1
|
Xu F, Yang F, Qiu Y, Wang C, Zou Q, Wang L, Li X, Jin M, Liu K, Zhang S, Zhang Y, Li B. The alleviative effect of C-phycocyanin peptides against TNBS-induced inflammatory bowel disease in zebrafish via the MAPK/Nrf2 signaling pathways. FISH & SHELLFISH IMMUNOLOGY 2024; 145:109351. [PMID: 38171429 DOI: 10.1016/j.fsi.2023.109351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/23/2023] [Accepted: 12/29/2023] [Indexed: 01/05/2024]
Abstract
INTRODUCTION Ulcerative colitis (UC) is an incurable and highly complex chronic inflammatory bowel disease (IBD) affecting millions of people worldwide. C-phycocyanin (C-PC) has been reported to possess outstanding anti-inflammatory activities and can effectively inhibit various inflammation-related diseases. Whether C-PC-derived bioactive peptides can inhibit intestinal inflammation is worth research and consideration. METHODS The inhibition activities of three anti-neuroinflammatory peptides were evaluated using 2-4-6-trinitrobenzen sulfonic acid (TNBS)-induced zebrafish colitis model. Subsequently, the abilities of peptides to promote gastrointestinal motility were also examined. The changes in the intestinal pathological symptoms and ultrastructure of intestinal, reactive oxygen species (ROS) levels, and antioxidant enzymes were then determined after co-treatment with peptides and TNBS. Transcriptome analysis was used to investigate the underlying ameliorating TNBS-induced colitis effects molecular mechanisms of better activity peptide. Furthermore, quantitative reverse-transcription polymerase chain reaction and molecular docking techniques verified the mRNA sequencing results. RESULTS Three peptides, MHLWAAK, MAQAAEYYR and MDYYFEER, which significantly inhibit macrophage migration, were synthesized. The results showed that these peptides could effectively alleviate the inflammatory responses in the TNBS-induced zebrafish model of colitis. In addition, co-treatment with TNBS and C-PC peptides could decrease ROS production and increase antioxidant enzyme activities in zebrafish larvae. Moreover, MHLWAAK had the most significantly therapeutic effects on colitis in zebrafish. The transcriptome analysis suggests that the effect of MHLWAAK on TNBS-induced colitis may be associated with the modulation of nuclear factor-erythroid 2-related factor 2 (Nrf2) and mitogen-activated protein kinase (MAPK) signaling pathway associated genes. In addition, molecular docking was conducted to study the prospective interaction between peptides and the key proteins that streamline the Nrf2 and MAPK signaling pathways. IL-6, JNK3, TNF-α, KEAP1-NRF2 complex and MAPK may be the core targets of MHLWAAK in treating colitis. CONCLUSION The results suggested that the three C-PC-derived peptides could ameliorate TNBS-induced colitis in zebrafish, and these peptides might be a promising therapeutic candidate for UC treatment.
Collapse
Affiliation(s)
- Fenghua Xu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan, 250103, China; Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, 266000, China
| | - Fei Yang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan, 250103, China
| | - Yuezi Qiu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan, 250103, China
| | - Chuansen Wang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan, 250103, China
| | - Qinglin Zou
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan, 250103, China
| | - Lizhen Wang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan, 250103, China
| | - Xiaobin Li
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan, 250103, China
| | - Meng Jin
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan, 250103, China
| | - Kechun Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan, 250103, China
| | - Shanshan Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan, 250103, China.
| | - Yun Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan, 250103, China.
| | - Bing Li
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, 266000, China.
| |
Collapse
|
2
|
Choudhary P, Roy T, Chatterjee A, Mishra VK, Pant S, Swarnakar S. Melatonin rescues swim stress induced gastric ulceration by inhibiting matrix metalloproteinase-3 via down-regulation of inflammatory signaling cascade. Life Sci 2022; 297:120426. [PMID: 35218765 DOI: 10.1016/j.lfs.2022.120426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/11/2022] [Accepted: 02/18/2022] [Indexed: 11/29/2022]
Abstract
AIM This study investigated the link between forced swim induced acute gastric ulceration, inflammation and MMP-3 along with the possible mechanism of protective efficacy of melatonin. MAIN METHODS We distributed Balb/c mice into four different groups. Group 1 and 2 were given PBS gavage. Group 3 and 4 were given melatonin (60 mg/kg b.wt.) and omeprazole (25 mg/kg b.wt.), respectively, an hour prior to forced swim. Ulcer index, tissue histology, immunohistochemistry, protein carbonylation, lipid peroxidation, Myeloperoxidase, Zymography, Western blotting, reactive oxygen species (ROS), mitochondrial dehydrogenase, mitochondrial transmembrane potential and bioinformatical analysis were performed. KEY FINDINGS Our data revealed that gastric ulceration due to forced swim stress is responsible for overproduction of ROS, which may be a prime reason for mitochondrial dysfunction and induction of apoptosis via activation of Caspase-3. ROS is also responsible for p38 phosphorylation which in turn increases the activity of MMP-3 in ulcerated milieu, along with the oxidation of proteins, peroxidation of lipids and altered expression patterns of heat shock protein (HSP)-70. Melatonin is shown to reduce the inflammatory burden in gastric milieu and offers gastroprotection by binding to the active site of MMP-3; thereby inhibiting its activity, as suggested by in silico studies. Melatonin also inhibits the downregulation of HSP-70 and activates p38 dephosphorylation and thereby, it rescues gastric mucosal cells from stress-induced ulceration. SIGNIFICANCE Our findings suggest that, melatonin imparts its gastroprotective effect by down-regulating the activation of MAPK-ERK pathway along with binding to the active site of MMP-3.
Collapse
Affiliation(s)
- Preety Choudhary
- Inflammatory Diseases and Immunology division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mallick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Tapasi Roy
- Inflammatory Diseases and Immunology division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mallick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Abhishek Chatterjee
- Inflammatory Diseases and Immunology division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mallick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Vineet Kumar Mishra
- Inflammatory Diseases and Immunology division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mallick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Suyash Pant
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal, India
| | - Snehasikta Swarnakar
- Inflammatory Diseases and Immunology division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mallick Road, Jadavpur, Kolkata 700032, West Bengal, India.
| |
Collapse
|
3
|
Tu Y, Luo X, Liu D, Li H, Xia H, Ma C, Zhang D, Yang Y, Pan X, Wang T, Xia Y, Dan H, You P, Ye X. Extracts of Poria cocos improve functional dyspepsia via regulating brain-gut peptides, immunity and repairing of gastrointestinal mucosa. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 95:153875. [PMID: 34911003 DOI: 10.1016/j.phymed.2021.153875] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 11/12/2021] [Accepted: 11/29/2021] [Indexed: 05/13/2023]
Abstract
BACKGROUND Poria cocos (Schw.) Wolf (PC), a fungus, has been used for more than 2000 years as a food and medicine in China. It has a very good therapeutic effect for functional dyspepsia (FD). However, the material basis and mechanism of PC on FD were not reported. PURPOSE To investigate the function and potential mechanisms of PC including its three extracts (triterpenoid, PCT; water-soluble polysaccharide, PCWP; acidic polysaccharide, PCAP) on FD. STUDY DESIGN The study explored the therapeutic effect of PC and its three extracts on FD in rats for the first time and discussed its mechanisms based on brain-gut peptides, immunity and repair of the gastrointestinal mucosa. METHODS The chemical components of PC extracts were analyzed and quantified using ultra high performance liquid chromatography coupled with quadrupole time of flight mass spectrometry (UPLC-Q-TOF-MS) and gel permeation chromatography coupled with size exclusion chromatography (GPC/SEC). The FD rat models were established using weight-loaded forced swimming and alternate-day fasting for 42 days. After 14 days of treatment, the effect and mechanisms were investigated using ELISA, histopathology, immunohistochemistry as well as Western blot. RESULTS Seventy-seven triterpenoids in PCT were identified. PCWP was primarily composed of component A (Mw: 3.831 × 107 Da), component B (Mw: 5.650 × 106 Da) and component C (Mw: 113,117 Da). PCAP was a homogeneous composition with an average Mw of 74,320 Da. PCT, PCWP and PCAP alleviated the symptoms of FD. These extracts promoted the repair of gastrointestinal mucosa and regulated the balance between the T helper cell (Th)1/Th2 axis and the Th17/Treg axis. PCT and PCWP regulated brain-gut peptides more effectively, PCWP and PCAP enhanced immunity more effectively. Further study demonstrated that these extracts may have enhanced immunity via the Toll-like receptor (TLR) and c-Jun N-terminal kinase (JNK) signaling pathways. CONCLUSIONS PC extracts showed therapeutic effects on FD rats, and the mechanism of action involved multiple pathways. PCAP, which is often discarded in traditional applications, was effective. Our study provides new ideas for the application and development of PC extracts.
Collapse
Affiliation(s)
- Yijun Tu
- Hubei Key Laboratory of Resources and Chemistry of Chinese Medicine, School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Xinyao Luo
- Hubei Key Laboratory of Resources and Chemistry of Chinese Medicine, School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Dan Liu
- Hubei Key Laboratory of Resources and Chemistry of Chinese Medicine, School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Huijun Li
- Hubei Key Laboratory of Resources and Chemistry of Chinese Medicine, School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Heyuan Xia
- Hubei Key Laboratory of Resources and Chemistry of Chinese Medicine, School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Chaozhi Ma
- Hubei Key Laboratory of Resources and Chemistry of Chinese Medicine, School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Dandan Zhang
- Hubei Key Laboratory of Resources and Chemistry of Chinese Medicine, School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Yuying Yang
- Hubei Key Laboratory of Resources and Chemistry of Chinese Medicine, School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Xiang Pan
- Hubei Key Laboratory of Resources and Chemistry of Chinese Medicine, School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Tianhe Wang
- Hubei Key Laboratory of Resources and Chemistry of Chinese Medicine, School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Yu Xia
- Hubei Key Laboratory of Resources and Chemistry of Chinese Medicine, School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Hanxiong Dan
- Hubei Key Laboratory of Resources and Chemistry of Chinese Medicine, School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Pengtao You
- Hubei Key Laboratory of Resources and Chemistry of Chinese Medicine, School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China.
| | - Xiaochuan Ye
- Hubei Key Laboratory of Resources and Chemistry of Chinese Medicine, School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China.
| |
Collapse
|
4
|
Syzygium samarangense leaf extract mitigates indomethacin-induced gastropathy via the NF-κB signaling pathway in rats. Biomed Pharmacother 2021; 139:111675. [PMID: 33965725 DOI: 10.1016/j.biopha.2021.111675] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/23/2021] [Accepted: 04/26/2021] [Indexed: 12/24/2022] Open
Abstract
We previously profiled the chemical composition of wax apple, Syzygium samarangense, leaf extract using HR-LC-MS/MS and reported its antioxidant, hepatoprotective and antitrypanosomal activities. The plant is widely used in traditional medicine to cure several ailments like bronchitis, asthma, diabetes, fever, pathogenic infections, gut spasms, as well as renal diseases. However, neither the gastroprotective effects nor the underlying mechanisms were explored. Here, we investigated the gastroprotective potential of the leaf extract on indomethacin-induced gastric ulcer in rats and explored the involved mechanism(s) of action. Administration of indomethacin significantly increased the ulcer index, mucosal injury, the gastric levels of the inflammatory markers nuclear factor kabba B-p65(NF-κB p65), myeloperoxidase (MPO), interleukin-6 (IL-6), tumor necrosis factor alpha (TNF-α), lipid peroxidation product, malondialdehyde (MDA) and Caspase-3 expression. It reduced the gastric levels of the endogenous antioxidants glutathione as well peroxidase (GPx), reduced glutathione (GSH) and the gastric mucosal protective factors, mucus secretion and goblet cells. Pretreatment with the leaf extract displayed a prominent decrease in the ulcer index, inflammatory cell infiltration, inflammatory markers, MDA, protein expression of Caspase-3 and a significant increase in the gastric levels of the endogenous antioxidants, mucus content and goblet cell proliferation when compared to the indomethacin group. The individual secondary metabolites of the extract exhibited low binding energy when docked into the prostaglandin receptors EP3 and EP4. This study revealed the gastroprotective effect of S. samarangense on indomethacin-induced gastric ulcer in rats. The gastroprotective effects might be attributed to cytoprotective, antioxidant, anti-inflammatory and antiapoptotic activities with a possible potential of activating EP3 and EP4 receptors. In conclusion, S. samarangense has a promising potential in the prevention of NSAIDs-induced ulcers.
Collapse
|
5
|
Ren S, Wei Y, Wang R, Wei S, Wen J, Yang T, Chen X, Wu S, Jing M, Li H, Wang M, Zhao Y. Rutaecarpine Ameliorates Ethanol-Induced Gastric Mucosal Injury in Mice by Modulating Genes Related to Inflammation, Oxidative Stress and Apoptosis. Front Pharmacol 2020; 11:600295. [PMID: 33324227 PMCID: PMC7726440 DOI: 10.3389/fphar.2020.600295] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 10/20/2020] [Indexed: 12/14/2022] Open
Abstract
Background: Rutaecarpine (RUT), a major quinazolino carboline alkaloid compound from the dry unripe fruit Tetradium ruticarpum (A. Juss.) T. G. Hartley, has various pharmacological effects. The aim of this present study was to investigate the potential gastroprotective effect of rutaecarpine on ethanol-induced acute gastric mucosal injury in mice and associated molecular mechanisms, such as activating Nrf2 and Bcl-2 via PI3K/AKT signaling pathway and inhibiting NF-κB. Methods: Gastric ulcer index and histopathology was carried out to determine the efficacy of RUT in gastric ulceration, and the content of SOD, GSH in serum and CAT, MDA, MPO, TNF-α, IL-6, IL-1β in tissue were measured by kits. Besides, in order to illustrate the potential inflammatory, oxidative, and apoptotic perturbations, the mRNA levels of NF-κB p65, PI3K, AKT, Nrf2, Nqo1, HO-1, Bcl-2 and Bax were analyzed. In addition, the protein expression of NF-κB p65 and Nrf2 in cytoplasm and nucleus, AKT, p-AKT, Bcl-2 Bax and Caspase 3 were analyzed for further verification. Finally, immunofluorescence analysis was performed to further verify nuclear translocation of NF-κB p65. Results: Current data strongly demonstrated that RUT alleviated the gross gastric damage, ulcer index and the histopathology damage caused by ethanol. RUT inhibited the expression and nuclear translocation of NF-κB p65 and the expression of its downstream signals, such as TNF-α, IL-6, IL-1β and MPO. Immunofluorescence analysis also verifies the result. In the context of oxidative stress, RUT improved the antioxidant milieu by remarkably upregulating the expression Nqo1 and HO-1 with activating Nrf2, and could remarkably upregulate antioxidant SOD, GSH, CAT and downregulate levels of MDA. Additionally, RUT activate the expression of Bcl-2 and inhibited the expression of downstream signals Bax and Caspase 3 to promote gastric cellular survival. These were confirmed by RUT activation of the PI3K/AKT pathway manifested by enhanced expression of PI3K and promotion of AKT phosphorylation. Conclusion: Taken together, these results strongly demonstrated that RUT exerted a gastroprotective effect against gastric mucosal injury induced by ethanol. The underlying mechanism might be associated with the improvement of anti-inflammatory, anti-oxidation and anti-apoptosis system.
Collapse
Affiliation(s)
- Sichen Ren
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Department of Pharmacy, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Ying Wei
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Department of Pharmacy, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Ruilin Wang
- Integrative Medical Center, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Shizhang Wei
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Department of Pharmacy, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jianxia Wen
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Department of Pharmacy, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Tao Yang
- Department of Pharmacy, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China.,School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xing Chen
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Department of Pharmacy, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Shihua Wu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Department of Pharmacy, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Manyi Jing
- Department of Pharmacy, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Haotian Li
- Department of Pharmacy, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Min Wang
- Department of Pharmacy, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yanling Zhao
- Department of Pharmacy, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
6
|
Arab HH, Salama SA, Eid AH, Kabel AM, Shahin NN. Targeting MAPKs, NF‐κB, and PI3K/AKT pathways by methyl palmitate ameliorates ethanol‐induced gastric mucosal injury in rats. J Cell Physiol 2019; 234:22424-22438. [DOI: 10.1002/jcp.28807] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 04/22/2019] [Accepted: 04/24/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Hany H. Arab
- Biochemistry Division and GTMR unit, Department of Pharmacology and Toxicology Faculty of Pharmacy, Taif University Taif Saudi Arabia
- Department of Biochemistry Faculty of Pharmacy, Cairo University Cairo Egypt
| | - Samir A. Salama
- Biochemistry Division and GTMR unit, Department of Pharmacology and Toxicology Faculty of Pharmacy, Taif University Taif Saudi Arabia
- Department of Biochemistry Faculty of Pharmacy, Al‐Azhar University Cairo Egypt
| | - Ahmed H. Eid
- Department of Pharmacology National Organization for Drug Control and Research Cairo Egypt
| | - Ahmed M. Kabel
- Department of Clinical Pharmacy Faculty of Pharmacy, Taif University Taif Saudi Arabia
- Department of Pharmacology Faculty of Medicine, Tanta University Tanta Egypt
| | - Nancy N. Shahin
- Department of Biochemistry Faculty of Pharmacy, Cairo University Cairo Egypt
| |
Collapse
|
7
|
Zhang Y, Wang H, Mei N, Ma C, Lou Z, Lv W, He G. Protective effects of polysaccharide from Dendrobium nobile against ethanol-induced gastric damage in rats. Int J Biol Macromol 2017; 107:230-235. [PMID: 28867231 DOI: 10.1016/j.ijbiomac.2017.08.175] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Revised: 07/12/2017] [Accepted: 08/30/2017] [Indexed: 12/15/2022]
Abstract
Dendrobium nobile is a medicinal herb in traditional China and Southeast Asian countries. Employing a rat model of ethanol-induced gastric ulcer, we examined the protective effect of polysaccharide (JCP) extracted from Dendrobium nobile and explored the related mechanisms. Oral administration with 100mg/kg and 300mg/kg body weight JCP for days can significant prevent the formation of gastric ulcer. Moreover, JCP pretreatment could alleviate ethanol-induced histological damage, antioxidant activities, the level of epidermal growth factor, gastric concentration of prostaglandin E, and regulate the signaling pathways of mitogen-activated protein kinases and matrix metalloproteinases. This study investigated the ethanol-induced gastric ulcer protective effect of JCP for the first time, and elucidated that the protective mechanisms.
Collapse
Affiliation(s)
- Yi Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, PR China
| | - Hongxin Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, PR China.
| | - Nana Mei
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, PR China
| | - Chaoyang Ma
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, PR China
| | - Zaixiang Lou
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, PR China
| | - Wenping Lv
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, PR China
| | - GuoHua He
- GuoLi Dendrobium nobile Company Limited, ChiShui 564700, PR China
| |
Collapse
|
8
|
Laloo D, Prasad SK, Sairam K, Hemalatha S. Gastroprotective activity of polyphenolic-rich extract of Potentilla mooniana. PHARMACEUTICAL BIOLOGY 2014; 52:1532-1542. [PMID: 25026332 DOI: 10.3109/13880209.2014.905794] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
CONTEXT Potentilla mooniana Wight. (Rosaceae) is a plant found in the Himalayan region where the root is traditionally used to treat stomach problems including gastric-ulcer. OBJECTIVE To scientifically validate the gastro-protective effect and derive the possible mechanistic activity of the ethanol root extract from P. mooniana (EPM). MATERIALS AND METHODS The gastroprotective effect of EPM (100-400 mg/kg, p.o.) was evaluated on both the physical (Pyloric ligation, PL; Cold restrain stress, CRS) and chemical (absolute ethanol, EtOH; aspirin, ASP) ulcerogens induced ulceration in rats. The mechanistic activity of EPM was tested on various gastric-ulcer parameters, namely gastric pH, volume, acid-pepsin output, DNA content, histamine level, H(+)K(+)-ATPase activity, mucus content, microvascular permeability, antioxidant markers, and gastric-histopathological study. RESULTS EPM significantly reduces the ulcer score against all the four tested gastric-ulcer models. In the PL model, EPM showed significant reduction (p < 0.05) in acid-pepsin output and cell shedding; however, no significant effect was observed on gastric volume, cell proliferation, stomach glandular weight, and histamine levels. EPM (400 mg/kg, p.o.) when compared with ulcer control showed significant increase in gastric pH by 41.6% and decrease in H(+)K(+)-ATPase activity by 47.73%. In addition, EPM showed significant increase in mucus content by 58.60% and a decrease in the microvascular permeability of Evans Blue by 85.00%, justifying its protective effects. Furthermore, EPM also showed significant antioxidant activity and histopathologically possessed excellent cytoprotective effect. CONCLUSION The gastro-protective effect of EPM is attributed mainly to the defensive mechanism owing to the presence of a good quantity of polyphenolic components.
Collapse
Affiliation(s)
- Damiki Laloo
- Department of Pharmaceutics, Indian Institute of Technology (Banaras Hindu University) , Varanasi, Uttar Pradesh , India
| | | | | | | |
Collapse
|
9
|
Guo C, Liang F, Shah Masood W, Yan X. Hydrogen sulfide protected gastric epithelial cell from ischemia/reperfusion injury by Keap1 s-sulfhydration, MAPK dependent anti-apoptosis and NF-κB dependent anti-inflammation pathway. Eur J Pharmacol 2014; 725:70-8. [PMID: 24444438 DOI: 10.1016/j.ejphar.2014.01.009] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 12/20/2013] [Accepted: 01/08/2014] [Indexed: 12/15/2022]
Abstract
Hydrogen sulfide (H2S) has been proposed as a novel gas-transmittter, which plays multiple physiological and pathological functions in various body systems, including gastrointestinal tract. The present study was undertaken to investigate the effects and mechanisms of H2S pharmacological preconditioning on gastric epithelial cells ischemia-reperfusion (I/R) injury. We report here that sodium hydrosulfide (NaHS), an H2S donor, concentration-dependently suppressed I/R-induced cellular injury and apoptotic cell death. This protection effect was also confirmed by endogenous over-producing H2S. Furthermore, NaHS also prevented I/R-induced oxidative stress and inflammatory responses, evidenced by increases in GSH level, decreases in MDA contents, reactive oxygen species generation and secretions of NO, IL-6 and TNF-α. NaHS also prevented I/R-induced p38- and c-Jun NH2-terminal kinase (JNK)-mitogen-activated protein kinase (MAPK) phosphorylation and NF-κB activation. H2S also induced Keap1 s-sulfhydration, and further Keap1/Nrf2 disassociation and Nrf2 activation. H2S exerted its protective effect through reactive oxygen species clearance, inhibition of p38 and JNK dependent cell apoptosis and NF-κB dependent inflammation pathway. Our results provide evidence that H2S may have potential therapeutic value in acute gastric mucosal lesion, which is often caused by ischemia/reperfusion.
Collapse
Affiliation(s)
- Cheng Guo
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Fenli Liang
- Center for Cancer Research, Medical school, Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China.
| | - Walayat Shah Masood
- Department of Pathology, Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan.
| | - Xiaofei Yan
- Department of Genetics and Molecular Biology, Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| |
Collapse
|
10
|
Yadav SK, Adhikary B, Bandyopadhyay SK, Chattopadhyay S. Inhibition of TNF-α, and NF-κB and JNK pathways accounts for the prophylactic action of the natural phenolic, allylpyrocatechol against indomethacin gastropathy. Biochim Biophys Acta Gen Subj 2013; 1830:3776-86. [PMID: 23523691 DOI: 10.1016/j.bbagen.2013.03.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Revised: 02/05/2013] [Accepted: 03/11/2013] [Indexed: 12/23/2022]
Abstract
BACKGROUND The gastro-intestinal disorders, induced by the NSAIDs including indomethacin (IND) remain unresolved medical problems. Herein, we disclose allylpyrocatechol (APC) as a potential agent against IND-gastropathy and rationalize its action mechanistically. METHODS Mice were pre-treated with APC for 1h followed by IND (18mgkg(-1)) administration, and the ulcer-prevention capacity of APC was evaluated on the 3rd day by histology. Its effect on the inflammatory (MPO, cytokines, adhesion molecules), ulcer-healing (COX, prostaglandins, growth factors and their receptors) and signaling parameters (NF-κB and MAPKs) were assessed by immunoblots/mRNA, and ELISA at the time points of their maximal changes due to IND administration. RESULTS IND induced oxidative stress, triggering mucosal TNF-α that activated NF-κB and JNK MAPK signaling in mice. These increased the pro-inflammatory biochemical parameters, but reduced the healing factors. APC reversed all the adverse effects to prevent gastric ulceration. APC (5mgkg(-1)), trolox (50mgkg(-1)) and NAC (250mgkg(-1)) showed similar protection that was better than that by misoprostol (5μgkg(-1)) and omeprazole (3mgkg(-1)). CONCLUSIONS The anti-ulcer effect of APC can be primarily attributed to its antioxidant action that helped in controlling various inflammatory parameters and augmenting angiogenesis. GENERAL SIGNIFICANCE Given that APC is an effective, non-toxic antioxidant with appreciable natural abundance, further evaluation of its pharmacokinetics and dynamics would help in promoting it as a new anti-inflammatory agent.
Collapse
Affiliation(s)
- Sudhir K Yadav
- Department of Biochemistry, Dr. B.C. Roy Post Graduate Institute of Basic Medical Sciences, Kolkata, India
| | | | | | | |
Collapse
|
11
|
Kapfhamer D, King I, Zou ME, Lim JP, Heberlein U, Wolf FW. JNK pathway activation is controlled by Tao/TAOK3 to modulate ethanol sensitivity. PLoS One 2012; 7:e50594. [PMID: 23227189 PMCID: PMC3515618 DOI: 10.1371/journal.pone.0050594] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Accepted: 10/25/2012] [Indexed: 02/08/2023] Open
Abstract
Neuronal signal transduction by the JNK MAP kinase pathway is altered by a broad array of stimuli including exposure to the widely abused drug ethanol, but the behavioral relevance and the regulation of JNK signaling is unclear. Here we demonstrate that JNK signaling functions downstream of the Sterile20 kinase family gene tao/Taok3 to regulate the behavioral effects of acute ethanol exposure in both the fruit fly Drosophila and mice. In flies tao is required in neurons to promote sensitivity to the locomotor stimulant effects of acute ethanol exposure and to establish specific brain structures. Reduced expression of key JNK pathway genes substantially rescued the structural and behavioral phenotypes of tao mutants. Decreasing and increasing JNK pathway activity resulted in increased and decreased sensitivity to the locomotor stimulant properties of acute ethanol exposure, respectively. Further, JNK expression in a limited pattern of neurons that included brain regions implicated in ethanol responses was sufficient to restore normal behavior. Mice heterozygous for a disrupted allele of the homologous Taok3 gene (Taok3Gt) were resistant to the acute sedative effects of ethanol. JNK activity was constitutively increased in brains of Taok3Gt/+ mice, and acute induction of phospho-JNK in brain tissue by ethanol was occluded in Taok3Gt/+ mice. Finally, acute administration of a JNK inhibitor conferred resistance to the sedative effects of ethanol in wild-type but not Taok3Gt/+ mice. Taken together, these data support a role of a TAO/TAOK3-JNK neuronal signaling pathway in regulating sensitivity to acute ethanol exposure in flies and in mice.
Collapse
Affiliation(s)
- David Kapfhamer
- The Ernest Gallo Clinic and Research Center, University of California San Francisco, Emeryville, California, United States of America
- * E-mail: (DK); (FWW)
| | - Ian King
- Department of Anatomy, Program in Neuroscience, University of California San Francisco, San Francisco, California, United States of America
| | - Mimi E. Zou
- The Ernest Gallo Clinic and Research Center, University of California San Francisco, Emeryville, California, United States of America
| | - Jana P. Lim
- The Ernest Gallo Clinic and Research Center, University of California San Francisco, Emeryville, California, United States of America
| | - Ulrike Heberlein
- The Ernest Gallo Clinic and Research Center, University of California San Francisco, Emeryville, California, United States of America
- Department of Anatomy, Program in Neuroscience, University of California San Francisco, San Francisco, California, United States of America
| | - Fred W. Wolf
- The Ernest Gallo Clinic and Research Center, University of California San Francisco, Emeryville, California, United States of America
- * E-mail: (DK); (FWW)
| |
Collapse
|
12
|
Protective effect of sea cucumber (Acaudina molpadioides) fucoidan against ethanol-induced gastric damage. Food Chem 2012. [DOI: 10.1016/j.foodchem.2012.02.028] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
13
|
Mohan M, Kaushal D, Aye PP, Alvarez X, Veazey RS, Lackner AA. Focused examination of the intestinal lamina propria yields greater molecular insight into mechanisms underlying SIV induced immune dysfunction. PLoS One 2012; 7:e34561. [PMID: 22511950 PMCID: PMC3325268 DOI: 10.1371/journal.pone.0034561] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2011] [Accepted: 03/05/2012] [Indexed: 12/12/2022] Open
Abstract
Background The Gastrointestinal (GI) tract is critical to AIDS pathogenesis as it is the primary site for viral transmission and a major site of viral replication and CD4+ T cell destruction. Consequently GI disease, a major complication of HIV/SIV infection can facilitate translocation of lumenal bacterial products causing localized/systemic immune activation leading to AIDS progression. Methodology/Principal Findings To better understand the molecular mechanisms underlying GI disease we analyzed global gene expression profiles sequentially in the intestine of the same animals prior to and at 21 and 90d post SIV infection (PI). More importantly we maximized information gathering by examining distinct mucosal components (intraepithelial lymphocytes, lamina propria leukocytes [LPL], epithelium and fibrovascular stroma) separately. The use of sequential intestinal resections combined with focused examination of distinct mucosal compartments represents novel approaches not previously attempted. Here we report data pertaining to the LPL. A significant increase (±1.7-fold) in immune defense/inflammation, cell adhesion/migration, cell signaling, transcription and cell division/differentiation genes were observed at 21 and 90d PI. Genes associated with the JAK-STAT pathway (IL21, IL12R, STAT5A, IL10, SOCS1) and T-cell activation (NFATc1, CDK6, Gelsolin, Moesin) were notably upregulated at 21d PI. Markedly downregulated genes at 21d PI included IL17D/IL27 and IL28B/IFNγ3 (anti-HIV/viral), activation induced cytidine deaminase (B-cell function) and approximately 57 genes regulating oxidative phosphorylation, a critical metabolic shift associated with T-cell activation. The 90d transcriptome revealed further augmentation of inflammation (CXCL11, chitinase-1, JNK3), immune activation (CD38, semaphorin7A, CD109), B-cell dysfunction (CD70), intestinal microbial translocation (Lipopolysaccharide binding protein) and mitochondrial antiviral signaling (NLRX1) genes. Reduced expression of CD28, CD4, CD86, CD93, NFATc1 (T-cells), TLR8, IL8, CCL18, DECTIN1 (macrophages), HLA-DOA and GPR183 (B-cells) at 90d PI suggests further deterioration of overall immune function. Conclusions/Significance The reported transcriptional signatures provide significant new details on the molecular pathology of HIV/SIV induced GI disease and provide new opportunity for future investigation.
Collapse
Affiliation(s)
- Mahesh Mohan
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, Louisiana, United States of America
| | - Deepak Kaushal
- Division of Bacteriology and Parasitology, Tulane National Primate Research Center, Covington, Louisiana, United States of America
| | - Pyone P. Aye
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, Louisiana, United States of America
| | - Xavier Alvarez
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, Louisiana, United States of America
| | - Ronald S. Veazey
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, Louisiana, United States of America
| | - Andrew A. Lackner
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, Louisiana, United States of America
- * E-mail:
| |
Collapse
|
14
|
Inhibition of JNK phosphorylation reverses memory deficit induced by β-amyloid (1–42) associated with decrease of apoptotic factors. Behav Brain Res 2011; 217:424-31. [DOI: 10.1016/j.bbr.2010.11.017] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Revised: 10/25/2010] [Accepted: 11/05/2010] [Indexed: 01/11/2023]
|
15
|
Ramirez-Alcantara V, LoGuidice A, Boelsterli UA. Protection from diclofenac-induced small intestinal injury by the JNK inhibitor SP600125 in a mouse model of NSAID-associated enteropathy. Am J Physiol Gastrointest Liver Physiol 2009; 297:G990-8. [PMID: 20501447 DOI: 10.1152/ajpgi.00219.2009] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Small intestinal ulceration, bleeding, and inflammation are major adverse effects associated with the use of diclofenac (DCF) or other nonsteroidal anti-inflammatory drugs (NSAIDs). The underlying mechanisms of DCF enteropathy are poorly understood, but there is increasing evidence that topical effects are involved. The aim of this study was to explore the role of c-Jun-N-terminal kinase (JNK) in DCF-induced enterocyte death because JNK not only regulates mitochondria-mediated apoptosis but also is a key node where many of the proximal stress signals converge. Male C57BL/6J mice were injected intraperitoneally with DCF or vehicle (Solutol HS-15), and the extent of small intestinal ulceration was determined. A single dose of DCF (60 mg/kg) produced numerous ulcers in the third and fourth quartiles of the jejunum and ileum, with maximal effects after 18 h and extensive recovery after 48 h. To study the molecular pathways leading to enterocyte injury, we isolated villi-enriched mucosal fractions from DCF-treated mice. Immunoblot studies with a phosphospecific JNK antibody revealed that JNK1/2 (p46) was activated at 6 h, leading to phosphorylation of the downstream target c-Jun. The levels of the JNK-regulated proapoptotic transcription factor C/EBP homologous protein (CHOP) were also increased after DCF. The selective JNK inhibitor SP600125 (30 mg/kg ip), given both 1 h before and 1 h after DCF, blocked JNK kinase activity and afforded significant protection against DCF enteropathy. In conclusion, these data demonstrate that the JNK pathway is critically involved in the pathogenesis of DCF-induced enteropathy and suggest a potential application of JNK inhibitors in the prevention of NSAID-induced enteropathy.
Collapse
Affiliation(s)
- Veronica Ramirez-Alcantara
- University of Connecticut School of Pharmacy, Department of Pharmaceutical Sciences, Storrs, Connecticut 06269-3092, USA
| | | | | |
Collapse
|
16
|
Cantarella G, Di Benedetto G, Martinez G, Loreto C, Clementi G, Cantarella A, Prato A, Bernardini R. Amylin prevents TRAIL-mediated apoptotic effects of reserpine in the rat gastric mucosa. Peptides 2009; 30:1466-72. [PMID: 19463876 DOI: 10.1016/j.peptides.2009.05.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Revised: 05/07/2009] [Accepted: 05/11/2009] [Indexed: 11/15/2022]
Abstract
We have previously shown that amylin has a protective effect upon the damaged rat gastric mucosa via a cytokine-mediated mechanism. Here, the effects of amylin on the proapoptotic cytokine TNF-related-apoptosis-inducing-ligand (TRAIL) were tested in the rat gastric mucosa damaged by reserpine administration in vivo. Intraperitoneal administration of reserpine in adult male Sprague-Dawley rats resulted in increased TRAIL expression in the gastric mucosa. Immunohistochemistry showed that the TRAIL death-receptor 5 (DR5) was constitutively expressed by the mucosa cells. Western blot showed that pretreatment of reserpine-treated rats with amylin was associated with attenuated expression of TRAIL. In the same samples, we also investigated about TRAIL-related signaling and observed that activation of caspases-8 and -3 occurs in parallel to increased TRAIL expression in rats treated with reserpine. Similarly to the latter, activation of caspases was attenuated in rats pretreated with amylin. Treatment with reserpine was associated with increased expression of the proapoptotic protein Bax, whereas that of the antiapoptotic protein Bcl-2 was significantly decreased. Amylin prevented the effects of reserpine on these genes. Reserpine sets into motion mechanisms of apoptosis in the rat gastric mucosa, which appear mediated, at least in part, by TRAIL. In addition, TRAIL downstream signaling is activated along with subversion of gene expression related to apoptosis. Amylin was able to prevent detrimental effects of reserpine. Finally, amylin and related molecules may be envisioned as protective agent in gastric mucosa damage.
Collapse
Affiliation(s)
- Giuseppina Cantarella
- Department of Experimental and Clinical Pharmacology, University of Catania School of Medicine, Viale Andrea Doria, 6, 95125 Catania, Italy
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Zhang YM, Zhang WW, Zhang JF. JNK mediates the effects of oxytocin microinjected into the paraventricular nucleus on gastric ischemia-reperfusion in rats. Shijie Huaren Xiaohua Zazhi 2009; 17:1919-1924. [DOI: 10.11569/wcjd.v17.i19.1919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the molecular mechanism underlying the role of JNK in mediating the effects of oxytocin (OT) microinjected into the paraventricular nucleus (PVN) on gastric ischemia-reperfusion (GI-R) injury.
METHODS: Sprague-Dawley (SD) rats were randomly divided into four groups: vehicle group, OT group, atosiban group and OT plus atosiban group. GI-R injury was induced in rats by clamping the celiac artery for 30 min and then reperfusing for 1 h. A cannula was inserted into the unilateral PVN for microinjection of OT. The expression of p-JNK, Bax and Bcl-2 proteins in rat gastric mucosa was examined by Western blot and immunohistochemistry.
RESULTS: Compared with the vehicle group, microinjection of OT (600 ng) into PVN significantly decreased the expression of p-JNK and Bax proteins but increased the expression of Bcl-2 protein in gastric mucosa following GI-R (all P < 0.01). Pre-administration of atosiban (an OT receptor antagonist) into the lateral cerebral ventricle could prevent the effects of OT (F = 56.33, P < 0.01; F = 145.2, P < 0.01, F = 49.32, P < 0.01), increase the expression of p-JNK and Bax proteins, and decrease the expression of Bcl-2 protein when compared with the OT group.
CONCLUSION: Microinjection of OT into PVN attenuates GI-R injury through down-regulation of p-JNK protein, which in turn leads to a decrease in Bax expression and an increase in Bcl-2 expression.
Collapse
|
18
|
Zhang YM, Wei EQ, Li L, Qiao WL, Wang L, Zhang JF. Extracellular signal-regulated kinase pathways may mediate the protective effect of electrical stimulation of the paraventricular nucleus against ischaemia-reperfusion injury of the gastric mucosa. Clin Exp Pharmacol Physiol 2007; 34:742-52. [PMID: 17600551 DOI: 10.1111/j.1440-1681.2007.04652.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
1. The aim of the present study was to elucidate the role of the extracellular signal-regulated kinase (ERK) pathway in mediating the effects of electrical stimulation of the paraventricular nucleus (PVN) on apoptosis and proliferation induced by gastric ischaemia-reperfusion injury (GI/RI). 2. To investigate the effects of electrical stimulation of the hypothalamic PVN on gastric mucosal apoptosis and proliferation in response to ischaemia-reperfusion (I/R), we used a GI/RI model by clamping the coeliac artery for 30 min and then reperfusing the artery for 30 min or 1, 3 or 6 h. We used immunohistochemistry and western blotting to investigate the expression, activation and distribution of ERKs and the dynamic changes in their downstream cellular factors Bcl-2 and Bax at different times subsequent to electrical stimulation of the PVN in the I/R-injured gastric mucosa. 3. Electrical stimulation of the PVN markedly attenuated GI/RI at 30 min and 1 and 3 h after reperfusion. Electrical stimulation decreased gastric mucosal apoptosis, increased gastric mucosal proliferation and promoted the expression and activation of phosphorylated (p)-ERK1/2 30 min after reperfusion. Electrical stimulation increased the expression of Bcl-2 and decreased the expression of Bax at 30 min and 1 and 3 h after reperfusion. In contrast, inhibition of ERK1/2 activity by the specific upstream mitogen-activated protein kinase kinase inhibitor PD98059 produced similar effects at 1 h after reperfusion in rats subjected to I/R with or without electrical stimulation of the PVN. Administration of PD98059 aggravated gastric mucosal injury, increased apoptosis, decreased proliferation in gastric mucosal cells, decreased the expression and activity of p-ERK1/2 and Bcl-2 expression and increased Bax expression. 4. These results indicate that the PVN protects against GI/RI and that this protection is associated with the inhibition of cellular apoptosis and the promotion of proliferation in the gastric mucosa, probably by activating the ERK pathway.
Collapse
Affiliation(s)
- Yong-Mei Zhang
- Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou, China
| | | | | | | | | | | |
Collapse
|
19
|
Role of mitogen-activated protein kinases in the regulation of paraventricular nucleus to gastric ischemia-reperfusion injuries. Chin Med J (Engl) 2007. [DOI: 10.1097/00029330-200706020-00010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
20
|
Qiao WL, Wang L, Zhang YM, Zhang JF, Wang GM. Extracellular signal-regulated kinase 1- and 2-mediated gastric mucosal injury and repair in gastric ischemia-reperfusion of rats. J Gastroenterol 2006; 41:1158-68. [PMID: 17287895 DOI: 10.1007/s00535-006-1902-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2006] [Accepted: 08/27/2006] [Indexed: 02/04/2023]
Abstract
BACKGROUND The current study was undertaken to investigate the time course of gastric ischemia-reperfusion (GI-R)-induced gastric mucosal injury and repair and whether extracellular signal-regulated kinase 1/2 (ERK1/2) were involved in GI-R-induced gastric mucosal injury and repair. METHODS Immunohistochemistry and Western blot analyses were used. RESULTS Gastric mucosal injury induced by ischemia alone was mild. However, the injury worsened after reperfusion, reaching a maximum at 1 h, and was accompanied by increased apoptotic cells and decreased proliferative cells. Then, the gastric mucosal cells began to repair the injury by enhanced proliferation, which peaked at 24 h after reperfusion, and by 72 h the damaged gastric mucosa was mostly repaired. The ERK1/2 (nonactivated ERK1/2) protein expression level and distribution profile showed no significant changes during the entire reperfusion phase, but the p-ERK1/2 (activated ERK1/2) level changed dramatically. The p-ERK1/2 protein level was decreased at 0.5 h after reperfusion began, and then gradually increased, peaking after 3 h of reperfusion; these changes in p-ERK1/2 occurred simultaneously in the cytoplasm and nucleus. On the other hand, inhibition of the activation of ERK1/2, induced by PD98059, a specific ERK1/2 upstream inhibitor, aggravated the gastric mucosal injury, and apoptosis was increased and proliferation was reduced in the gastric mucosal cells after the same duration of reperfusion. CONCLUSIONS Serious gastric mucosal damage involving apoptotic cells occurred rapidly at an early stage of reperfusion and was closely related to the suppression of ERK1/2 activation. The activated ERK1/2 signaling transduction pathway played an important role. Activated ERK1/2 participated in the regulation of gastric mucosal injury and repair induced by GI-R, and might be mediated by the inhibition of apoptosis and the promotion of proliferation in gastric mucosal cells.
Collapse
Affiliation(s)
- Wei-Li Qiao
- Department of Physiology and Neurobiology, Xuzhou Medical College, 84 West Huai-hai Road, Xuzhou 221002, Jiangsu, China
| | | | | | | | | |
Collapse
|