1
|
Li Y, Gu Y, Shi Y, Zhang B, Pan S, Chai Y, Chen X, Yuan Y. Application of a dual channel MPTS-modified two-dimensional cell membrane chromatography system for rapid screening of effective ingredients in Saposhnikovia divaricata targeting inflammatory macrophages and fibroblast synovial cells in the treatment of rheumatoid arthritis. J Pharm Biomed Anal 2025; 255:116595. [PMID: 39631165 DOI: 10.1016/j.jpba.2024.116595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/27/2024] [Accepted: 11/28/2024] [Indexed: 12/07/2024]
Abstract
Saposhnikovia divaricata (SD) is a traditional Chinese medicine (TCM) which has been commonly used for the treatment of rheumatoid arthritis (RA). However, its active components and mechanism of anti-RA are still unclear. Targeting rheumatoid arthritis-fibroblastoid synovial (RA-FLS) and synovial macrophages are promising strategies for RA treatment, and their membrane receptors are important targets for anti-RA active substances. A dual channel 3-mercaptopropyltrimethoxysilane (MPTS) modified 2D cell membrane chromatography (CMC) system was established to characterize dual-cell membrane binding active components in SD. Nine components retained on RAW-CMC column and 8 components retained on FLS-CMC column were screened out. Among them, 8 components retained well on both CMC columns. We further validate the pharmacological activity of 5-O-methylvisammioside, 3'-O-angeloylhamaudol, imperatorin, phellopterin and anomalin. They could efficiently target both inflammatory macrophages and fibroblast synovial cells, reduce the release of inflammatory factors, inhibit abnormal cell proliferation, and promote cell apoptosis. 5-O-methylvisammioside, which exhibited the best pharmacological ability on both target cells, inhibited the NF-κB pathway. Our results showed that the dual channel MPTS modified 2D CMC system is a practical method for rapid screening the active components in TCM binding on multiple target cells' membrane protein of a disease. The method is very suitable for elucidating the mechanism of TCM with multiple-components and targets, and rapid screening of lead compounds.
Collapse
Affiliation(s)
- Yueyue Li
- Department of Pharmacy, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China
| | - Yanqiu Gu
- Department of Pharmacy, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China
| | - Yuhuan Shi
- Department of Pharmacy, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China
| | - Bin Zhang
- Department of Pharmacy, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China
| | - Shu Pan
- Department of Pharmacy, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China
| | - Yifeng Chai
- Department of Pharmaceutical Analysis, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Xiaofei Chen
- Department of Pharmaceutical Analysis, School of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| | - Yongfang Yuan
- Department of Pharmacy, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China.
| |
Collapse
|
2
|
Dong Y, Chen Y, Ma G, Cao H. The role of E3 ubiquitin ligases in bone homeostasis and related diseases. Acta Pharm Sin B 2023; 13:3963-3987. [PMID: 37799379 PMCID: PMC10547920 DOI: 10.1016/j.apsb.2023.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 05/16/2023] [Accepted: 05/18/2023] [Indexed: 10/07/2023] Open
Abstract
The ubiquitin-proteasome system (UPS) dedicates to degrade intracellular proteins to modulate demic homeostasis and functions of organisms. These enzymatic cascades mark and modifies target proteins diversly through covalently binding ubiquitin molecules. In the UPS, E3 ubiquitin ligases are the crucial constituents by the advantage of recognizing and presenting proteins to proteasomes for proteolysis. As the major regulators of protein homeostasis, E3 ligases are indispensable to proper cell manners in diverse systems, and they are well described in physiological bone growth and bone metabolism. Pathologically, classic bone-related diseases such as metabolic bone diseases, arthritis, bone neoplasms and bone metastasis of the tumor, etc., were also depicted in a UPS-dependent manner. Therefore, skeletal system is versatilely regulated by UPS and it is worthy to summarize the underlying mechanism. Furthermore, based on the current status of treatment, normal or pathological osteogenesis and tumorigenesis elaborated in this review highlight the clinical significance of UPS research. As a strategy possibly remedies the limitations of UPS treatment, emerging PROTAC was described comprehensively to illustrate its potential in clinical application. Altogether, the purpose of this review aims to provide more evidence for exploiting novel therapeutic strategies based on UPS for bone associated diseases.
Collapse
Affiliation(s)
| | | | - Guixing Ma
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Key University Laboratory of Metabolism and Health of Guangdong, Shenzhen 518055, China
| | - Huiling Cao
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Key University Laboratory of Metabolism and Health of Guangdong, Shenzhen 518055, China
| |
Collapse
|
3
|
Association between the Platelet-Derived Growth Factor/Platelet-Derived Growth Factor Receptor System and Risk of Rheumatoid Arthritis: A Systematic Review and Meta-Analysis. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:6221673. [PMID: 35295202 PMCID: PMC8920641 DOI: 10.1155/2022/6221673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/09/2022] [Accepted: 02/14/2022] [Indexed: 11/18/2022]
Abstract
This research examines the association between the platelet-derived growth factor/platelet-derived growth factor receptor (PDGF/PDGFR) system and rheumatoid arthritis (RA) susceptibility through a comprehensive search of the PubMed database to study the expression of the PDGF/PDGFR system in RA. Review Manager software version 5.3 was used for statistical analysis. Six eligible studies published in the English language were included, including 108 rheumatoid arthritis cases and 85 controls with the corresponding 126 and 97 tests, respectively, relating the expression of the PDGF/PDGFR system to the risk of RA. The overall results indicated a significant association between the PDGF/PDGFR system expression and RA (OR = 5.25, 95% CI: 3.00-9.18, p < 00001), RA patients in Asian countries (OR = 4.13, 95% CI = 2.04-8.39, p < 0.0001) and in Western countries (OR = 9.18, 95% CI = 2.04-8.39, p = 0.03), and only PDGF expression in RA patients (OR = 5.28, 95% CI = 2.73-10.21, p < 0.00001). Thus, only the PDGFR expression was insignificantly associated with RA susceptibility (OR = 9.25, 95% CI = 0.63-136.30, p = 0.11). Hence, the PDGF/PDGFR system most likely contributes to susceptibility to RA.
Collapse
|
4
|
Kameda H, Suzuki M, Takeuchi T. Platelet-Derived Growth Factor as a Therapeutic Target for Systemic Autoimmune Diseases. Drug Target Insights 2017. [DOI: 10.1177/117739280700200006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Affiliation(s)
- Hideto Kameda
- Division of Rheumatology/Clinical Immunology, Department of Internal Medicine, Saitama Medical Center, Saitama Medical University, Kawagoe, Saitama, Japan
| | - Miyuki Suzuki
- Division of Rheumatology/Clinical Immunology, Department of Internal Medicine, Saitama Medical Center, Saitama Medical University, Kawagoe, Saitama, Japan
| | - Tsutomu Takeuchi
- Division of Rheumatology/Clinical Immunology, Department of Internal Medicine, Saitama Medical Center, Saitama Medical University, Kawagoe, Saitama, Japan
| |
Collapse
|
5
|
Yi C, Ma C, Xie Z, Zhang G, Song W, Zhou X, Cao Y. Down-regulation of programmed cell death 5 by insulin-like growth factor 1 in osteoarthritis chondrocytes. INTERNATIONAL ORTHOPAEDICS 2013; 37:937-43. [PMID: 23322062 DOI: 10.1007/s00264-012-1744-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Accepted: 11/29/2012] [Indexed: 02/06/2023]
Abstract
PURPOSE The aim of this study was to investigate the expression of insulin-like growth factor (IGF)-1 and programmed cell death 5 (PDCD5) in osteoarthritis chondrocytes, and to explore the potential correlation between them in the apoptosis process of osteoarthritis chondrocytes. METHODS Patients with knee osteoarthritis were placed into four categories according to radiological staging. The mRNA and protein levels of IGF-1 and PDCD5 in osteoarthritis chondrocytes were respectively detected by quantitative reverse transcriptase polymerase chain reaction (qPCR) and western blotting. In addition, IGF-1 and PDCD5 protein expression in chondrocytes were also measured by immunohistochemistry. Apoptotic cells were measured by TUNEL staining. RESULTS Both the mRNA and protein levels of IGF-1 were down-regulated, while the levels of PDCD5 were up-regulated, and the mRNA and protein levels of IGF-1 were negatively correlated with those of PDCD5, respectively. The apoptotic cell was significantly increased in osteoarthritis chondrocytes compared with control. Importantly, the apoptosis rate was positively correlated with PDCD5 protein expression and negatively correlated with IGF-1 protein expression CONCLUSIONS We concluded that IGF-1 may down-regulate the expression of PDCD5 and thus inhibit the apoptosis of osteoarthritis chondrocytes.
Collapse
Affiliation(s)
- Chengqing Yi
- Department of Orthopaedics, Shanghai First People's Hospital, No. 650 New Songjiang Road, Shanghai, 201620, China.
| | | | | | | | | | | | | |
Collapse
|
6
|
Schmidt-Lauber C, Harrach S, Pap T, Fischer M, Victor M, Heitzmann M, Hansen U, Fobker M, Brand SM, Sindic A, Pavenstädt H, Edemir B, Schlatter E, Bertrand J, Ciarimboli G. Transport mechanisms and their pathology-induced regulation govern tyrosine kinase inhibitor delivery in rheumatoid arthritis. PLoS One 2012; 7:e52247. [PMID: 23284953 PMCID: PMC3527388 DOI: 10.1371/journal.pone.0052247] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Accepted: 11/16/2012] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Tyrosine kinase inhibitors (TKIs) are effective in treating malignant disorders and were lately suggested to have an impact on non-malignant diseases. However, in some inflammatory conditions like rheumatoid arthritis (RA) the in vivo effect seemed to be moderate. As most TKIs are taken up actively into cells by cell membrane transporters, this study aimed to evaluate the role of such transporters for the accumulation of the TKI Imatinib mesylates in RA synovial fibroblasts as well as their regulation under inflammatory conditions. METHODOLOGY/PRINCIPAL FINDINGS The transport and accumulation of Imatinib was investigated in transporter-transfected HEK293 cells and human RA synovial fibroblasts (hRASF). Transporter expression was quantified by qRT-PCR. In transfection experiments, hMATE1 showed the highest apparent affinity for Imatinib among all known Imatinib transporters. Experiments quantifying the Imatinib uptake in the presence of specific transporter inhibitors and after siRNA knockdown of hMATE1 indeed identified hMATE1 to mediate Imatinib transport in hRASF. The anti-proliferative effect of Imatinib on PDGF stimulated hRASF was quantified by cell counting and directly correlated with the uptake activity of hMATE1. Expression of hMATE1 was investigated by Western blot and immuno-fluorescence. Imatinib transport under disease-relevant conditions, such as an altered pH and following stimulation with different cytokines, was also investigated by HPLC. The uptake was significantly reduced by an acidic extracellular pH as well as by the cytokines TNFα, IL-1β and IL-6, which all decreased the expression of hMATE1-mRNA and protein. CONCLUSION/SIGNIFICANCE The regulation of Imatinib uptake via hMATE1 in hRASF and resulting effects on their proliferation may explain moderate in vivo effects on RA. Moreover, our results suggest that investigating transporter mediated drug processing under normal and pathological conditions is important for developing intracellular acting drugs used in inflammatory diseases.
Collapse
Affiliation(s)
- Christian Schmidt-Lauber
- Experimental Nephrology, Department of Internal Medicine D, University Hospital Münster, Münster, Germany
- Institute of Experimental Musculoskeletal Medicine, University Hospital Münster, Münster, Germany
| | - Saliha Harrach
- Experimental Nephrology, Department of Internal Medicine D, University Hospital Münster, Münster, Germany
- Institute of Experimental Musculoskeletal Medicine, University Hospital Münster, Münster, Germany
| | - Thomas Pap
- Institute of Experimental Musculoskeletal Medicine, University Hospital Münster, Münster, Germany
| | - Meike Fischer
- Experimental Nephrology, Department of Internal Medicine D, University Hospital Münster, Münster, Germany
| | - Marion Victor
- Experimental Nephrology, Department of Internal Medicine D, University Hospital Münster, Münster, Germany
| | - Marianne Heitzmann
- Institute of Experimental Musculoskeletal Medicine, University Hospital Münster, Münster, Germany
| | - Uwe Hansen
- Institute for Physiological Chemistry and Pathobiochemistry, University Hospital Münster, Münster, Germany
| | - Manfred Fobker
- Center of Laboratory Medicine, University Hospital Münster, Münster, Germany
| | - Stefan-Martin Brand
- Leibniz-Institute for Arteriosclerosis Research, University Hospital Münster, Münster, Germany
- Molecular Genetics of Cardiovascular Disease, Institute of Sports Medicine, University Hospital Münster, Münster, Germany
| | - Aleksandra Sindic
- Department of Physiology, Croatian Institute for Brain Research, University of Zagreb, Zagreb, Croatia
| | - Hermann Pavenstädt
- Experimental Nephrology, Department of Internal Medicine D, University Hospital Münster, Münster, Germany
| | - Bayram Edemir
- Experimental Nephrology, Department of Internal Medicine D, University Hospital Münster, Münster, Germany
| | - Eberhard Schlatter
- Experimental Nephrology, Department of Internal Medicine D, University Hospital Münster, Münster, Germany
| | - Jessica Bertrand
- Institute of Experimental Musculoskeletal Medicine, University Hospital Münster, Münster, Germany
| | - Giuliano Ciarimboli
- Experimental Nephrology, Department of Internal Medicine D, University Hospital Münster, Münster, Germany
- * E-mail:
| |
Collapse
|
7
|
Zhu X, Li Z, Pan W, Qin L, Zhu G, Ke Y, Wu J, Bo P, Meng S. Participation of Gab1 and Gab2 in IL-22-mediated keratinocyte proliferation, migration, and differentiation. Mol Cell Biochem 2012; 369:255-66. [PMID: 22851227 DOI: 10.1007/s11010-012-1389-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2012] [Accepted: 07/07/2012] [Indexed: 12/13/2022]
Abstract
Interleukin-22 (IL-22) is one of the key mediators of keratinocyte alterations in psoriasis. IL-22 inhibits keratinocyte differentiation and induces the migration of human keratinocytes. Grb2-associated binder 1 (Gab1) has been shown to mediate epidermal growth factor-induced epidermal growth and differentiation via interaction with the Src homology-2-containing protein-tyrosine phosphatase (Shp2). In this investigation, we explore the role of Gab1 and Gab2 in IL-22-mediated keratinocyte activities. We show that both Gab1 and Gab2 were tyrosine phosphorylated in IL-22-stimulated HaCaT cells and human primary epidermal keratinocytes and contributed to the activation of Extracellular signal regulated kinase 1/2 (Erk1/2) through interaction with Shp2. We further demonstrate that HaCaT cells infected with adenoviruses expressing Shp2-binding-defective Gab1/2 mutants exhibited decreased cell proliferation and migration, as well as increased differentiation. Moreover, similar results were observed in HaCaT cells infected with adenovirus-based small interfering RNAs targeting Gab1 and/or Gab2. Altogether, these data underscore the critical roles of Gab1 and Gab2 in IL-22-mediated HaCaT cell proliferation, migration, and differentiation.
Collapse
Affiliation(s)
- Xiaofang Zhu
- Department of Dermatology of Clinical Medical School, Yangzhou University, Yangzhou, China
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Yang Y, Wu J, Demir A, Castillo-Martin M, Melamed RD, Zhang G, Fukunaga-Kanabis M, Perez-Lorenzo R, Zheng B, Silvers DN, Brunner G, Wang S, Rabadan R, Cordon-Cardo C, Celebi JT. GAB2 induces tumor angiogenesis in NRAS-driven melanoma. Oncogene 2012; 32:3627-37. [PMID: 22926523 DOI: 10.1038/onc.2012.367] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Revised: 07/02/2012] [Accepted: 07/04/2012] [Indexed: 12/17/2022]
Abstract
GAB2 is a scaffold protein with diverse upstream and downstream effectors. MAPK and PI3K signaling pathways are known effectors of GAB2. It is amplified and overexpressed in a variety of human tumors including melanoma. Here we show a previously undescribed role for GAB2 in NRAS-driven melanoma. Specifically, we found that GAB2 is co-expressed with mutant NRAS in melanoma cell lines and tumor samples and its expression correlated with metastatic potential. Co-expression of GAB2(WT) and NRAS(G12D) in melanocytes and in melanoma cells increased anchorage-independent growth by providing GAB2-expressing cells a survival advantage through upregulation of BCL-2 family of anti-apoptotic factors. Of note, collaboration of GAB2 with mutant NRAS enhanced tumorigenesis in vivo and led to an increased vessel density with strong CD34 and VEGFR2 activity. We found that GAB2 facilitiated an angiogenic switch by upregulating HIF-1α and VEGF levels. This angiogenic response was significantly suppressed with the MEK inhibitor PD325901. These data suggest that GAB2-mediated signaling cascades collaborate with NRAS-driven downstream activation for conferring an aggressive phenotype in melanoma. Second, we show that GAB2/NRAS signaling axis is non-linear and non-redundant in melanocytes and melanoma, and thus are acting independent of each other. Finally, we establish a link between GAB2 and angiogenesis in melanoma for the first time. In conclusion, our findings provide evidence that GAB2 is a novel regulator of tumor angiogenesis in NRAS-driven melanoma through regulation of HIF-1α and VEGF expressions mediated by RAS-RAF-MEK-ERK signaling.
Collapse
Affiliation(s)
- Y Yang
- Department of Dermatology, Columbia University, New York, NY 10032, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Gompels LL, Malik NM, Madden L, Jin P, Feldmann M, Shepard HM, Paleolog EM. Human epidermal growth factor receptor bispecific ligand trap RB200: abrogation of collagen-induced arthritis in combination with tumour necrosis factor blockade. Arthritis Res Ther 2011; 13:R161. [PMID: 21982514 PMCID: PMC3308094 DOI: 10.1186/ar3480] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Revised: 07/29/2011] [Accepted: 10/07/2011] [Indexed: 11/22/2022] Open
Abstract
Introduction Rheumatoid arthritis (RA) is a chronic disease associated with inflammation and destruction of bone and cartilage. Although inhibition of TNFα is widely used to treat RA, a significant number of patients do not respond to TNFα blockade, and therefore there is a compelling need to continue to identify alternative therapeutic strategies for treating chronic inflammatory diseases such as RA. The anti-epidermal growth factor (anti-EGF) receptor antibody trastuzumab has revolutionised the treatment of patients with EGF receptor-positive breast cancer. Expression of EGF ligands and receptors (known as HER) has also been documented in RA. The highly unique compound RB200 is a bispecific ligand trap that is composed of full-length extracellular domains of HER1 and HER3 EGF receptors. Because of its pan-HER specificity, RB200 inhibits responses mediated by HER1, HER2 and HER3 in vitro and in vivo. The objective of this study was to assess the effect of RB200 combined with TNF blockade in a murine collagen-induced arthritis (CIA) model of RA. Methods Arthritic mice were treated with RB200 alone or in combination with the TNF receptor fusion protein etanercept. We performed immunohistochemistry to assess CD31 and in vivo fluorescent imaging using anti-E-selectin antibody labelled with fluorescent dye to elucidate the effect of RB200 on the vasculature in CIA. Results RB200 significantly abrogated CIA by reducing paw swelling and clinical scores. Importantly, low-dose RB200 combined with a suboptimal dose of etanercept led to complete abrogation of arthritis. Moreover, the combination of RB200 with etanercept abrogated the intensity of the E-selectin-targeted signal to the level seen in control animals not immunised to CIA. Conclusions The human pan-EGF receptor bispecific ligand trap RB200, when combined with low-dose etanercept, abrogates CIA, suggesting that inhibition of events downstream of EGF receptor activation, in combination with TNFα inhibitors, may hold promise as a future therapy for patients with RA.
Collapse
Affiliation(s)
- Luke L Gompels
- Faculty of Medicine, Kennedy Institute of Rheumatology, 65 Aspenlea Road, London, W6 8LH, Imperial College London, London, UK
| | | | | | | | | | | | | |
Collapse
|
10
|
Jeon HK, Park YE, Kim SI, Park SH, Baek SH, Lee JW, Ha DW, Lee HW, Chung JS, Lee SH, Lee EY. Efficacy of Imatinib Mesylate Treatment for a Patient with Rheumatoid Arthritis and Who Developed Chronic Myelogenous Leukemia. JOURNAL OF RHEUMATIC DISEASES 2011. [DOI: 10.4078/jrd.2011.18.2.118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Hye Kyung Jeon
- Department of Internal Medicine, Pusan National University School of Medicine, Busan, Korea
| | - Young Eun Park
- Department of Internal Medicine, Pusan National University School of Medicine, Busan, Korea
| | - Sung Il Kim
- Department of Internal Medicine, Pusan National University School of Medicine, Busan, Korea
| | - Seong Hu Park
- Department of Internal Medicine, Pusan National University School of Medicine, Busan, Korea
| | - Seung Hoon Baek
- Department of Internal Medicine, Pusan National University School of Medicine, Busan, Korea
| | - Joung Wook Lee
- Department of Internal Medicine, Pusan National University School of Medicine, Busan, Korea
| | - Dong Woo Ha
- Department of Internal Medicine, Pusan National University School of Medicine, Busan, Korea
| | - Hye Won Lee
- Department of Internal Medicine, Pusan National University School of Medicine, Busan, Korea
| | - Joo Seop Chung
- Department of Internal Medicine, Pusan National University School of Medicine, Busan, Korea
| | - Seung Hee Lee
- Department of Laboratory Medicine, Pusan National University School of Medicine, Busan, Korea
| | - Eun Yup Lee
- Department of Laboratory Medicine, Pusan National University School of Medicine, Busan, Korea
| |
Collapse
|
11
|
|
12
|
Abstract
Members of the epidermal growth factor receptor (EGFR) family and their associated ligands are commonly expressed by synovial cells, and may be involved in the synovial hyperplasia seen in rheumatoid arthritis and its disease progression. This family of receptors is also expressed in cancer cells, and EGFR targeted therapy is now a mainstay of anticancer therapy. Cetuximab (Erbitux) is a monoclonal antibody directed against the EGFR extracellular receptor that has received Food and Drug Administration approval for the treatment of colorectal cancer as well as head and neck cancer. We report a case of a 61-year-old woman with an extensive history of rheumatoid arthritis requiring multiple therapies, who experienced a surprising remission of her disease and its symptoms while being treated with cetuximab for her head and neck cancer. The case as well as possible mechanisms of action are discussed. Further clinical investigations are clearly warranted.
Collapse
|
13
|
Rosengren S, Corr M, Boyle DL. Platelet-derived growth factor and transforming growth factor beta synergistically potentiate inflammatory mediator synthesis by fibroblast-like synoviocytes. Arthritis Res Ther 2010; 12:R65. [PMID: 20380722 PMCID: PMC2888219 DOI: 10.1186/ar2981] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Revised: 02/19/2010] [Accepted: 04/09/2010] [Indexed: 11/27/2022] Open
Abstract
Introduction The objective of this study was to model the effects of transforming growth factor beta (TGF-β) and platelet-derived growth factor (PDGF), both present in rheumatoid arthritis (RA) synovia, on the behavior of fibroblast-like synoviocytes (FLS) in response to pro-inflammatory cytokine (interleukin (IL)1β, tumor necrosis factor-alpha (TNFα)) challenge. Methods Gene and protein expression by fibroblast-like synoviocytes in vitro was studied by quantitative Polymerase Chain Reaction (qPCR), ELISA and multiplex bead cytokine assays. Intracellular signaling pathway activation was determined by Western blot for phospho-kinases and the use of specific inhibitors. Results In combination, TGF-β and PDGF (2GF) synergistically augmented TNFα- or IL1β-induced matrix metalloproteinase 3 (MMP3), IL6, IL8, and macrophage inflammatory protein 1 alpha (MIP1α) secretion by FLS. Other FLS-derived mediators remained unaffected. Individually, neither growth factor significantly potentiated TNFα or IL1β-induced MMP3 secretion, and only slightly enhanced IL6. The effect of 2GF on TNFα-induced gene expression was transcriptionally mediated; blocked by imatinib mesylate; and occurred even if 2GF was added as much as four hours prior to TNFα. In addition, a 15-minute pulse of 2GF four hours prior to TNFα stimulation yielded a synergistic response. The extracellular-signal-regulated kinase (ERK) and phosphoinositide 3-kinase (PI3K) signaling pathways were induced for at least four hours by 2GF, as demonstrated by persistently upregulated levels of phospho-Akt and phospho-ERK. However, pharmacologic inhibitor studies demonstrated that the potentiating action of 2GF was dependent on PI3 kinase only, and not on ERK. Conclusions The combination of PDGF and TGF-β dramatically potentiates FLS response to cytokines in a receptor-mediated and PI3 kinase-dependent fashion. These data suggest that 2GF contribute to synovitis by directing synovial fibroblasts toward a more aggressive phenotype in response to TNFα. Therefore, inhibition of growth factor signaling may constitute a complementary therapeutic approach to cytokine-targeted treatments for RA.
Collapse
Affiliation(s)
- Sanna Rosengren
- Division of Rheumatology, Allergy and Immunology, University of California at San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA 92093-0656, USA
| | | | | |
Collapse
|
14
|
Abstract
Angiogenesis is the formation of new capillaries from pre-existing vessels. A number of soluble and cell-bound factors may stimulate neovascularization. The perpetuation of angiogenesis involving numerous soluble and cell surface-bound mediators has been associated with rheumatoid arthritis (RA). These angiogenic mediators, among others, include growth factors, primarily vascular endothelial growth factor (VEGF) and hypoxia-inducible factors (HIFs), as well as pro-inflammatory cytokines, various chemokines, matrix components, cell adhesion molecules, proteases and others. Among the several potential angiogenesis inhibitors, targeting of VEGF, HIF-1, angiogenic chemokines, tumor necrosis factor-alpha and the alpha(V)beta(3) integrin may attenuate the action of angiogenic mediators and thus synovial angiogenesis. In addition, some naturally produced or synthetic compounds including angiostatin, endostatin, paclitaxel, fumagillin analogues, 2-methoxyestradiol and thalidomide may be included in the management of RA.
Collapse
Affiliation(s)
- Zoltán Szekanecz
- Department of Rheumatology, Institute of Medicine, University of Debrecen Medical and Health Sciences Center, Debrecen, H-4032, Hungary.
| | | | | | | |
Collapse
|
15
|
Tyrosine kinases as targets for the treatment of rheumatoid arthritis. Nat Rev Rheumatol 2009; 5:317-24. [PMID: 19491913 DOI: 10.1038/nrrheum.2009.82] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
As critical regulators of numerous cell signaling pathways, tyrosine kinases are implicated in the pathogenesis of several diseases, including rheumatoid arthritis (RA). In the absence of disease, synoviocytes produce factors that provide nutrition and lubrication for the surrounding cartilage tissue; few cellular infiltrates are seen in the synovium. In RA, however, macrophages, neutrophils, T cells and B cells infiltrate the synovium and produce cytokines, chemokines and degradative enzymes that promote inflammation and joint destruction. In addition, the synovial lining expands owing to the proliferation of synoviocytes and infiltration of inflammatory cells to form a pannus, which invades the surrounding bone and cartilage. Many of these cell responses are regulated by tyrosine kinases that operate in specific signaling pathways, and inhibition of a number of these kinases might be expected to provide benefit in RA.
Collapse
|
16
|
Terabe F, Kitano M, Kawai M, Kuwahara Y, Hirano T, Arimitsu J, Hagihara K, Shima Y, Narazaki M, Tanaka T, Kawase I, Sano H, Ogata A. Imatinib mesylate inhibited rat adjuvant arthritis and PDGF-dependent growth of synovial fibroblast via interference with the Akt signaling pathway. Mod Rheumatol 2009; 19:522-9. [PMID: 19568828 DOI: 10.1007/s10165-009-0193-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2008] [Accepted: 05/18/2009] [Indexed: 11/25/2022]
Abstract
Overgrowth of the synovium plays an important role in the pathogenesis of rheumatoid arthritis (RA). Platelet-derived growth factor (PDGF) is one of the most potent mitogenic factors of synovial cells, and imatinib mesylate (imatinib) is a specific inhibitor of the PDGF receptor tyrosine kinase. The aim of this study was to elucidate the anti-rheumatic activity of imatinib. The in vivo effects of imatinib were assessed by evaluating the sequential manifestation of adjuvant-induced arthritis in rats using paw volume and clinical scores. Imatinib was found to inhibit rat adjuvant-induced arthritis, but the inhibitory effects were incomplete. To confirm the mechanism of anti-rheumatic-activity of imatinib, we assessed the in vitro effects of imatinib on the proliferation of RA synovial fibroblast-like cells (RASFs) using a MTT assay. Intracellular signaling of PDGF was evaluated by Western blot analysis. Platelet-derived growth factor was found to induce a significant proliferation of RASFs, while imatinib inhibited PDGF-induced proliferation of RASF. Imatinib also inhibited PDGF-induced phosphorylation of the PDGF receptor and Akt, whereas constitutive activated extracellular signal-regulated kinase was not inhibited by imatinib. In contrast, imatinib did not inhibit transforming growth factor beta- and basic fibroblast growth factor-induced proliferation of RASF. Oral administration of imatinib ameliorated adjuvant-induced arthritis in rats, and it inhibited PDGF-induced RASF proliferation through disruption of the PDGF-R to Akt kinase signaling pathway. Because imatinib cannot inhibit the non-PDGF-dependent proliferation of RASFs, the anti-rheumatic effect of imatinib may be incomplete. The development of inhibitors of RASF proliferation may lead to the successful treatment of RA.
Collapse
Affiliation(s)
- Fumitaka Terabe
- Department of Respiratory Medicine, Allergy and Rheumatic Disease, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Kameda H. [Imatinib]. NIHON RINSHO MEN'EKI GAKKAI KAISHI = JAPANESE JOURNAL OF CLINICAL IMMUNOLOGY 2009; 32:77-84. [PMID: 19404005 DOI: 10.2177/jsci.32.77] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The progress in molecular targeting therapy includes two tides, namely, small molecule compounds and large molecule biological agents. Although the latter prevails in the field of clinical immunology, the former attracts more and more attention in these few years. Most of molecular targeting small compounds are the inhibitors of tyrosine kinases, including pioneering imatinib which inhibits the receptor for platelet-derived growth factor (PDGF), c-Abl, etc. The therapeutic concentrations of imatinib almost completely abrogated the morphological alteration and proliferation of fibroblastic cells induced by PDGF stimulation in 3-dimensional culture system in vitro. Indeed, imatinib has been shown to be effective in various animal disease models for arthritis, interstitial pneumonia, glomerulonephritis, and pulmonary hypertension. Furthermore, its efficacy in patients with systemic sclerosis has been recently reported from several institutes. Since established treatments had not been found for fibrotic lesion before, imatinib, a dual inhibitor of both transforming growth factor beta-, and PDGF-signaling, is likely to be a potent drug against fibrosis. Its efficacy and safety in fibrotic and immune-mediated diseases, such as systemic sclerosis, are currently under investigation throughout the world.
Collapse
Affiliation(s)
- Hideto Kameda
- Department of Rheumatology/Clinical Immunology, Saitama Medical Center, Saitama Medical University
| |
Collapse
|
18
|
Tristano AG. Tyrosine kinases as targets in rheumatoid arthritis. Int Immunopharmacol 2009; 9:1-9. [DOI: 10.1016/j.intimp.2008.09.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2008] [Revised: 09/12/2008] [Accepted: 09/15/2008] [Indexed: 11/29/2022]
|
19
|
Müller-Ladner U, Ospelt C, Gay S, Distler O, Pap T. Cells of the synovium in rheumatoid arthritis. Synovial fibroblasts. Arthritis Res Ther 2008; 9:223. [PMID: 18177509 PMCID: PMC2246247 DOI: 10.1186/ar2337] [Citation(s) in RCA: 168] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
For some time synovial fibroblasts have been regarded simply as innocent synovial cells, mainly responsible for synovial homeostasis. During the past decade, however, a body of evidence has accumulated illustrating that rheumatoid arthritis synovial fibroblasts (RASFs) are active drivers of joint destruction in rheumatoid arthritis. Details regarding the intracellular signalling cascades that result in long-term activation and synthesis of proinflammatory molecules and matrix-degrading enzymes by RASFs have been analyzed. Molecular, cellular and animal studies have identified various interactions with other synovial and inflammatory cells. This expanded knowledge of the distinct role played by RASFs in the pathophysiology of rheumatoid arthritis has moved these fascinating cells to the fore, and work to identify targeted therapies to inhibit their joint destructive potential is underway.
Collapse
Affiliation(s)
- Ulf Müller-Ladner
- Justus-Liebig-University Giessen, Department of Rheumatology and Clinical Immunology, Kerckhoff-Clinic Bad Nauheim, Benekestrasse, D-61231 Bad Nauheim, Germany.
| | | | | | | | | |
Collapse
|
20
|
Taïeb A, Constans J, Mahon FX. Une nouvelle piste thérapeutique pour les sclérodermies graves: le mésylate d’imatinib. Rev Med Interne 2008; 29:173-5. [PMID: 17597261 DOI: 10.1016/j.revmed.2007.05.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2007] [Accepted: 05/21/2007] [Indexed: 12/26/2022]
|
21
|
Huber LC, Künzler P, Boyce SH, Michel BA, Gay RE, Ink BS, Gay S. Effects of a novel tyrosine kinase inhibitor in rheumatoid arthritis synovial fibroblasts. Ann Rheum Dis 2008; 67:389-94. [PMID: 17660218 DOI: 10.1136/ard.2007.072330] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
OBJECTIVE Biologicals have revolutionised the treatment of rheumatoid arthritis (RA). However, progressive joint destruction can still be observed in many patients and the search for novel molecular therapies targeting specific signalling pathways is ongoing. In the present study, we investigated the effects of GW282974, a novel compound directed against tyrosine kinase activity with respect to the potential suppression of inflammation and destruction. METHODS Synovial tissue specimens were obtained from RA patients undergoing surgical joint replacement. Rheumatoid arthritis synovial fibroblasts (RASFs) were stimulated with cytokines and GW282974 was added in different concentrations. Gene expression was checked by TaqMan PCR, using 18S as housekeeping gene. Protein analysis was quantified by ELISA. Cell growth and proliferation was measured using the "ViaLight" proliferation assay. RESULTS EGF had no effect on the gene expression profile of RASFs when used as single stimulatory agent. In combination with pro-inflammatory mediators however, EGF showed a synergistic effect. The expression of matrix metalloproteinases, inflammatory cytokines and cyclooxygenase-2 on mRNA levels was strongly increased, whereas the addition of GW282974 abrogated these effects in a dose-dependent manner. These data could be confirmed on protein/lipid levels analysing the supernatants of RASFs by ELISA. Similarly, cell growth and proliferation of RASFs were inhibited by GW282974 in a dose- and time-dependent manner. By contrast, no cytotoxic effects were seen within the concentrations used. DISCUSSION GW282974 appears to interfere with the inflammatory and the destructive pathways in RASFs and might therefore be used as novel therapeutic strategy for the treatment of RA.
Collapse
Affiliation(s)
- L C Huber
- Center of Experimental Rheumatology, University Hospital Zurich, Gloriastrasse 25, CH-8091 Zurich, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
22
|
Soria A, Cario-André M, Lepreux S, Rezvani HR, Pasquet JM, Pain C, Schaeverbeke T, Mahon FX, Taïeb A. The effect of imatinib (Glivec) on scleroderma and normal dermal fibroblasts: a preclinical study. Dermatology 2008; 216:109-17. [PMID: 18216472 DOI: 10.1159/000111507] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2007] [Accepted: 07/05/2007] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Scleroderma skin overexpresses the platelet-derived growth factor receptor beta-subunit (PDGFR-beta) in dermal vessels and PDGFR-beta messenger RNA in cultured fibroblasts. Moreover, increased levels of PDGF and stimulatory autoantibodies to PDGFR have been identified in the serum of scleroderma patients. OBJECTIVE Imatinib being an inhibitor of tyrosine kinase receptors such as PDGFR, its effect on scleroderma fibroblasts was evaluated in vitro as a preclinical therapeutic step. METHODS The effect of imatinib on fibroblasts grown from normal or involved/uninvolved scleroderma skin was studied by Western blot and the methyltetrazolium test. The pattern of distribution of PDGFR-beta in scleroderma versus normal skin was studied by immunohistochemistry. RESULTS In vitro, imatinib inhibited the proliferation of normal dermal and scleroderma fibroblasts at least partly via the inhibition of the phosphorylation of PDGFR. PDGFR-beta was expressed in the epidermis and adnexae in 5 lesional scleroderma biopsies and not in controls. CONCLUSION This study suggests that imatinib can serve as therapy to limit dermal fibroblast proliferation in scleroderma.
Collapse
Affiliation(s)
- A Soria
- INSERM U876, University Victor Segalen Bordeaux 2, Bordeaux, France
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Kameda H, Suzuki M, Takeuchi T. Platelet-derived growth factor as a therapeutic target for systemic autoimmune diseases. Drug Target Insights 2007; 2:239-47. [PMID: 21901078 PMCID: PMC3155225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Some systemic rheumatic diseases and disorders, especially fibrotic and vascular disorders, are often refractory to corticosteroid therapy. Recently, ever accumulating evidence suggests that platelet-derived growth factor (PDGF) is involved in those refractory diseases. Imatinib mesylate inhibits the activation of PDGF receptor as well as c-Abl, Bcr-Abl and c-Kit tyrosine kinases. It has therefore been widely used for the treatment of chronic myeloid leukemia and gastrointestinal stromal tumors. Imatinib effectively suppresses the activation and proliferation of fibroblasts, mesangial cells and smooth muscle cells both in vitro and in vivo. Additionally, it has recently been reported that some patients with rheumatoid arthritis or idiopathic pulmonary arterial hypertension demonstrated a good clinical response to imatinib therapy. Imatinib may therefore overcome the limitations of current therapeutic strategy with corticosteroids and immunosuppressive agents for refractory diseases, such as systemic sclerosis and interstitial lung diseases, without clinical intolerability.
Collapse
Affiliation(s)
- Hideto Kameda
- Correspondence: Hideto Kameda, M.D./Ph.D., Division of Rheumatology/Clinical Immunology, Department of Internal Medicine, Saitama Medical Center, Saitama Medical University, 1981 Kamoda, Tsujido-machi, Kawagoe, Saitama 350-8550, Japan. Tel/Fax: +81-49-228-3574;
| | | | | |
Collapse
|
24
|
Kameda H, Suzuki M, Takeuchi T. Platelet-derived growth factor as a therapeutic target for systemic autoimmune diseases. Drug Target Insights 2007. [PMID: 21901078 DOI: 10.4137/dti.s0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Some systemic rheumatic diseases and disorders, especially fibrotic and vascular disorders, are often refractory to corticosteroid therapy. Recently, ever accumulating evidence suggests that platelet-derived growth factor (PDGF) is involved in those refractory diseases. Imatinib mesylate inhibits the activation of PDGF receptor as well as c-Abl, Bcr-Abl and c-Kit tyrosine kinases. It has therefore been widely used for the treatment of chronic myeloid leukemia and gastrointestinal stromal tumors. Imatinib effectively suppresses the activation and proliferation of fibroblasts, mesangial cells and smooth muscle cells both in vitro and in vivo. Additionally, it has recently been reported that some patients with rheumatoid arthritis or idiopathic pulmonary arterial hypertension demonstrated a good clinical response to imatinib therapy. Imatinib may therefore overcome the limitations of current therapeutic strategy with corticosteroids and immunosuppressive agents for refractory diseases, such as systemic sclerosis and interstitial lung diseases, without clinical intolerability.
Collapse
Affiliation(s)
- Hideto Kameda
- Division of Rheumatology/Clinical Immunology, Department of Internal Medicine, Saitama Medical Center, Saitama Medical University, Kawagoe, Saitama, Japan
| | | | | |
Collapse
|
25
|
Koyama K, Hatsushika K, Ando T, Sakuma M, Wako M, Kato R, Haro H, Sugiyama H, Hamada Y, Ogawa H, Nakao A. Imatinib mesylate both prevents and treats the arthritis induced by type II collagen antibody in mice. Mod Rheumatol 2007; 17:306-10. [PMID: 17694264 DOI: 10.1007/s10165-007-0592-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2007] [Accepted: 05/01/2007] [Indexed: 11/30/2022]
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory disease that is associated with joint destruction. Imatinib mesylate (imatinib) is an inhibitor that specifically targets a set of protein tyrosine kinase, such as abl, c-kit, and platelet-derived growth factor receptor (PDGFR) and it is widely used to treat chronic myeloid leukemia (CML). The purpose of the present study is to determine whether imatinib can provide benefit in the arthritis induced by anti-collagen type II antibody (CAIA) in mice, a model that provides an opportunity to study the effector inflammatory phase of arthritis without involving the priming phase of the immune responses. Mice treated with intraperitoneal administration of imatinib (1 or 10 mg/kg) prior to the development of CAIA displayed significant reductions in the severity of CAIA as assessed by arthritis score, histology, and synovial PDGF and vascular endothelial growth factor expression. In addition, treatment of the mice that had developed CAIA with intraperitoneal administration of imatinib (1 or 10 mg/kg) inhibited the progression of arthritis as assessed by those parameters. These results suggest that imatinib prevents and treats CAIA. Imatinib may thus have both a preventive and therapeutic potential for the joint inflammation at the effector stage of RA.
Collapse
Affiliation(s)
- Kensuke Koyama
- Department of Immunology, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Wollheim FA. Treatment of pulmonary fibrosis in systemic sclerosis: light at the end of the tunnel? ACTA ACUST UNITED AC 2007; 56:9-12. [PMID: 17195185 DOI: 10.1002/art.22315] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
27
|
Kameda H. Imatinib mesylate as a novel therapeutic drug for systemic rheumatic diseases. ACTA ACUST UNITED AC 2007; 30:165-73. [PMID: 17603257 DOI: 10.2177/jsci.30.165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Platelet-derived growth factor (PDGF) is a topic in the pathophysiology of various systemic rheumatic diseases. For example, autoantibody against PDGF receptor was identified in patients with systemic sclerosis. Imatinib mesylate has been well tolerable and widely used for chronic myeloid leukemia and gastrointestinal stromal tomor. Imatinib also inhibits the activation of c-Abl, which is a key downstream molecule of transforming growth factor-beta signaling, and PDGF receptors. Thus, imatinib effectively suppresses the activation and proliferation of fibroblasts, mesangial cells and smooth muscle cells. Therefore, imatinib may overcome the limitation of current therapeutic strategy with corticosteroids and immunosuppressive agents for refractory diseases.
Collapse
Affiliation(s)
- Hideto Kameda
- Division of Rheumatology/Clinical Immunology, Department of Internal Medicine, Saitama Medical Center, Saitama Medical University
| |
Collapse
|
28
|
Frigault MM, Naujokas MA, Park M. Gab2 requires membrane targeting and the met binding motif to promote lamellipodia, cell scatter, and epithelial morphogenesis downstream from the met receptor. J Cell Physiol 2007; 214:694-705. [PMID: 17894413 DOI: 10.1002/jcp.21264] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Gab1 and Gab2 are conserved scaffolding proteins that amplify and integrate signals stimulated by many growth factor receptors including the Met receptor. Gab1 acts to diversify the signal downstream from Met through the recruitment of multiple signaling proteins, and is essential for epithelial morphogenesis. However, whereas Gab1 and Gab2 are both expressed in epithelial cells, Gab2 fails to support a morphogenic response. We demonstrate that Gab1 and Gab2 are divergent in their function whereby Gab1, but not Gab2, promotes lamellipodia formation, and is localized to the membrane of lamellipodia upon Met activation. We have identified activation of ERK1/2 as a requirement for lamellipodia formation. Moreover, activated ERK1/2 are localized to lamellipodia in Gab1 expressing cells but not in cells that overexpress Gab2. By structure-function studies, we identify that enhanced membrane localization conferred through the addition of a myristoylation signal, together with the addition of the direct Met binding motif (MBM) from Gab1, are required to promote lamellipodia and confer a morphogenic signaling response to Gab2. Moreover, the morphogenesis competent myristoylated Gab2MBM promotes localization of activated ERK1/2 to the leading edge of lamellipodia in a similar manner to Gab1. Hence, subcellular localization of the Gab scaffold, as well as the ability of Gab to interact directly with the Met receptor, are both essential components of the morphogenic signaling response which involves lamellipodia formation and the localization of ERK1/2 activation in membrane ruffles.
Collapse
Affiliation(s)
- Melanie M Frigault
- Department of Biochemistry, Molecular Oncology Group, McGill University Health Centre, McGill University, Montreal, Quebec, Canada
| | | | | |
Collapse
|