark adjuvant protocol widely used in the literature. The adjuvant-free alternative avoids the added complication of non-physiological adjuvants that may interfere with asthma treatment or prevention strategies.
Collapse
Affiliation(s)
- M L Conrad
- Department of Clinical Chemistry and Molecular Diagnostics, Medical Faculty, Philipps University of Marburg, Marburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|