1
|
Alipour R, Sereshki N, Rafiee M, Reza Mofid M, Alsahebfosoul F, Pourazar A. Blood IgMs from healthy donors and patients with systemic lupus erythematosus reduce the inflammatory properties of platelets from healthy donors. Immunobiology 2022; 227:152193. [DOI: 10.1016/j.imbio.2022.152193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 02/15/2022] [Accepted: 02/23/2022] [Indexed: 11/27/2022]
|
2
|
Bestwick JP, Sharman M, Whitley NT, Kisielewicz C, Skelly BJ, Tappin S, Kellett‐Gregory L, Seth M. The use of high-dose immunoglobulin M-enriched human immunoglobulin in dogs with immune-mediated hemolytic anemia. J Vet Intern Med 2022; 36:78-85. [PMID: 34779044 PMCID: PMC8783326 DOI: 10.1111/jvim.16315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 10/31/2021] [Accepted: 11/03/2021] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND The IV use of human immunoglobulin (hIVIG) in dogs with primary immune-mediated hemolytic anemia (IMHA) has been described previously, but herein we describe the use of high-dose IgM-enriched hIVIG (Pentaglobin). HYPOTHESIS/OBJECTIVES Dogs treated with high-dose Pentaglobin will experience shorter time to remission and hospital discharge and have decreased transfusion requirements compared to dogs receiving standard treatment alone. ANIMALS Fourteen client-owned dogs diagnosed with primary IMHA at specialist referral hospitals in the United Kingdom. METHODS All prospectively enrolled dogs received prednisolone, dexamethasone or both along with clopidogrel. Patients were randomized to receive Pentaglobin at 1 g/kg on up to 2 occasions, or to serve as controls. No additional immunosuppressive drugs were allowed within the first 7 days of treatment. Remission was defined as stable PCV for 24 hours followed by an increase in PCV. RESULTS Ten of 11 dogs from the treatment group and 2 of 3 dogs from the control group achieved remission and survived until hospital discharge. Survival and time to remission were not significantly different between groups. The volume of packed red blood cells transfused, normalized for body weight, was not significantly different between groups. Potential adverse reactions to Pentaglobin occurred in 2 dogs, but their clinical signs may have been related to the underlying disease. CONCLUSIONS AND CLINICAL IMPORTANCE Treatment with high-dose Pentaglobin was well tolerated by dogs with primary IMHA but no significant advantage was found in this small study. Additional studies examining larger groups and subpopulations of dogs with primary IMHA associated with a poorer prognosis are warranted.
Collapse
Affiliation(s)
- Jason P. Bestwick
- Animal Health TrustSuffolkUnited Kingdom
- Present address:
Department of Veterinary MedicineUniversity of CambridgeMadingley Road, Cambridge, CB3 0ESUnited Kingdom
| | - Mellora Sharman
- Animal Health TrustSuffolkUnited Kingdom
- Present address:
VetCT, St John's Innovation CentreCowley Road, Cambridge, CB4 0WSUnited Kingdom
| | - Nat T. Whitley
- Davies Veterinary SpecialistsHertfordshireUnited Kingdom
| | - Caroline Kisielewicz
- Pride Veterinary CentreDerbyUnited Kingdom
- Present address:
Vet Oracle Telemedicine, CVS GroupOwen Road, Diss, Norfolk, IP22 4ERUnited Kingdom
| | | | - Simon Tappin
- Dick White Referrals, Station FarmCambridgeshireUnited Kingdom
| | - Lindsay Kellett‐Gregory
- Queen Mother Hospital for Animals, The Royal Veterinary CollegeHertfordshireUnited Kingdom
- Present address:
Dick White Referrals, Station FarmLondon Road, Six Mile Bottom, Cambridgeshire, CB8 0UHUnited Kingdom
| | - Mayank Seth
- Animal Health TrustSuffolkUnited Kingdom
- Present address:
Dick White Referrals, Station FarmLondon Road, Six Mile Bottom, Cambridgeshire, CB8 0UHUnited Kingdom
| |
Collapse
|
3
|
Matsuda Y, Hiramitsu T, Li XK, Watanabe T. Characteristics of Immunoglobulin M Type Antibodies of Different Origins from the Immunologic and Clinical Viewpoints and Their Application in Controlling Antibody-Mediated Allograft Rejection. Pathogens 2020; 10:pathogens10010004. [PMID: 33374617 PMCID: PMC7822424 DOI: 10.3390/pathogens10010004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/19/2020] [Accepted: 12/20/2020] [Indexed: 12/25/2022] Open
Abstract
Antibody-mediated allograft rejection (AMR) hinders patient prognosis after organ transplantation. Current studies concerning AMR have mainly focused on the diagnostic value of immunoglobulin G (IgG)-type donor-specific antihuman leukocyte antigen antibodies (DSAs), primarily because of their antigen specificity, whereas the clinical significance of immunoglobulin M (IgM)-type DSAs has not been thoroughly investigated in the context of organ transplantation because of their nonspecificity against antigens. Although consensus regarding the clinical significance and role of IgM antibodies is not clear, as discussed in this review, recent findings strongly suggest that they also have a huge potential in novel diagnostic as well as therapeutic application for the prevention of AMR. Most serum IgM antibodies are known to comprise natural antibodies with low affinity toward antigens, and this is derived from B-1 cells (innate B cells). However, some of the serum IgM-type antibodies reportedly also produced by B-2 cells (conventional B cells). The latter are known to have a high affinity for donor-specific antigens. In this review, we initially discuss how IgM-type antibodies of different origins participate in the pathology of various diseases, directly or through cell surface receptors, complement activation, or cytokine production. Then, we discuss the clinical applicability of B-1 and B-2 cell-derived IgM-type antibodies for controlling AMR with reference to the involvement of IgM antibodies in various pathological conditions.
Collapse
Affiliation(s)
- Yoshiko Matsuda
- Division of Transplant Immunology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan;
- Department of Advanced Technology for Transplantation, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
- Correspondence:
| | - Takahisa Hiramitsu
- Department of Transplant and Endocrine Surgery, Nagoya Daini Red Cross-Hospital, Aichi 466-8650, Japan;
| | - Xiao-kang Li
- Division of Transplant Immunology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan;
| | - Takeshi Watanabe
- Laboratory of Immunology, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan;
| |
Collapse
|
4
|
|
5
|
Fereidan-Esfahani M, Nayfeh T, Warrington A, Howe CL, Rodriguez M. IgM Natural Autoantibodies in Physiology and the Treatment of Disease. Methods Mol Biol 2019; 1904:53-81. [PMID: 30539466 DOI: 10.1007/978-1-4939-8958-4_3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Antibodies are vital components of the adaptive immune system for the recognition and response to foreign antigens. However, some antibodies recognize self-antigens in healthy individuals. These autoreactive antibodies may modulate innate immune functions. IgM natural autoantibodies (IgM-NAAs) are a class of primarily polyreactive immunoglobulins encoded by germline V-gene segments which exhibit low affinity but broad specificity to both foreign and self-antigens. Historically, these autoantibodies were closely associated with autoimmune disease. Nevertheless, not all human autoantibodies are pathogenic and compelling evidence indicates that IgM-NAAs may exert a spectrum of effects from injurious to protective depending upon cellular and molecular context. In this chapter, we review the current state of knowledge regarding the potential physiological and therapeutic roles of IgM-NAAs in different disease conditions such as atherosclerosis, cancer, and autoimmune disease. We also describe the discovery of two reparative IgM-NAAs by our laboratory and delineate their proposed mechanisms of action in central nervous system (CNS) disease.
Collapse
Affiliation(s)
| | - Tarek Nayfeh
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | | | - Charles L Howe
- Department of Neurology, Mayo Clinic, Rochester, MN, USA.
| | | |
Collapse
|
6
|
Lobo PI. Role of Natural IgM Autoantibodies (IgM-NAA) and IgM Anti-Leukocyte Antibodies (IgM-ALA) in Regulating Inflammation. Curr Top Microbiol Immunol 2017; 408:89-117. [PMID: 28698955 DOI: 10.1007/82_2017_37] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Natural IgM autoantibodies (IgM-NAA) are rapidly produced to inhibit pathogens and abrogate inflammation mediated by invading microorganisms and host neoantigens. IgM-NAA achieve this difficult task by being polyreactive with low binding affinity but with high avidity, characteristics that allow these antibodies to bind antigenic determinants shared by pathogens and neoantigens. Hence the same clones of natural IgM can bind and mask host neoantigens as well as inhibit microorganisms. In addition, IgM-NAA regulate the inflammatory response via mechanisms involving binding of IgM to apoptotic cells to enhance their removal and binding of IgM to live leukocytes to regulate their function. Secondly, we review how natural IgM prevents autoimmune disorders arising from pathogenic IgG autoantibodies as well as by autoreactive B and T cells that have escaped tolerance mechanisms. Thirdly, using IgM knockout mice, we show that regulatory B and T cells require IgM to effectively regulate inflammation mediated by innate, adaptive and autoimmune mechanisms. It is therefore not surprising why the host positively selects such autoreactive B1 cells that generate protective IgM-NAA, which are also evolutionarily conserved. Fourthly, we show that IgM anti-leukocyte autoantibodies (IgM-ALA) levels and their repertoire can vary in normal humans and disease states and this variation may partly explain the observed differences in the inflammatory response after infection, ischemic injury or after a transplant. Finally we also show how protective IgM-NAA can be rendered pathogenic under non-physiological conditions. IgM-NAA have therapeutic potential. Polyclonal IgM infusions can be used to abrogate ongoing inflammation. Additionally, inflammation arising after ischemic kidney injury, e.g., during high-risk elective cardiac surgery or after allograft transplantation, can be prevented by pre-emptively infusing polyclonal IgM, or DC pretreated ex vivo with IgM, or by increasing in vivo IgM with a vaccine approach. Cell therapy with IgM pretreated cells, is appealing as less IgM will be required.
Collapse
Affiliation(s)
- Peter I Lobo
- Department of Internal Medicine, Division of Nephrology, Center of Immunology, Inflammation and Regenerative Medicine, University of Virginia Health Center, Charlottesville, VA, USA.
| |
Collapse
|
7
|
Sudo M, Miyaji K, Späth PJ, Morita-Matsumoto K, Yamaguchi Y, Yuki N. Polyclonal IgM and IgA block in vitro complement deposition mediated by anti-ganglioside antibodies in autoimmune neuropathies. Int Immunopharmacol 2016; 40:11-15. [DOI: 10.1016/j.intimp.2016.08.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 08/14/2016] [Accepted: 08/18/2016] [Indexed: 01/23/2023]
|
8
|
Lobo PI. Role of Natural Autoantibodies and Natural IgM Anti-Leucocyte Autoantibodies in Health and Disease. Front Immunol 2016; 7:198. [PMID: 27375614 PMCID: PMC4893492 DOI: 10.3389/fimmu.2016.00198] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 05/06/2016] [Indexed: 11/13/2022] Open
Abstract
We review how polyreactive natural IgM autoantibodies (IgM-NAA) protect the host from invading micro-organisms and host neo-antigens that are constantly being produced by oxidation mechanisms and cell apoptosis. Second, we discuss how IgM-NAA and IgM anti-leukocyte antibodies (IgM-ALA) inhibits autoimmune inflammation by anti-idiotypic mechanisms, enhancing removal of apoptotic cells, masking neo-antigens, and regulating the function of dendritic cells (DC) and effector cells. Third, we review how natural IgM prevents autoimmune disorders arising from pathogenic IgG autoantibodies, triggered by genetic mechanisms (e.g., SLE) or micro-organisms, as well as by autoreactive B and T cells that have escaped tolerance mechanisms. Studies in IgM knockout mice have clearly demonstrated that regulatory B and T cells require IgM to effectively regulate inflammation mediated by innate, adaptive, and autoimmune mechanisms. It is, therefore, not surprising why the host positively selects such autoreactive B1 cells that generate IgM-NAA, which are also evolutionarily conserved. Fourth, we show that IgM-ALA levels and their repertoire can vary in normal humans and disease states and this variation may partly explain the observed differences in the inflammatory response after infection, ischemic injury, or after a transplant. We also show how protective IgM-NAA can be rendered pathogenic under non-physiological conditions. We also review IgG-NAA that are more abundant than IgM-NAA in plasma. However, we need to understand if the (Fab)(2) region of IgG-NAA has physiological relevance in non-disease states, as in plasma, their functional activity is blocked by IgM-NAA having anti-idiotypic activity. Some IgG-NAA are produced by B2 cells that have escaped tolerance mechanisms and we show how such pathogenic IgG-NAA are regulated to prevent autoimmune disease. The Fc region of IgG-NAA can influence inflammation and B cell function in vivo by binding to activating and inhibitory FcγR. IgM-NAA has therapeutic potential. Polyclonal IgM infusions can be used to abrogate on-going inflammation. Additionally, inflammation arising after ischemic kidney injury, e.g., during high-risk elective cardiac surgery or after allograft transplantation, can be prevented by pre-emptively infusing polyclonal IgM or DC pretreated ex vivo with IgM or by increasing in vivo IgM with a vaccine approach. Cell therapy is appealing as less IgM will be required.
Collapse
Affiliation(s)
- Peter Isaac Lobo
- Department of Internal Medicine, Division of Nephrology, Center of Immunology, Inflammation and Regenerative Medicine, University of Virginia Health Center, Charlottesville, VA, USA
| |
Collapse
|
9
|
Pleass RJ, Moore SC, Stevenson L, Hviid L. Immunoglobulin M: Restrainer of Inflammation and Mediator of Immune Evasion by Plasmodium falciparum Malaria. Trends Parasitol 2015; 32:108-119. [PMID: 26597020 DOI: 10.1016/j.pt.2015.09.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 09/16/2015] [Accepted: 09/23/2015] [Indexed: 02/06/2023]
Abstract
Immunoglobulin M (IgM) is an ancient antibody class that is found in all vertebrates, with the exception of coelacanths, and is indispensable in both innate and adaptive immunity. The equally ancient human malaria parasite, Plasmodium falciparum, formed an intimate relationship with IgM with which it co-evolved. In this article, we discuss the association between IgM and human malaria parasites, building on several recent publications that implicate IgM as a crucial molecule that determines both host and parasite survival. Consequently, a better understanding of this association may lead to the development of improved intervention strategies.
Collapse
Affiliation(s)
- Richard J Pleass
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK.
| | - Shona C Moore
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK; Warwick Systems Biology Centre, Senate House, University of Warwick, Coventry, CV4 7AL, UK
| | - Liz Stevenson
- Centre for Medical Parasitology, Department of Immunology and Microbiology (ISIM), Faculty of Health and Medical Sciences, University of Copenhagen and Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | - Lars Hviid
- Centre for Medical Parasitology, Department of Immunology and Microbiology (ISIM), Faculty of Health and Medical Sciences, University of Copenhagen and Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark.
| |
Collapse
|
10
|
Abstract
Immunoglobulins (Ig) or antibodies are heavy plasma proteins, with sugar chains added to amino-acid residues by N-linked glycosylation and occasionally by O-linked glycosylation. The versatility of antibodies is demonstrated by the various functions that they mediate such as neutralization, agglutination, fixation with activation of complement and activation of effector cells. Naturally occurring antibodies protect the organism against harmful pathogens, viruses and infections. In addition, almost any organic chemical induces antibody production of antibodies that would bind specifically to the chemical. These antibodies are often produced from multiple B cell clones and referred to as polyclonal antibodies. In recent years, scientists have exploited the highly evolved machinery of the immune system to produce structurally and functionally complex molecules such as antibodies from a single B clone, heralding the era of monoclonal antibodies. Most of the antibodies currently in the clinic, target components of the immune system, are not curative and seek to alleviate symptoms rather than cure disease. Our group used a novel strategy to identify reparative human monoclonal antibodies distinct from conventional antibodies. In this chapter, we discuss the therapeutic relevance of both polyclonal and monoclonal antibodies in clinic.
Collapse
Affiliation(s)
- Bharath Wootla
- Departments of Neurology and Immunology, Mayo Clinic, Rochester, MN, USA
| | | | | |
Collapse
|
11
|
Liu Z, Gurgel PV, Carbonell RG. Purification of human immunoglobulins A, G and M from Cohn fraction II/III by small peptide affinity chromatography. J Chromatogr A 2012; 1262:169-79. [DOI: 10.1016/j.chroma.2012.09.026] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2012] [Revised: 09/04/2012] [Accepted: 09/06/2012] [Indexed: 01/07/2023]
|
12
|
Kaveri SV, Silverman GJ, Bayry J. Natural IgM in immune equilibrium and harnessing their therapeutic potential. THE JOURNAL OF IMMUNOLOGY 2012; 188:939-45. [PMID: 22262757 DOI: 10.4049/jimmunol.1102107] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Natural IgM Abs are the constitutively secreted products of B1 cells (CD5(+) in mice and CD20(+)CD27(+)CD43(+)CD70(-) in humans) that have important and diverse roles in health and disease. Whereas the role of natural IgM as the first line of defense for protection against invading microbes has been extensively investigated, more recent reports have highlighted their potential roles in the maintenance of tissue homeostasis via clearance of apoptotic and altered cells through complement-dependent mechanisms, inhibition of inflammation, removal of misfolded proteins, and regulation of pathogenic autoreactive IgG Abs and autoantibody-producing B cells. These observations have provided the theoretical underpinnings for efforts that currently seek to harness the untapped therapeutic potential of natural IgM either by boosting in vivo natural IgM production or via therapeutic infusions of monoclonal and polyclonal IgM preparations.
Collapse
|
13
|
Lobo PI, Bajwa A, Schlegel KH, Vengal J, Lee SJ, Huang L, Ye H, Deshmukh U, Wang T, Pei H, Okusa MD. Natural IgM anti-leukocyte autoantibodies attenuate excess inflammation mediated by innate and adaptive immune mechanisms involving Th-17. THE JOURNAL OF IMMUNOLOGY 2012; 188:1675-85. [PMID: 22262657 DOI: 10.4049/jimmunol.1101762] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Little is known about the function of natural IgM autoantibodies, especially that of IgM anti-leukocyte autoantibodies (IgM-ALA). Natural IgM-ALA are present at birth and characteristically increase during inflammatory and infective conditions. Our prior clinical observations and those of other investigators showing fewer rejections in renal and cardiac allografts transplanted into recipients with high levels of IgM-ALA led us to investigate whether IgM-ALA regulate the inflammatory response. In this article, we show that IgM, in physiologic doses, inhibit proinflammatory cells from proliferating and producing IFN-γ and IL-17 in response to alloantigens (MLR), anti-CD3, and the glycolipid α-galactosyl ceramide. We showed in an IgM knockout murine model, with intact B cells and regulatory T cells, that there was more severe inflammation and loss of function in the absence of IgM after renal ischemia reperfusion injury and cardiac allograft rejection. Replenishing IgM in IgM knockout mice or increasing the levels of IgM-ALA in wild-type B6 mice significantly attenuated the inflammation in both of these inflammatory models that involve IFN-γ and IL-17. The protective effect on renal ischemia reperfusion injury was not observed using IgM preadsorbed with leukocytes to remove IgM-ALA. We provide data to show that the anti-inflammatory effect of IgM is mediated, in part, by inhibiting TLR-4-induced NF-κB translocation into the nucleus and inhibiting differentiation of activated T cells into Th-1 and Th-17 cells. These observations highlight the importance of IgM-ALA in regulating excess inflammation mediated by both innate and adaptive immune mechanisms and where the inflammatory response involves Th-17 cells that are not effectively regulated by regulatory T cells.
Collapse
Affiliation(s)
- Peter I Lobo
- Division of Nephrology, Center for Immunity, Inflammation and Regenerative Medicine, University of Virginia, Charlottesville, VA 22908, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Cesena FHY, Dimayuga PC, Yano J, Zhao X, Kirzner J, Zhou J, Chan LF, Lio WM, Cercek B, Shah PK, Chyu KY. Immune-modulation by polyclonal IgM treatment reduces atherosclerosis in hypercholesterolemic apoE-/- mice. Atherosclerosis 2011; 220:59-65. [PMID: 22062590 DOI: 10.1016/j.atherosclerosis.2011.10.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Revised: 09/27/2011] [Accepted: 10/04/2011] [Indexed: 10/16/2022]
Abstract
OBJECTIVE Gamma-globulin treatment reduces experimental atherosclerosis by modulating immune function; however the effect of IgM on atherosclerosis is not known. We investigated the effect of serum-derived, non-immune polyclonal IgM (Poly-IgM) on atherosclerosis in mice with advanced disease and also assessed its immune-modulatory effects. METHODS AND RESULTS Aortic atherosclerosis was assessed in apoE-/- mice fed atherogenic diet starting at 6 weeks of age. In addition, mice were also subjected to perivascular cuff injury to the carotid artery at 25 weeks of age to induce accelerated atherosclerosis. At the time of injury, the mice were treated weekly with a commercially available Poly-IgM (0.4mg/mouse) or PBS for 4 weeks and euthanized at 29 weeks of age. Poly-IgM reduced aortic atherosclerosis, and reduced lesion size in the aortic sinus and injured carotid artery, without significant changes in serum cholesterol levels. Poly-IgM treatment was associated with increased anti-oxLDL IgG titers and a reduction in the % splenic CD4(+) T cells compared to controls. The splenic CD4(+) T cell cultured from the Poly-IgM treated mice had reduced proliferation in vitro compared with controls. CONCLUSION Poly-IgM treatment reduced aortic and accelerated carotid atherosclerosis in apoE-/- mice in association with increased anti-oxLDL IgG titers, and reduced number and proliferative function of splenic CD4(+) T cells. Our study identifies a novel athero-protective and immunomodulatory role for non-immune polyclonal IgM.
Collapse
Affiliation(s)
- Fernando H Y Cesena
- The Oppenheimer Atherosclerosis Research Center, Division of Cardiology, Cedars-Sinai Heart Institute, Los Angeles, CA 90048, United States
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Mekhaiel DNA, Daniel-Ribeiro CT, Cooper PJ, Pleass RJ. Do regulatory antibodies offer an alternative mechanism to explain the hygiene hypothesis? Trends Parasitol 2011; 27:523-9. [PMID: 21943801 DOI: 10.1016/j.pt.2011.08.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Revised: 08/17/2011] [Accepted: 08/18/2011] [Indexed: 12/24/2022]
Abstract
The 'hygiene hypothesis', or lack of microbial and parasite exposure during early life, is postulated as an explanation for the recent increase in autoimmune and allergic diseases in developed countries. The favored mechanism is that microbial and parasite-derived products interact directly with pathogen recognition receptors to subvert proinflammatory signaling via T regulatory cells, thereby inducing anti-inflammatory effects and control of autoimmune disease. Parasites, such as helminths, are considered to have a major role in the induction of immune regulatory mechanisms among children living in developing countries. Invoking Occam's razor, we believe we can select an alternative mechanism to explain the hygiene hypothesis, based on antibody-mediated inhibition of immune responses that may more simply explain the available evidence.
Collapse
Affiliation(s)
- David N A Mekhaiel
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | | | | | | |
Collapse
|
16
|
Gürcan HM, Keskin DB, Ahmed AR. Information for healthcare providers on general features of IGIV with emphasis on differences between commercially available products. Autoimmun Rev 2010; 9:553-9. [PMID: 20346419 DOI: 10.1016/j.autrev.2010.03.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Accepted: 03/17/2010] [Indexed: 01/24/2023]
Abstract
OBJECTIVE Intravenous immunoglobulin (IGIV) has provided an essential replacement therapy for primary and secondary immunodeficiencies patients and prophylaxis of infectious diseases in them. It is also used in several autoimmune and chronic inflammatory disorders. An overview of IGIV with information on several commercially available IGIV products is discussed. DATA SOURCES Medline databases and literature provided by the manufacturer for each product presented in the manuscript. STUDY SELECTION From the vast body of information on IGIV, only those studies were selected that were pertinent to general features of IGIV (as presented below) or information provided by the manufacturer that facilitated comparing one product to the other. DATA EXTRACTION Data was extracted on production, and purification procedures, removal of infectious agents, physical and biochemical properties and issues of safety. Data was extracted only for products available in the US. DATA SYNTHESIS IGIV is prepared using pooled plasma. The purification of IGIV is a complex and multi-step process. There is a reciprocal relationship between the purity of IgG in the product and the recovery rate from the total plasma. It is quite possible that some of the biological mediators of the inflammatory and immune systems may be present in trace amounts. Screening and removal of blood borne pathogens is necessary and there are several different techniques available. The specifics of the administration are often variable and no consistent pattern or protocol has been used. When limited dosages are required IGIV may be administered subcutaneously. The side effects associated with IGIV are usually mild and self-limiting. CONCLUSION There are differences in products produced by different manufacturers. The current data does not provide sufficient detail or information to be able to make specific recommendations for the use of a given commercial preparation in a specific disease state. The use of IGIV is associated with certain common and uncommon side effects. The identification of risk factors that might predispose a patient to developing them have been studied and reported. In choosing a IGIV preparation the user may avoid features that may predispose to certain side effects. Equally important is monitoring of patients during and after the IGIV therapy.
Collapse
Affiliation(s)
- Hakan M Gürcan
- Center for Blistering Diseases, Department of Medicine, New England Baptist Hospital, Boston, MA 02120, USA
| | | | | |
Collapse
|
17
|
sHLA-I Contamination, A Novel Mechanism to Explain Ex Vivo/In Vitro Modulation of IL-10 Synthesis and Release in CD8+ T Lymphocytes and in Neutrophils Following Intravenous Immunoglobulin Infusion. J Clin Immunol 2010; 30:384-92. [DOI: 10.1007/s10875-009-9364-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2009] [Accepted: 12/28/2009] [Indexed: 02/02/2023]
|
18
|
Ghio M, Contini P, Negrini S, Proietti M, Gonella R, Ubezio G, Ottonello L, Indiveri F. TRANSFUSION PRACTICE: sHLA-I contaminating molecules as novel mechanism of ex vivo/in vitro transcriptional and posttranscriptional modulation of transforming growth factor-β1 in CD8+ T lymphocytes and neutrophils after intravenous immunoglobulin treatmen. Transfusion 2009; 50:547-55. [DOI: 10.1111/j.1537-2995.2009.02479.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
19
|
Bernard D, Peakman M, Hayday AC. Establishing humanized mice using stem cells: maximizing the potential. Clin Exp Immunol 2008; 152:406-14. [PMID: 18435804 DOI: 10.1111/j.1365-2249.2008.03659.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Studies on physiology and pathology as they relate to the immune system draw heavily upon rodent models. With the increasing impetus provided by initiatives in translational medicine, the demand for ever more sophisticated, 'humanized' murine models is greater than ever. However, the design and implementation of studies in such mice is far from trivial. Here we provide a technical perspective on the increasing interest in developing humanized mice. We give examples of primary data starting with the routine procurement of human donor material, through CD34(+) cell purification prior to engraftment to injection into immunocompromised mice. Our goal is to provide practical advice to the many investigators who may be commencing or considering such studies.
Collapse
Affiliation(s)
- D Bernard
- King's College London, Department of Immunobiology, London, UK
| | | | | |
Collapse
|
20
|
Warrington RJ, Lewis KE. Biologically active anti-nerve growth factor antibodies in commercial intravenous gammaglobulin. J Autoimmun 2007; 28:24-9. [PMID: 17218083 DOI: 10.1016/j.jaut.2006.11.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2006] [Accepted: 11/23/2006] [Indexed: 10/23/2022]
Abstract
Neurotrophins are regulators of development, survival and function of neuronal and non-neuronal cells, one of the most important of which is nerve growth factor (NGF). Previous studies have demonstrated the presence of antibodies to NGF in normal human serum. It would therefore be predicted that antibodies to NGF would also be present in commercial intravenous gammaglobulin (IVIg). It has been shown in the present investigation that ELISA can detect anti-NGF antibodies in IVIg. The functional activity of these antibodies has been demonstrated after affinity purification, by their inhibitory effects upon (a) the proliferation of the NGF-responsive rat pheochromocytoma cell line PC-12, (b) the differentiation of PC-12 cells as determined by neurite outgrowth. All batches of commercially tested IVIg contained anti-NGF antibodies. Since NGF has an important role in the inflammatory immune response and in cell growth and differentiation, these findings may (a) facilitate our understanding of the mechanisms of action of IVIg, (b) indicate new disease states in which IVIg or its derivatives may exert beneficial effects.
Collapse
Affiliation(s)
- Richard J Warrington
- Department of Immunology, Room 616, 730 William Avenue, University of Manitoba, Winnipeg, Manitoba R3E 0W2, Canada.
| | | |
Collapse
|