1
|
Monti M, Ferrari G, Gazzurelli L, Bugatti M, Facchetti F, Vermi W. Plasmacytoid dendritic cells at the forefront of anti-cancer immunity: rewiring strategies for tumor microenvironment remodeling. J Exp Clin Cancer Res 2024; 43:196. [PMID: 39020402 PMCID: PMC11253500 DOI: 10.1186/s13046-024-03121-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/08/2024] [Indexed: 07/19/2024] Open
Abstract
Plasmacytoid dendritic cells (pDCs) are multifaceted immune cells executing various innate immunological functions. Their first line of defence consists in type I interferons (I-IFN) production upon nucleic acids sensing through endosomal Toll-like receptor (TLR) 7- and 9-dependent signalling pathways. Type I IFNs are a class of proinflammatory cytokines that have context-dependent functions on cancer immunosurveillance and immunoediting. In the last few years, different studies have reported that pDCs are also able to sense cytosolic DNA through cGAS-STING (stimulator of interferon genes) pathway eliciting a potent I-IFN production independently of TLR7/9. Human pDCs are also endowed with direct effector functions via the upregulation of TRAIL and production of granzyme B, the latter modulated by cytokines abundant in cancer tissues. pDCs have been detected in a wide variety of human malignant neoplasms, including virus-associated cancers, recruited by chemotactic stimuli. Although the role of pDCs in cancer immune surveillance is still uncompletely understood, their spontaneous activation has been rarely documented; moreover, their presence in the tumor microenvironment (TME) has been associated with a tolerogenic phenotype induced by immunosuppressive cytokines or oncometabolites. Currently tested treatment options can lead to pDCs activation and disruption of the immunosuppressive TME, providing a relevant clinical benefit. On the contrary, the antibody-drug conjugates targeting BDCA-2 on immunosuppressive tumor-associated pDCs (TA-pDCs) could be proposed as novel immunomodulatory therapies to achieve disease control in patients with advance stage hematologic malignancies or solid tumors. This Review integrate recent evidence on the biology of pDCs and their pharmacological modulation, suggesting their relevant role at the forefront of cancer immunity.
Collapse
Affiliation(s)
- Matilde Monti
- Department of Molecular and Translational Medicine, Section of Pathology, University of Brescia, P.Le Spedali Civili 1, 25123, Brescia, Italy
| | - Giorgia Ferrari
- Department of Molecular and Translational Medicine, Section of Pathology, University of Brescia, P.Le Spedali Civili 1, 25123, Brescia, Italy
| | - Luisa Gazzurelli
- Department of Molecular and Translational Medicine, Section of Pathology, University of Brescia, P.Le Spedali Civili 1, 25123, Brescia, Italy
| | - Mattia Bugatti
- Department of Molecular and Translational Medicine, Section of Pathology, University of Brescia, P.Le Spedali Civili 1, 25123, Brescia, Italy
| | - Fabio Facchetti
- Department of Molecular and Translational Medicine, Section of Pathology, University of Brescia, P.Le Spedali Civili 1, 25123, Brescia, Italy
| | - William Vermi
- Department of Molecular and Translational Medicine, Section of Pathology, University of Brescia, P.Le Spedali Civili 1, 25123, Brescia, Italy.
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA.
| |
Collapse
|
2
|
Richardson KC, Jung K, Pardo J, Turner CT, Granville DJ. Noncytotoxic Roles of Granzymes in Health and Disease. Physiology (Bethesda) 2022; 37:323-348. [PMID: 35820180 DOI: 10.1152/physiol.00011.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Granzymes are serine proteases previously believed to play exclusive and somewhat redundant roles in lymphocyte-mediated target cell death. However, recent studies have challenged this paradigm. Distinct substrate profiles and functions have since emerged for each granzyme while their dysregulated proteolytic activities have been linked to diverse pathologies.
Collapse
Affiliation(s)
- Katlyn C Richardson
- International Collaboration on Repair Discoveries (ICORD), British Columbia Professional Firefighters' Wound Healing Laboratory, Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Karen Jung
- International Collaboration on Repair Discoveries (ICORD), British Columbia Professional Firefighters' Wound Healing Laboratory, Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Julian Pardo
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragon (CIBA), Zaragoza, Spain.,Department of Microbiology, Radiology, Pediatrics and Public Health, University of Zaragoza, Zaragoza, Spain.,CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Zaragoza, Spain
| | - Christopher T Turner
- Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Melbourne, Victoria, Australia.,Future Industries Institute, University of South Australia, Adelaide, South Australia, Australia
| | - David J Granville
- International Collaboration on Repair Discoveries (ICORD), British Columbia Professional Firefighters' Wound Healing Laboratory, Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
3
|
Bencze D, Fekete T, Pázmándi K. Type I Interferon Production of Plasmacytoid Dendritic Cells under Control. Int J Mol Sci 2021; 22:ijms22084190. [PMID: 33919546 PMCID: PMC8072550 DOI: 10.3390/ijms22084190] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/11/2021] [Accepted: 04/12/2021] [Indexed: 12/11/2022] Open
Abstract
One of the most powerful and multifaceted cytokines produced by immune cells are type I interferons (IFNs), the basal secretion of which contributes to the maintenance of immune homeostasis, while their activation-induced production is essential to effective immune responses. Although, each cell is capable of producing type I IFNs, plasmacytoid dendritic cells (pDCs) possess a unique ability to rapidly produce large amounts of them. Importantly, type I IFNs have a prominent role in the pathomechanism of various pDC-associated diseases. Deficiency in type I IFN production increases the risk of more severe viral infections and the development of certain allergic reactions, and supports tumor resistance; nevertheless, its overproduction promotes autoimmune reactions. Therefore, the tight regulation of type I IFN responses of pDCs is essential to maintain an adequate level of immune response without causing adverse effects. Here, our goal was to summarize those endogenous factors that can influence the type I IFN responses of pDCs, and thus might serve as possible therapeutic targets in pDC-associated diseases. Furthermore, we briefly discuss the current therapeutic approaches targeting the pDC-type I IFN axis in viral infections, cancer, autoimmunity, and allergy, together with their limitations defined by the Janus-faced nature of pDC-derived type I IFNs.
Collapse
Affiliation(s)
- Dóra Bencze
- Department of Immunology, Faculty of Medicine, University of Debrecen, 1 Egyetem Square, H-4032 Debrecen, Hungary; (D.B.); (T.F.)
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, 1 Egyetem Square, H-4032 Debrecen, Hungary
| | - Tünde Fekete
- Department of Immunology, Faculty of Medicine, University of Debrecen, 1 Egyetem Square, H-4032 Debrecen, Hungary; (D.B.); (T.F.)
| | - Kitti Pázmándi
- Department of Immunology, Faculty of Medicine, University of Debrecen, 1 Egyetem Square, H-4032 Debrecen, Hungary; (D.B.); (T.F.)
- Correspondence: ; Tel./Fax: +36-52-417-159
| |
Collapse
|
4
|
Serum Vitamin D and Immunogenicity of Influenza Vaccination in the Elderly. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1324:21-28. [PMID: 32946038 DOI: 10.1007/5584_2020_580] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Vaccination is the most effective preventive measure that reduces the risk of influenza and post-influenza complications. It prevents influenza-related hospitalizations and deaths in 50-60% and about 80% of patients aged over 65, respectively. There is the clinical plausibility of the association between serum vitamin D (VIT D) content and viral respiratory infections. In this study, we addressed the issue of a vitamin D modulatory effect on the immune response to seasonal influenza vaccination in elderly persons. The study comprised 96 participants aged 60-75 during the 2016/17 epidemic season. After the determination of the baseline content of VIT D and anti-hemagglutinin antibodies (H1, H3, and HB), participants were vaccinated with a trivalent vaccine. The content of the anti-hemagglutinin antibodies was rechecked 4-5 weeks afterward, showing inappreciable alterations. The negative findings of this study make the influence of serum VIT D content on the immunogenicity of influenza vaccination highly unlikely in elderly persons.
Collapse
|
5
|
Gulubova M. Myeloid and Plasmacytoid Dendritic Cells and Cancer - New Insights. Open Access Maced J Med Sci 2019; 7:3324-3340. [PMID: 31949539 PMCID: PMC6953922 DOI: 10.3889/oamjms.2019.735] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 08/21/2019] [Accepted: 08/22/2019] [Indexed: 02/06/2023] Open
Abstract
Dendritic cells (DCs) use effective mechanisms to combat antigens and to bring about adaptive immune responses through their ability to stimulate näive T cells. At present, four major cell types are categorised as DCs: Classical or conventional (cDCs), Plasmacytoid (pDCs), Langerhans cells (LCs), and monocyte-derived DCs (Mo-DCs). It was suggested that pDCs, CD1c+ DCs and CD141+ DCs in humans are equivalent to mouse pDCs, CD11b+ DCs and CD8α+ DCs, respectively. Human CD141+ DCs compared to mouse CD8α+ DCs have remarkable functional and transcriptomic similarities. Characteristic markers, transcription factors, toll-like receptors, T helpers (Th) polarisation, cytokines, etc. of DCs are discussed in this review. Major histocompatibility complex (MHC) I and II antigen presentation, cross-presentation and Th polarisation are defined, and the dual role of DCs in the tumour is discussed. Human DCs are the main immune cells that orchestrate the immune response in the tumour microenvironment.
Collapse
Affiliation(s)
- Maya Gulubova
- Department of General and Clinical Pathology, Medical Faculty, Trakia University, Stara Zagora, Bulgaria
| |
Collapse
|
6
|
Hu X, Zhong Y, Lambers TT, Jiang W. Anti-inflammatory activity of extensively hydrolyzed casein is mediated by granzyme B. Inflamm Res 2019; 68:715-722. [PMID: 31168680 DOI: 10.1007/s00011-019-01254-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/23/2019] [Accepted: 05/28/2019] [Indexed: 11/28/2022] Open
Abstract
OBJECTIVE Nutritional factors such as extensively hydrolyzed casein (eHC) have been proposed to exert anti-inflammatory activity and affect clinical outcomes such as tolerance development in cow's milk allergy. Granzyme B (GrB) induces apoptosis in target cells and also controls the inflammatory response. Whether eHC could affect the activity of granzyme B and play a role in GrB-mediated inflammatory responses in vitro was unknown. METHODS The activity of GrB was measured using the substrate Ac-IEPD-pNA. Inflammatory responses were induced with GrB in HCT-8 and THP-1 cells, and pro-inflammatory cytokines were determined at the transcriptional and protein level. RESULTS GrB could induce the expression of IL-1β in HCT-8 cells, and IL-8 and MCP-1 in THP-1 cells, respectively. Interestingly, GrB acted synergistically on LPS-induced inflammation in HCT-8 cells and eHC reduced pro-inflammatory responses in both GrB and LPS-mediated inflammation. Further analyses revealed that eHC could inhibit the biological activities and cytotoxic activities of GrB and then could reduce GrB-mediated inflammatory response. CONCLUSION The results from the current study suggest that anti-inflammatory activity of extensively hydrolyzed casein is, to a certain extent, mediated through modulation of granzyme B activity and responses.
Collapse
Affiliation(s)
- Xuefei Hu
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yan Zhong
- Global Discovery Department, Mead Johnson Pediatric Nutrition Institute, Middenkampweg 2, 6545 CJ, Nijmegen, The Netherlands
| | - Tim T Lambers
- Global Discovery Department, Mead Johnson Pediatric Nutrition Institute, Middenkampweg 2, 6545 CJ, Nijmegen, The Netherlands
| | - Wenzheng Jiang
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
7
|
Aiello A, Giannessi F, Percario ZA, Affabris E. The involvement of plasmacytoid cells in HIV infection and pathogenesis. Cytokine Growth Factor Rev 2018; 40:77-89. [PMID: 29588163 DOI: 10.1016/j.cytogfr.2018.03.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 03/20/2018] [Accepted: 03/20/2018] [Indexed: 12/15/2022]
Abstract
Plasmacytoid dendritic cells (pDCs) are a unique dendritic cell subset that are specialized in type I interferon (IFN) production. pDCs are key players in the antiviral immune response and serve as bridge between innate and adaptive immunity. Although pDCs do not represent the main reservoir of the Human Immunodeficiency Virus (HIV), they are a crucial subset in HIV infection as they influence viral transmission, target cell infection and antigen presentation. pDCs act as inflammatory and immunosuppressive cells, thus contributing to HIV disease progression. This review provides a state of art analysis of the interactions between HIV and pDCs and their potential roles in HIV transmission, chronic immune activation and immunosuppression. A thorough understanding of the roles of pDCs in HIV infection will help to improve therapeutic strategies to fight HIV infection, and will further increase our knowledge on this important immune cell subset.
Collapse
|
8
|
Xu L, Liu X, Liu H, Zhu L, Zhu H, Zhang J, Ren L, Wang P, Hu F, Su Y. Impairment of Granzyme B-Producing Regulatory B Cells Correlates with Exacerbated Rheumatoid Arthritis. Front Immunol 2017; 8:768. [PMID: 28713386 PMCID: PMC5491972 DOI: 10.3389/fimmu.2017.00768] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 06/16/2017] [Indexed: 12/24/2022] Open
Abstract
Hyperactivated B cells have been demonstrated the contribution to the development of rheumatoid arthritis (RA). While the recognition of the negative regulatory function of B cells further promoted our understanding of their pathogenic role in RA. Recently, a new population of granzyme B (GrB)-producing B cells was identified, which was proved to be involved in cancer and infectious diseases. However, their characteristics and roles in RA remain to be elucidated. In the present study, we aim to further characterize whether B cells could produce GrB and reveal their potential role in the pathogenesis of RA. Here, we further demonstrated peripheral blood B cells from healthy individuals could produce and secrete GrB, which could be enhanced by IL-21 and/or anti-B-cell receptor stimulation. These cells could negatively regulate Th1 and Th17 cells partly via downregulating TCR zeta chain and inducing T cell apoptosis, which might be termed as GrB-producing regulatory B cells (Bregs). These GrB-producing Bregs were significantly decreased under RA circumstance concomitant of lower levels of IL-21 receptor, with impaired regulatory functions on Th1 and Th17 cells. Moreover, the frequencies of these cells were negatively correlated with RA patient disease activity and clinical features. After effective therapy with disease remission in RA, these GrB-producing Bregs could be recovered. Therefore, our data revealed that B cells could produce GrB with immunosuppressive functions, and the impairment of this Breg subset was correlated with RA pathogenesis.
Collapse
Affiliation(s)
- Liling Xu
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing, China.,Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China.,Peking-Tsinghua Center for Life Sciences, Beijing, China
| | - Xu Liu
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing, China.,Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China.,Peking-Tsinghua Center for Life Sciences, Beijing, China
| | - Hongjiang Liu
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing, China.,Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China.,Peking-Tsinghua Center for Life Sciences, Beijing, China
| | - Lei Zhu
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing, China.,Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China.,Peking-Tsinghua Center for Life Sciences, Beijing, China
| | - Huaqun Zhu
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing, China.,Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China.,Peking-Tsinghua Center for Life Sciences, Beijing, China
| | - Jian Zhang
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing, China.,Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China.,Peking-Tsinghua Center for Life Sciences, Beijing, China
| | - Limin Ren
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing, China.,Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China.,Peking-Tsinghua Center for Life Sciences, Beijing, China
| | - Pingzhang Wang
- Department of Immunology, School of Basic Medical Science, Peking University, Beijing, China
| | - Fanlei Hu
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing, China.,Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China.,Peking-Tsinghua Center for Life Sciences, Beijing, China
| | - Yin Su
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing, China.,Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China.,Peking-Tsinghua Center for Life Sciences, Beijing, China
| |
Collapse
|
9
|
Tworek D, Smith SG, Salter BM, Baatjes AJ, Scime T, Watson R, Obminski C, Gauvreau GM, O'Byrne PM. IL-25 Receptor Expression on Airway Dendritic Cells after Allergen Challenge in Subjects with Asthma. Am J Respir Crit Care Med 2017; 193:957-64. [PMID: 26625138 DOI: 10.1164/rccm.201509-1751oc] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
RATIONALE IL-25 is an epithelial-derived cytokine, whose effects are mediated by the IL-25 receptor (IL-17RB), and that has been implicated in the pathogenesis of allergic disease and airway viral responses. Airway myeloid dendritic cells (mDCs) and plasmacytoid dendritic cells (pDCs) are professional antigen-presenting cells. pDCs may play a protective role in asthma and are key players in the innate immune response through recognition of microbial products via Toll-like receptors (TLRs). The effects of inhaled allergens on the expression of IL-17RB by mDCs and pDCs, and the effects of IL-25 on pDCs, are unknown. OBJECTIVES To evaluate allergen-induced changes in IL-17RB expression by mDCs and pDCs and to investigate the effects of IL-25 on pDCs. METHODS Patients with mild atopic asthma (n = 13) were challenged with inhaled allergen. Blood and sputum DCs were enumerated and IL-17RB expression was determined by flow cytometry before and 7 and 24 hours after allergen challenge. The effects of IL-25 on pDCs in vitro were also assessed. MEASUREMENTS AND MAIN RESULTS Inhaled allergen significantly increased mDC and pDC numbers in sputum but not in blood. The percentage of IL-17RB(+) mDCs and pDCs was significantly increased in blood and sputum 24 hours after challenge. IL-25 up-regulated TLR9 expression by pDCs and orchestrated the responses to TLR9 ligation. CONCLUSIONS IL-17RB is up-regulated on blood and sputum mDCs and pDCs after allergen inhalation. IL-25 modulates pDC function through an effect on TLR9 expression.
Collapse
Affiliation(s)
- Damian Tworek
- 1 Firestone Institute of Respiratory Health and the Department of Medicine, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, Ontario, Canada; and.,2 Department of Internal Medicine, Asthma and Allergy, Medical University of Lodz, Lodz, Poland
| | - Steven G Smith
- 1 Firestone Institute of Respiratory Health and the Department of Medicine, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, Ontario, Canada; and
| | - Brittany M Salter
- 1 Firestone Institute of Respiratory Health and the Department of Medicine, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, Ontario, Canada; and
| | - Adrian J Baatjes
- 1 Firestone Institute of Respiratory Health and the Department of Medicine, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, Ontario, Canada; and
| | - Tara Scime
- 1 Firestone Institute of Respiratory Health and the Department of Medicine, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, Ontario, Canada; and
| | - Rick Watson
- 1 Firestone Institute of Respiratory Health and the Department of Medicine, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, Ontario, Canada; and
| | - Caitlin Obminski
- 1 Firestone Institute of Respiratory Health and the Department of Medicine, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, Ontario, Canada; and
| | - Gail M Gauvreau
- 1 Firestone Institute of Respiratory Health and the Department of Medicine, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, Ontario, Canada; and
| | - Paul M O'Byrne
- 1 Firestone Institute of Respiratory Health and the Department of Medicine, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, Ontario, Canada; and
| |
Collapse
|
10
|
IL-21 May Promote Granzyme B-Dependent NK/Plasmacytoid Dendritic Cell Functional Interaction in Cutaneous Lupus Erythematosus. J Invest Dermatol 2017; 137:1493-1500. [PMID: 28344062 DOI: 10.1016/j.jid.2017.03.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 02/14/2017] [Accepted: 03/06/2017] [Indexed: 12/13/2022]
Abstract
Autoimmune skin lesions are characterized by a complex cytokine milieu and by the accumulation of plasmacytoid dendritic cells (pDCs). Granzyme B (GrB) transcript is abundant in activated pDCs, though its mechanisms of regulation and biological role are largely unknown. Here we report that IL-21 was the only T helper 1/T helper 17 cytokine able to induce the expression and secretion of GrB by pDCs and that this action was counteracted by the autocrine production of type I IFNs. In lupus erythematosus skin lesions, the percentage of GrB+ pDCs directly correlated with the IL-21/MxA ratio, indicating that the interplay between these two cytokines finely tunes the levels of pDC-dependent GrB also in vivo. In lupus erythematosus, pDCs colocalized with professional cytotoxic cells at sites of epithelial damage, suggesting a role in keratinocyte killing. Accordingly, we demonstrate that supernatants of IL-21-activated pDCs promoted autologous keratinocyte killing by natural killer cells and this action was dependent on GrB. These results propose a GrB-dependent functional interaction between pDCs and natural killer cells and highlight a negative feedback regulation by type I IFNs in vitro and in vivo that may function to limit excessive tissue damage.
Collapse
|
11
|
Heidkamp GF, Sander J, Lehmann CHK, Heger L, Eissing N, Baranska A, Lu hr JJ, Hoffmann A, Reimer KC, Lux A, So der S, Hartmann A, Zenk J, Ulas T, McGovern N, Alexiou C, Spriewald B, Mackensen A, Schuler G, Schauf B, Forster A, Repp R, Fasching PA, Purbojo A, Cesnjevar R, Ullrich E, Ginhoux F, Schlitzer A, Nimmerjahn F, Schultze JL, Dudziak D. Human lymphoid organ dendritic cell identity is predominantly dictated by ontogeny, not tissue microenvironment. Sci Immunol 2016; 1:1/6/eaai7677. [DOI: 10.1126/sciimmunol.aai7677] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 11/14/2016] [Indexed: 11/02/2022]
|
12
|
Upham JW, Xi Y. Dendritic Cells in Human Lung Disease: Recent Advances. Chest 2016; 151:668-673. [PMID: 27729261 DOI: 10.1016/j.chest.2016.09.030] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 08/18/2016] [Accepted: 09/29/2016] [Indexed: 11/17/2022] Open
Abstract
Dendritic cells (DCs) are potent antigen-presenting cells. Because of their particular ability to initiate and regulate cell mediated and humoral immune responses, there is considerable interest in the role that DCs play in the pathogenesis of various lung diseases, especially those in which there is an excessive immune response to specific antigens (as in asthma) or a deficient immune response (as in lung cancer). A number of DC subpopulations have been defined in the lungs, including myeloid or conventional DCs that initiate T-cell immunity and antibody production and plasmacytoid DCs that have an important role in antiviral immunity and immune tolerance. Although an extensive body of literature has documented the role that DCs play in experimental models of lung disease, this review will highlight recent advances in our understanding of DC function in human disease, including asthma, COPD, antimicrobial immunity, and lung cancer. The future is likely to see new approaches whereby antigens and small molecules are targeted to receptors on particular DC subpopulations in order to modify pulmonary immune responses.
Collapse
Affiliation(s)
- John W Upham
- School of Medicine, The University of Queensland, Translational Research Institute, Woolloongabba, Brisbane, Australia; Department of Respiratory Medicine, Princess Alexandra Hospital, Brisbane, QLD, Australia.
| | - Yang Xi
- School of Medicine, The University of Queensland, Translational Research Institute, Woolloongabba, Brisbane, Australia
| |
Collapse
|
13
|
Saadeh D, Kurban M, Abbas O. Plasmacytoid dendritic cell role in cutaneous malignancies. J Dermatol Sci 2016; 83:3-9. [PMID: 27236509 DOI: 10.1016/j.jdermsci.2016.05.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 05/06/2016] [Accepted: 05/12/2016] [Indexed: 02/08/2023]
Abstract
Plasmacytoid dendritic cells (pDCs) correspond to a specialized dendritic cell population that exhibit plasma cell morphology, express CD4, CD123, HLA-DR, blood-derived dendritic cell antigen-2 (BDCA-2), and Toll-like receptor (TLR)7 and TLR9 within endosomal compartments. Through their production of type I interferons (IFNs) and other pro-inflammatory cytokines, pDCs provide anti-viral resistance and link the innate and adaptive immunity by controlling the function of myeloid DCs, lymphocytes, and natural killer (NK) cells. While lacking from normal skin, pDCs are usually recruited to the skin in several cutaneous pathologies where they appear to be involved in the pathogenesis of several infectious, inflammatory/autoimmune, and neoplastic entities. Among the latter group, pDCs have the potential to induce anti-tumour immunity; however, the complex interaction of pDCs with tumor cells and their micro-environment appears to contribute to immunologic tolerance. In this review, we aim at highlighting the role played by pDCs in cutaneous malignancies with special emphasis on the underlying mechanisms.
Collapse
Affiliation(s)
- Dana Saadeh
- Dermatology Department, American University of Beirut Medical Center, Lebanon
| | - Mazen Kurban
- Dermatology Department, American University of Beirut Medical Center, Lebanon
| | - Ossama Abbas
- Dermatology Department, American University of Beirut Medical Center, Lebanon.
| |
Collapse
|
14
|
Boichuk SV, Khaiboullina SF, Ramazanov BR, Khasanova GR, Ivanovskaya KA, Nizamutdinov EZ, Sharafutdinov MR, Martynova EV, DeMeirleir KL, Hulstaert J, Anokhin VA, Rizvanov AA, Lombardi VC. Gut-Associated Plasmacytoid Dendritic Cells Display an Immature Phenotype and Upregulated Granzyme B in Subjects with HIV/AIDS. Front Immunol 2015; 6:485. [PMID: 26441989 PMCID: PMC4585323 DOI: 10.3389/fimmu.2015.00485] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Accepted: 09/07/2015] [Indexed: 12/18/2022] Open
Abstract
Plasmacytoid dendritic cells (pDCs) in the periphery of subjects with human immunodeficiency virus (HIV)/acquired immunodeficiency syndrome (AIDS) decrease over time, and the fate of these cells has been the subject of ongoing investigation. Previous studies using animal models as well as studies with humans suggest that these cells may redistribute to the gut. Other studies using animal models propose that the periphery pDCs are depleted and gut is repopulated with naive pDCs from the bone marrow. In the present study, we utilized immunohistochemistry to survey duodenum biopsies of subjects with HIV/AIDS and controls. We observed that subjects with HIV/AIDS had increased infiltration of Ki-67+/CD303+ pDCs, a phenotype consistent with bone marrow-derived pre-pDCs. In contrast, Ki-67+/CD303+ pDCs were not observed in control biopsies. We additionally observed that gut-associated pDCs in HIV/AIDS cases upregulate the proapoptotic enzyme granzyme B; however, no granzyme B was observed in the pDCs of control biopsies. Our data are consistent with reports in animal models that suggest periphery pDCs are depleted by exhaustion and that naive pDCs egress from the bone marrow and ultimately infiltrate the gut mucosa. Additionally, our observation of granzyme B upregulation in naive pDCs may identify a contributing factor to the gut pathology associated with HIV infection.
Collapse
Affiliation(s)
| | - Svetlana F Khaiboullina
- Institute of Fundamental Medicine and Biology, Kazan Federal University , Kazan , Russia ; Nevada Center for Biomedical Research , Reno, NV , USA
| | | | | | | | | | | | - Ekaterina V Martynova
- Institute of Fundamental Medicine and Biology, Kazan Federal University , Kazan , Russia
| | | | - Jan Hulstaert
- Department of Gastroenterology, General Hospital Jan Portaels , Vilvoorde , Belgium
| | | | - Albert A Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University , Kazan , Russia
| | - Vincent C Lombardi
- Institute of Fundamental Medicine and Biology, Kazan Federal University , Kazan , Russia ; Nevada Center for Biomedical Research , Reno, NV , USA ; Department of Biochemistry and Molecular Biology, School of Medicine, University of Nevada , Reno, NV , USA
| |
Collapse
|
15
|
Wensink AC, Hack CE, Bovenschen N. Granzymes regulate proinflammatory cytokine responses. THE JOURNAL OF IMMUNOLOGY 2015; 194:491-7. [PMID: 25556251 DOI: 10.4049/jimmunol.1401214] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Granzymes (Grs) are serine proteases mainly produced by cytotoxic lymphocytes and are traditionally considered to cause apoptosis in tumor cells and virally infected cells. However, the cytotoxicity of several Grs is currently being debated, and additional, predominantly extracellular, functions of Grs in inflammation are emerging. Extracellular soluble Grs are elevated in the circulation of patients with autoimmune diseases and infections. Additionally, Grs are expressed by several types of immune cells other than cytotoxic lymphocytes. Recent research has revealed novel immunomodulatory functions of Grs. In this review, we provide a comprehensive overview on the role of Grs in inflammation, highlighting their role in cytokine induction and processing.
Collapse
Affiliation(s)
- Annette C Wensink
- Department of Pathology, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands; and Laboratory of Translational Immunology, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - C Erik Hack
- Laboratory of Translational Immunology, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Niels Bovenschen
- Department of Pathology, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands; and Laboratory of Translational Immunology, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| |
Collapse
|
16
|
Karrich JJ, Jachimowski LCM, Uittenbogaart CH, Blom B. The plasmacytoid dendritic cell as the Swiss army knife of the immune system: molecular regulation of its multifaceted functions. THE JOURNAL OF IMMUNOLOGY 2015; 193:5772-8. [PMID: 25480956 DOI: 10.4049/jimmunol.1401541] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Plasmacytoid dendritic cells (pDC) have been regarded as the "professional type I IFN-producing cells" of the immune system following viral recognition that relies on the expression of TLR7 and TLR9. Furthermore, pDC link the innate and adaptive immune systems via cytokine production and Ag presentation. More recently, their ability to induce tolerance and cytotoxicity has been added to their "immune skills." Such a broad range of actions, resembling the diverse functional features of a Swiss army knife, requires strong and prompt molecular regulation to prevent detrimental effects, including autoimmune pathogenesis or tumor escape. Over the last decades, we and other investigators have started to unravel some aspects of the signaling pathways that regulate the various functions of human pDC. In this article, we review aspects of the molecular regulatory mechanisms to control pDC function in light of their multifaceted roles during immunity, autoimmunity, and cancer.
Collapse
Affiliation(s)
- Julien J Karrich
- Department of Cell Biology and Histology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | - Loes C M Jachimowski
- Department of Cell Biology and Histology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | - Christel H Uittenbogaart
- Department of Pediatrics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095; and Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095
| | - Bianca Blom
- Department of Cell Biology and Histology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands;
| |
Collapse
|
17
|
Lombardi VC, Khaiboullina SF, Rizvanov AA. Plasmacytoid dendritic cells, a role in neoplastic prevention and progression. Eur J Clin Invest 2015; 45 Suppl 1:1-8. [PMID: 25524580 DOI: 10.1111/eci.12363] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Plasmacytoid dendritic cells (pDCs) are multifunctional bone-marrow-derived immune cells that are key players in bridging the innate and adaptive immune systems. Activation of pDCs through toll-like receptor agonists has proven to be an effective treatment for some neoplastic disorders. MATERIALS AND METHODS In this mini-review, we will explore the fascinating contribution of pDCs to neoplastic pathology and discuss their potential utilization in cancer immunotherapy. RESULTS Current research suggests that pDCs have cytotoxic potential and can effectively induce apoptosis of tumour-derived cells lines. They are also reported to display tolerogenic function with the ability to suppress T-cell proliferation, analogous to regulatory T cells. In this capacity, they are critical in the suppression of autoimmunity but can be exploited by tumour cells to circumvent the expansion of tumour-specific T cells, thereby allowing tumours to persist. CONCLUSION Several forms of skin cancer are successfully treated with the topical drug Imiquimod, which activates pDCs through toll-like receptor 7 engagement. Additionally, pDC-based anticancer vaccines have shown encouraging results for the treatment of melanoma in early trials. Future studies regarding the contributions of pDCs to malignancy will likely afford many opportunities for immunotherapy strategies.
Collapse
Affiliation(s)
- Vincent C Lombardi
- Department of Biochemistry and Molecular Biology, University of Nevada School of Medicine, University of Nevada, Reno, NV, USA; Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Republic of Tatarstan, Russian Federation
| | | | | |
Collapse
|
18
|
Chistiakov DA, Orekhov AN, Sobenin IA, Bobryshev YV. Plasmacytoid dendritic cells: development, functions, and role in atherosclerotic inflammation. Front Physiol 2014; 5:279. [PMID: 25120492 PMCID: PMC4110479 DOI: 10.3389/fphys.2014.00279] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 07/08/2014] [Indexed: 12/21/2022] Open
Abstract
Plasmacytoid dendritic cells (pDCs) are a specialized subset of DCs that links innate and adaptive immunity. They sense viral and bacterial pathogens and release high levels of Type I interferons (IFN-I) in response to infection. pDCs were shown to contribute to inflammatory responses in the steady state and in pathology. In atherosclerosis, pDCs are involved in priming vascular inflammation and atherogenesis through production of IFN-I and chemokines that attract inflammatory cells to inflamed sites. pDCs also contribute to the proinflammatory activation of effector T cells, cytotoxic T cells, and conventional DCs. However, tolerogenic populations of pDCs are found that suppress atherosclerosis-associated inflammation through down-regulation of function and proliferation of proinflammatory T cell subsets and induction of regulatory T cells with potent immunomodulatory properties. Notably, atheroprotective tolerogenic DCs could be induced by certain self-antigens or bacterial antigens that suggests for great therapeutic potential of these DCs for development of DC-based anti-atherogenic vaccines.
Collapse
Affiliation(s)
- Dimitry A. Chistiakov
- Department of Medical Nanobiotechnology, Pirogov Russian State Medical UniversityMoscow, Russia
| | - Alexander N. Orekhov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Russian Academy of Medical SciencesMoscow, Russia
- Institute for Atherosclerosis Research, Skolkovo Innovative CenterMoscow, Russia
| | - Igor A. Sobenin
- Institute for Atherosclerosis Research, Skolkovo Innovative CenterMoscow, Russia
- Laboratory of Medical Genetics, Russian Cardiology Research and Production ComplexMoscow, Russia
| | - Yuri V. Bobryshev
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Russian Academy of Medical SciencesMoscow, Russia
- Faculty of Medicine, University of New South WalesSydney, NSW, Australia
- School of Medicine, University of Western SydneyCampbelltown, NSW, Australia
| |
Collapse
|
19
|
Tel J, Anguille S, Waterborg CEJ, Smits EL, Figdor CG, de Vries IJM. Tumoricidal activity of human dendritic cells. Trends Immunol 2013; 35:38-46. [PMID: 24262387 PMCID: PMC7106406 DOI: 10.1016/j.it.2013.10.007] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 10/18/2013] [Accepted: 10/21/2013] [Indexed: 12/11/2022]
Abstract
Human DC subsets can exert tumoricidal activity. Killer DCs exploit several mechanisms for direct killing of target cells, including TRAIL and granzyme B. Antigen presentation and/or IFN production are important additional effector functions. Killer DCs are promising targets for immunotherapeutic strategies.
Dendritic cells (DCs) are a family of professional antigen-presenting cells (APCs) that are able to initiate innate and adaptive immune responses against pathogens and tumor cells. The DC family is heterogeneous and is classically divided into two main subsets, each with its unique phenotypic and functional characteristics: myeloid DCs (mDCs) and plasmacytoid DCs (pDCs). Recent results have provided intriguing evidence that both DC subsets can also function as direct cytotoxic effector cells; in particular, against cancer cells. In this review, we delve into this understudied function of human DCs and discuss why these so-called killer DCs might become important tools in future cancer immunotherapies.
Collapse
Affiliation(s)
- Jurjen Tel
- Department of Tumor Immunology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Sébastien Anguille
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - Claire E J Waterborg
- Department of Tumor Immunology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Evelien L Smits
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium; Center for Oncological Research, University of Antwerp, Antwerp, Belgium
| | - Carl G Figdor
- Department of Tumor Immunology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - I Jolanda M de Vries
- Department of Tumor Immunology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands; Department of Medical Oncology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands.
| |
Collapse
|
20
|
Proklou A, Soulitzis N, Neofytou E, Rovina N, Zervas E, Gaga M, Siafakas NM, Tzortzaki EG. Granule Cytotoxic Activity and Oxidative DNA Damage in Smoking and Nonsmoking Patients With Asthma. Chest 2013; 144:1230-1237. [DOI: 10.1378/chest.13-0367] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
|
21
|
Bratke K, Prieschenk C, Garbe K, Kuepper M, Lommatzsch M, Virchow JC. Plasmacytoid dendritic cells in allergic asthma and the role of inhaled corticosteroid treatment. Clin Exp Allergy 2013; 43:312-21. [PMID: 23414539 DOI: 10.1111/cea.12064] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 10/19/2012] [Accepted: 11/02/2012] [Indexed: 02/03/2023]
Abstract
BACKGROUND Plasmacytoid dendritic cells (pDCs) infiltrate sites of acute Th2-dominant inflammation, but their role in allergic asthma remains unclear. OBJECTIVE To characterize circulating pDCs from patients with allergic asthma outside their respective allergen season. METHODS Adhesion molecules, co-stimulatory molecules, immunoglobulin receptors and chemokine receptors were quantified on blood pDCs from 20 patients with allergic asthma and 18 healthy controls using flow cytometry. In addition, IL-6-, TNF-α- and IFN-α-secretion were analysed after stimulating isolated pDCs with TLR7- and TLR9-ligands. RESULTS Plasmacytoid dendritic cells from patients with allergic asthma showed an increased expression of chemokine receptors involved in inflamed tissue homing such as CCR2, CCR4, CCR9, CCR10, CXCR2, CXCR5 and CXCR6, while the expression of the lymph node homing receptor CXCR3 was down-regulated. In addition, these pDCs exhibited a higher expression of activation markers and Th2-associated molecules such as CD40, CD62L, CD64 and FcεRIα. In contrast, TLR7-mediated IL-6-, TNF-α- and IFN-α-secretion was significantly reduced in pDCs from patients with asthma. The TLR9-mediated cytokine response was only suppressed in those patients who were treated with inhaled corticosteroids (ICS) during previous allergen seasons. The same effect was observed for CD54 and OX40L expression. CONCLUSIONS We report an increased expression of activation markers, and Th2-associated molecules, and an increased migratory potential of circulating pDCs in allergic asthma. These changes are accompanied by a reduced TLR7-mediated cytokine response. In addition, our results suggest a longterm impact of ICS treatment on the characteristics of circulating pDCs.
Collapse
Affiliation(s)
- K Bratke
- Department of Pneumology, University of Rostock, Rostock, Germany.
| | | | | | | | | | | |
Collapse
|
22
|
Maazi H, Lam J, Lombardi V, Akbari O. Role of plasmacytoid dendritic cell subsets in allergic asthma. Allergy 2013; 68:695-701. [PMID: 23662841 DOI: 10.1111/all.12166] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2013] [Indexed: 12/19/2022]
Abstract
Plasmacytoid dendritic cells (pDCs) are major type-I interferon-producing cells that play important roles in antiviral immunity and tolerance induction. These cells share a common DC progenitor with conventional DCs, and Fms-like tyrosine kinase-3 ligand is essential for their development. Several subsets of pDCs have been identified to date including CCR9(+) , CD9(+) , and CD2(+) pDCs. Recently, three subsets of pDCs were described, namely CD8α(-) β(-) , CD8α(+) β(-) , and CD8α(+) β(+) subsets. Interestingly, CD8α(+) β(-) and CD8α(+) β(+) but not CD8α(-) β(-) pDCs were shown to have tolerogenic effects in experimentally induced allergic asthma. These tolerogenic effects were shown to be mediated by the generation of FOXP3(+) regulatory T cells through retinoic acid and the induction of retinaldehyde dehydrogenase enzymes. These newly described subsets of pDCs show high potentials for novel therapeutic approaches for the treatment of allergic diseases. In this review, we will address the new progress in our understanding of pDC biology with respect to allergic disease, in particular allergic asthma.
Collapse
Affiliation(s)
- H. Maazi
- Department of Molecular Microbiology and Immunology; Keck School of Medicine; University of Southern California; Los Angeles; CA; USA
| | - J. Lam
- Department of Molecular Microbiology and Immunology; Keck School of Medicine; University of Southern California; Los Angeles; CA; USA
| | - V. Lombardi
- Department of Molecular Microbiology and Immunology; Keck School of Medicine; University of Southern California; Los Angeles; CA; USA
| | - O. Akbari
- Department of Molecular Microbiology and Immunology; Keck School of Medicine; University of Southern California; Los Angeles; CA; USA
| |
Collapse
|
23
|
IL-21-stimulated human plasmacytoid dendritic cells secrete granzyme B, which impairs their capacity to induce T-cell proliferation. Blood 2013; 121:3103-11. [PMID: 23407551 DOI: 10.1182/blood-2012-08-452995] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Plasmacytoid dendritic cells (pDCs) play a crucial role during innate immunity by secreting bulk amounts of type I interferons (IFNs) in response to Toll-like receptor (TLR)-mediated pathogen recognition. In addition, pDCs can also contribute to adaptive immunity by activation of antigen-specific T cells. Furthermore, it is well established that pDCs contribute to the pathogenesis of autoimmune diseases, including lupus. Interleukin-21 (IL-21) is a cytokine produced by activated CD4(+) T and natural killer T (NKT) cells and has a pleiotropic role in immunity by controlling myeloid DC-, NKT-, T-, and B-cell functions. It has remained elusive whether IL-21 affects pDCs. Here we investigate the role of IL-21 in human pDC activation and function and observe that IL-21 activates signal transducer and activator of transcription 3 in line with the finding that pDCs express the IL-21 receptor. Although IL-21 did not affect TLR-induced type I IFNs, IL-6, and TNF-α nor expression of major-histocompatibility-complex class II or costimulatory molecules, IL-21 markedly increased expression of the serine protease granzyme B (GrB). We demonstrate that GrB induction was, in part, responsible for IL-21-mediated downmodulation of CD4(+) T-cell proliferation induced by TLR preactivated pDCs. Collectively, our data provide evidence that pDCs are important cells to consider when investigating the role of IL-21 in immunity or pathogenesis.
Collapse
|
24
|
Jonker M, Wubben J, Haanstra K, Vierboom M, 't Hart B. Comparative analysis of inflammatory infiltrates in collagen-induced arthritis, kidney graft rejection and delayed-type hypersensitivity in non-human primates. Inflamm Res 2012; 62:181-94. [PMID: 23064655 DOI: 10.1007/s00011-012-0564-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 08/15/2012] [Accepted: 10/03/2012] [Indexed: 01/05/2023] Open
Abstract
OBJECTIVES Non-human primates are immunologically closely related to humans providing relevant models of inflammatory disorders often used to evaluate new immunomodulating therapies. The aim of the study was to compare inflammatory infiltrates of acute graft rejection (AR) and collagen-induced arthritis (CIA) to delayed-type hypersensitivity (DTH) reactions as the latter model may serve as a less invasive animal model. MATERIALS AND METHODS Tissue samples of AR, CIA and DTH were obtained from rhesus monkeys used in several pre-clinical studies. The infiltrate composition was determined by immunohistochemical analysis. RESULTS The infiltrates in AR consisted of T cells, macrophages and B cells. The presence of lymphoid structures in AR suggested ongoing intragraft immune activation. The synovia of CIA contained predominantly macrophages and few T cells. The DTH infiltrates were dominated by T cells when the challenged was ovalbumin (OVA) and by macrophages when the challenge was tetanus toxoid (TT). CONCLUSIONS The histology of AR resembles aspects of DTH to OVA while that of CIA showed similarities of the DTH to TT. The DTH reaction could serve as a model to study immunomodulating drugs for acute rejection and the acute inflammatory phase of autoimmunity.
Collapse
Affiliation(s)
- Margreet Jonker
- Biomedical Primate Research Centre, PO BOX 3306, 2280 GH Rijswijk, Netherlands.
| | | | | | | | | |
Collapse
|
25
|
Manna PP, Hira SK, Das AA, Bandyopadhyay S, Gupta KK. IL-15 activated human peripheral blood dendritic cell kill allogeneic and xenogeneic endothelial cells via apoptosis. Cytokine 2012; 61:118-26. [PMID: 23058476 DOI: 10.1016/j.cyto.2012.09.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Revised: 07/15/2012] [Accepted: 09/07/2012] [Indexed: 11/26/2022]
Abstract
IL-15 is a pleotropic cytokine, which plays an important role in natural killer (NK) cell activity, T cell proliferation, and T cell cytotoxic activity. Dendritic cells (DCs) are the major antigen presenting cells in the immune system and presumed to play an important role in immune recognition of allo and xenotransplantation. We showed that IL-15 activated human peripheral blood DC is cytotoxic to human and porcine aortic endothelial cells. Unlike DCs, CD14+ monocytes show no cytotoxicity against the endothelial cells. This cytotoxic potential of IL-15 activated DC against endothelial cells is dose dependent and increases significantly upon treatment of endothelial cells with inflammatory cytokines like TNF-α or IFN-γ. The cytotoxic potential of IL-15 activated DC is associated with apoptosis of endothelial cells, as indicated by the increased Annexin V staining, caspase activation and loss of mitochondrial membrane potential. Further it was observed that DC mediated cytotoxicity against endothelial cell is mediated via granzyme B possibly secreted by the activated DCs.
Collapse
Affiliation(s)
- Partha Pratim Manna
- Immunobiology Laboratory, Banaras Hindu University, Varanasi 221 005, India.
| | | | | | | | | |
Collapse
|
26
|
Kalb ML, Glaser A, Stary G, Koszik F, Stingl G. TRAIL+ Human Plasmacytoid Dendritic Cells Kill Tumor Cells In Vitro: Mechanisms of Imiquimod- and IFN-α–Mediated Antitumor Reactivity. THE JOURNAL OF IMMUNOLOGY 2012; 188:1583-91. [DOI: 10.4049/jimmunol.1102437] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
27
|
Abstract
Plasmacytoid DC (pDC) are type-I IFN-producing cells known for their capacity to promote anti-viral innate and adaptive immune responses. Despite their potent anti-viral function, when compared with conventional DC, pDC exhibit poor immunostimulatory ability and their interaction with T cells often favors the generation of Treg. pDC are activated primarily in response to ssRNA and ssDNA through TLR7 and TLR9, respectively, but also through TLR-independent mechanisms. Non-lymphoid tissue pDC, such as those residing in the airways, gut, and liver, play a significant role in regulating mucosal immunity and are critical for the development of tolerance to inhaled or ingested antigens. Herein we discuss properties that define tolerogenic pDC and how their unique characteristics translate into an ability to regulate immunity and promote the development of tolerance. We cover the importance of pDC during intrathymic Treg development and the maintenance of peripheral tolerance, as well as their regulatory role in transplantation, autoimmunity, and cancer. We highlight recent findings regarding danger-associated molecular pattern and PAMP signaling in the regulation of pDC function, and how the ability of pDC to promote tolerance translates into the potential clinical applications of these cells as therapeutic targets to regulate immune reactivity.
Collapse
Affiliation(s)
- Benjamin M Matta
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | | | | |
Collapse
|