1
|
Autoimmunity versus autoinflammation--friend or foe? Wien Med Wochenschr 2014; 164:274-7. [PMID: 25004809 DOI: 10.1007/s10354-014-0290-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 06/17/2014] [Indexed: 01/08/2023]
Abstract
"Autoimmunity" is a designation dependent on the conventional immunological issue of self/non-self discrimination. Identification of novel target autoantigens is still an important issue ongoing in classical tissue-specific autoimmune bullous diseases and autoimmune connective tissue diseases. In contrast, synchronized with the paradigm shift of the fundamental aspect of immunity to danger sensing/signaling, distinct collagen-like diseases have been defined by the genetic mutations causing dysregulated innate immunity/inflammation and have been designated as “autoinflammatory”diseases. Due to the clinical and etiological similarities,the concept of autoinflammatory diseases has expanded to include non-hereditary collagen-like diseases, tissue-specific chronic idiopathic inflammatory diseases and metabolic diseases. On the other hand, various genetic causes of autoimmune diseases have been identified and the border of these two pathophysiologies is becoming obscure. Instead, a variable mixture of both autoimmunity and autoinflammation can cause each inflammatory phenotype with a variable level of antigen specificity
Collapse
|
2
|
Abstract
The importance of desmosomal cell adhesion to human health is evidenced by the autoimmune disease pemphigus vulgaris (PV), in which autoantibodies against the extracellular domain of the desmosomal cadherin desmoglein 3 cause potentially fatal blistering of the skin and mucous membranes. Tucker et al. describe how enhanced expression of a desmosomal cytoplasmic plaque protein, plakophilin-1, protects keratinocytes from PV IgG-induced loss of cell adhesion by inducing calcium-independent hyperadhesive desmosomes. This study beautifully demonstrates that desmosomal adhesion can be modulated by the molecular interactions of the desmoglein tail and suggests that these novel regulatory pathways may possibly be exploited in treating human disease.
Collapse
|
3
|
Cytoplasmic plaque formation in hemidesmosome development is dependent on SoxF transcription factor function. PLoS One 2012; 7:e43857. [PMID: 22962592 PMCID: PMC3433475 DOI: 10.1371/journal.pone.0043857] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Accepted: 07/30/2012] [Indexed: 01/08/2023] Open
Abstract
Hemidesmosomes are composed of intricate networks of proteins, that are an essential attachment apparatus for the integrity of epithelial tissue. Disruption leads to blistering diseases such as epidermolysis bullosa. Members of the Sox gene family show dynamic and diverse expression patterns during development and mutation analyses in humans and mice provide evidence that they play a remarkable variety of roles in development and human disease. Previous studies have established that the mouse mutant ragged-opossum (Raop) expresses a dominant-negative form of the SOX18 transcription factor that interferes with the function of wild type SOX18 and of the related SOXF-subgroup proteins SOX7 and −17. Here we show that skin and oral mucosa in homozygous Raop mice display extensive detachment of epithelium from the underlying mesenchymal tissue, caused by tearing of epithelial cells just above the plasma membrane due to hemidesmosome disruption. In addition, several hemidesmosome proteins expression were found to be dysregulated in the Raop mice. Our data suggest that SOXF transcription factors play a role in regulating formation of cytoplasmic plaque protein assembly, and that disrupted SOXF function results in epidermolysis bullosa-like skin phenotypes.
Collapse
|
4
|
Noninvasive visualization of intraepidermal and subepidermal blisters in vesiculobullous skin disorders by in vivo reflectance confocal microscopy. Lasers Med Sci 2011; 27:261-6. [DOI: 10.1007/s10103-011-0943-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Accepted: 06/01/2011] [Indexed: 10/18/2022]
|
5
|
Olivry T, Bizikova P, Dunston SM, Bond R, Halliwell R, Loeffler A, Pucheu-Haston CM, Chen M, Marinkovich MP. Clinical and immunological heterogeneity of canine subepidermal blistering dermatoses with anti-laminin-332 (laminin-5) auto-antibodies. Vet Dermatol 2010; 21:345-57. [PMID: 20456722 DOI: 10.1111/j.1365-3164.2010.00870.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Laminin-332 (laminin-5) is a basement membrane heterotrimeric protein composed of alpha-3, beta-3 and gamma-2 laminin chains. Laminin-332 polypeptides are targeted by auto-antibodies in human patients with mucous membrane (cicatricial) pemphigoid or, more rarely, subepidermal vesicular diseases that resemble epidermolysis bullosa acquisita (EBA) or bullous pemphigoid (BP). The objectives of this report were to characterize the clinical, histopathological and immunological characteristics of nine dogs with auto-antibodies targeting laminin-332. Immunological investigations consisted of direct immunofluorescence (IF), indirect IF with intact and salt-split canine gingival, and salt-split normal or laminin-332-deficient human skin, immunoblotting with purified human laminin-332 and immunoblotting with recombinant NC1 domain of human collagen VII. All dogs exhibited varying degrees of skin blistering and ulceration associated with microscopic subepidermal vesiculation with or without inflammatory cells. Indirect IF established that circulating IgG auto-antibodies bound the dermal side of salt-split canine lip and human skin. In five dogs, IgG variably recognized the basement membrane of laminin-332-deficient human skin (three dogs negative, two dogs positive). In all nine dogs, IgG auto-antibodies detected purified human laminin-332 by immunoblotting. In two dogs, additional targeting of collagen VII-NC1 was present. These observations establish laminin-332 as a novel basement membrane antigen in dogs with autoimmune blistering diseases with variable clinical phenotypes. The names 'acquired junctional epidermolysis bullosa', 'anti-laminin-332 mucous membrane pemphigoid (MMP)' and 'mixed auto-immune subepidermal blistering dermatosis' are proposed for dogs with clinical signs reminiscent of EBA, MMP or BP respectively.
Collapse
Affiliation(s)
- Thierry Olivry
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Nagy N, McGrath JA. Blistering skin diseases: a bridge between dermatopathology and molecular biology. Histopathology 2010; 56:91-9. [PMID: 20055907 DOI: 10.1111/j.1365-2559.2009.03442.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Although dermatopathology and molecular biology are often considered to be separate laboratory disciplines, the respective approaches are far from mutually exclusive. This is certainly the case for understanding the pathology of blistering skin diseases, both acquired and inherited. For example, in toxic epidermal necrolysis, dermatopathology in isolation may provide few clues to disease pathogenesis. There is widespread keratinocyte apoptosis and a variable infiltrate of cytotoxic T cells, but morphology alone offers little insight into what causes the epidermal destruction. In contrast, molecular biology studies have revealed several key processes that help explain the keratinocyte death, including increased expression of death receptors and their ligands on keratinocyte cell membranes as well as the presence of local or systemic immunocyte-derived cytolytic granules. For some inherited blistering diseases, however, such as epidermolysis bullosa, the molecular pathology is complex and difficult to unravel in isolation, yet the addition of dermatopathology is helpful in focusing molecular investigations. Notably, immunolabelling of cell adhesion proteins using specific antibody probes can identify reduced or absent immunoreactivity for candidate genes/proteins. Bridging dermatopathology and molecular biology investigations facilitates a greater understanding of disease processes, improves diagnostic accuracy, and provides a basis for the development and appraisal of new treatments.
Collapse
Affiliation(s)
- Nikoletta Nagy
- St John's Institute of Dermatology, King's College London, Guy's Campus, London, UK
| | | |
Collapse
|
7
|
|
8
|
|
9
|
Lai-Cheong JE, Tanaka A, Hawche G, Emanuel P, Maari C, Taskesen M, Akdeniz S, Liu L, McGrath JA. Kindler syndrome: a focal adhesion genodermatosis. Br J Dermatol 2008; 160:233-42. [PMID: 19120339 DOI: 10.1111/j.1365-2133.2008.08976.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Kindler syndrome (OMIM 173650) is an autosomal recessive genodermatosis characterized by trauma-induced blistering, poikiloderma, skin atrophy, mucosal inflammation and varying degrees of photosensitivity. Although Kindler syndrome is classified as a subtype of epidermolysis bullosa, it has distinct clinicopathological and molecular abnormalities. The molecular pathology of Kindler syndrome involves loss-of-function mutations in a newly recognized actin cytoskeleton-associated protein, now known as fermitin family homologue 1, encoded by the gene FERMT1. This protein mediates anchorage between the actin cytoskeleton and the extracellular matrix via focal adhesions, and thus the structural pathology differs from other forms of epidermolysis bullosa in which there is a disruption of the keratin intermediate filament-hemidesmosome network and the extracellular matrix. In the skin, fermitin family homologue 1 is mainly expressed in basal keratinocytes and binds to the cytoplasmic tails of beta1 and beta3 integrins as well as to fermitin family homologue 2 and filamin-binding LIM protein 1. It also plays a crucial role in keratinocyte migration, proliferation and adhesion. In this report, we review the clinical, cellular and molecular pathology of Kindler syndrome and discuss the role of fermitin family homologue 1 in keratinocyte biology.
Collapse
Affiliation(s)
- J E Lai-Cheong
- Genetic Skin Disease Group, St John's Institute of Dermatology, King's College London, Guy's Campus, London SE1 9RT, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Jin X, Ray R, Leng Y, Ray P. Molecular determination of laminin-5 degradation: a biomarker for mustard gas exposure diagnosis and its mechanism of action. Exp Dermatol 2008; 17:49-56. [PMID: 18095945 DOI: 10.1111/j.1600-0625.2007.00632.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Laminin-5, a heterotrimer of laminin alpha3, beta3 and gamma2 subunits, is a component of epithelial cell basement membranes. Laminin-5 functions as a ligand of the alpha3beta1 and alpha6beta4 integrins to regulate cell adhesion, migration and morphogenesis. In the skin, laminin-5 facilitates the assembly of basement membranes; thus it is essential for a stable attachment of the epidermis to the dermis and recovery of damaged skin. Sulphur mustard (SM), also known as mustard gas, is a vesicant that has been employed as a chemical weapon in various conflicts during the twentieth century. Skin exposure to SM results in fluid-filled blisters; proposed mechanisms are inflammation, protease stimulation, basal cell death and separation of the epidermis from the dermis apparently because of the degradation of attachment proteins like laminin-5. Therefore, we investigated the effects of SM exposure on the degradation of laminin-5 and its three subunits, alpha3, beta3 and gamma2 by exposing normal human epidermal keratinocytes (NHEK) to SM (0-300 microM, 1-24 h). We found that SM degraded laminin-5 and its two subunits beta3 and gamma2, but not alpha3. Preincubation of cells with a serine protease inhibitor (PMSF), or a metalloprotease inhibitor (1,10-phenanthroline) prior to SM exposure partially prevented SM-induced degradation of laminin-5 subunits, beta3 and gamma2. Specificity studies showed that the degradation of laminin-5 gamma2 was due to a bifunctional mustard compound such as SM, but not due to the other alkylating agents tested. Our results support that laminin-5 degradation is an important mechanism of SM injury as well as a useful biomarker of SM exposure. The knowledge of the mechanisms of laminin-5 degradation in SM-exposed NHEK has potential application in developing cutaneous therapeutics against SM.
Collapse
Affiliation(s)
- Xiannu Jin
- Molecular Biology Section, Division of Experimental Therapeutics, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | | | | | | |
Collapse
|
11
|
Hofmann SC, Voith U, Sasaki T, Trüeb RM, Nischt R, Bruckner-Tuderman L. The autoantigen in anti-p200 pemphigoid is synthesized by keratinocytes and fibroblasts and is distinct from nidogen-2. J Invest Dermatol 2007; 128:87-95. [PMID: 17637825 DOI: 10.1038/sj.jid.5700952] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Anti-p200 pemphigoid is a subepidermal immunobullous disorder associated with tissue-bound and circulating autoantibodies reactive with a 200 kDa protein on the dermal side of salt-split-skin. The autoantigen, named p200, is a non-collagenous glycoprotein located at the lamina lucida-lamina densa border of the epidermal basement membrane. However, its identity and cellular origin remain elusive. Here, we used biochemical and genetic approaches to characterize the autoantibody reactivity in three new patients with anti-p200 pemphigoid. We show that the target antigen p200 is synthesized by both keratinocytes and fibroblasts, is disulfide-bonded, and participates in calcium-dependent molecular interactions. Lack of collagen XVII (BP 180), collagen VII, or laminin 332 (laminin 5) from the dermal-epidermal junction does not destabilize p200. Colocalization within the basement membrane zone and an identical molecular weight suggested nidogen-2 as candidate autoantigen in anti-p200 pemphigoid, but biochemical analysis demonstrated that p200 is distinct from nidogen-2. In conclusion, the results define further the biochemical characteristics of p200 and demonstrate its in vitro-synthesis by keratinocytes and fibroblasts, thus providing a basis for identification and further characterization of this autoantigen.
Collapse
Affiliation(s)
- Silke C Hofmann
- Department of Dermatology, University Medical Center Freiburg, Freiburg, Germany
| | | | | | | | | | | |
Collapse
|
12
|
Abstract
In humans, the pemphigus denomination encompasses a group of autoimmune blistering skin diseases with intraepidermal separation resulting from cell-cell detachment by acantholysis. Entities are classified based on the level of blistering in the epidermis, and both superficial (pemphigus foliaceus, IgA pemphigus) and deep (pemphigus vulgaris, pemphigus vegetans and paraneoplastic pemphigus) variants are recognized. In domestic animals, subsets of pemphigus have been recognized since the mid-1970s, and the disease classification resembles that used for human patients. This article reviews up-to-date knowledge on the epidemiology, clinical signs, histopathology, immunopathology and treatment outcome of superficial pemphigus in domestic animals. Detailed information on canine, feline, equine and caprine pemphigus foliaceus, canine and feline pemphigus erythematosus and canine panepidermal pustular pemphigus is provided.
Collapse
Affiliation(s)
- Thierry Olivry
- Center for Comparative Medicine and Translational Research and Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA.
| |
Collapse
|
13
|
Bei R, Mentuccia D, Trono P, Trono P, Masuelli L, Cereda V, Palumbo C, Marzocchella L, Mrozek MA, Pallotta P, Di Lella G, Modesti M, Cerilli M, Frajese GV, Frajese G, Zambruno G, Modesti A. Immunity to extracellular matrix antigens is associated with ultrastructural alterations of the stroma and stratified epithelium basement membrane in the skin of Hashimotos thyroiditis patients. Int J Immunopathol Pharmacol 2006; 19:661-74. [PMID: 17026851 DOI: 10.1177/039463200601900322] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Employing purified extracellular matrix (ECM) proteins, i.e. type I, III, IV and V collagens (CI, CIII, CIV, CV), laminin (LM) and fibronectin (FN), as antigen sources we detected autoantibodies to conformational and/or denatured ECM antigens among 34 of 50 sera obtained from Hashimotos thyroiditis (HT) patients and 6 of 51 control sera obtained from non-autoimmune thyroid disease patients and healthy donors (HT sera vs. control sera p=4 x 10-9). Reactivity to conformational antigens, mostly due to autoantibodies of the IgG isotype, was observed in 30/50 HT sera and in 6/51 control sera (p=3.5 x 10-7) and was not always concomitant with that to linear antigens, found in 23/50 HT and in 6/51 control sera (p=1.6 x 10-4). Ultrastructural analysis of skin biopsies obtained from 18 HT patients without symptomatic cutaneous diseases revealed defects of the stratified squamous epithelium basement membrane in 11/18, alterations of the stroma in 13/18 and both basement membrane and stromal defects in 9/18. Interestingly, 13/13 (p=0.012) and 9/11 (p=0.012) patients with stromal and basement membrane defects respectively, exhibited serum antibodies to at least one ECM antigen involved in the organization of the altered tissue compartment. Lastly, 10/18 skin biopsies presented immunoglobulin (Ig) and/or complement (C3) deposits along the cutaneous basement membrane zone (BMZ) or in the papillary dermis and 9/10 sera from the same patients simultaneously showed antibodies to at least one ECM antigen involved in the organization of these two skin compartments. Besides, 8/11 HT patients with basement membrane defects exhibited Ig or C3 deposits along the BMZ. Our findings suggest that autoantibodies to ECM molecules might contribute to the development of asymptomatic extra-thyroid skin diseases in HT patients.
Collapse
Affiliation(s)
- R Bei
- Department of Experimental Medicine and Biochemical Sciences, University, Tor Vergata, Rome, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|