1
|
Műzes G, Bohusné Barta B, Szabó O, Horgas V, Sipos F. Cell-Free DNA in the Pathogenesis and Therapy of Non-Infectious Inflammations and Tumors. Biomedicines 2022; 10:biomedicines10112853. [PMID: 36359370 PMCID: PMC9687442 DOI: 10.3390/biomedicines10112853] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 10/31/2022] [Accepted: 11/07/2022] [Indexed: 11/09/2022] Open
Abstract
The basic function of the immune system is the protection of the host against infections, along with the preservation of the individual antigenic identity. The process of self-tolerance covers the discrimination between self and foreign antigens, including proteins, nucleic acids, and larger molecules. Consequently, a broken immunological self-tolerance results in the development of autoimmune or autoinflammatory disorders. Immunocompetent cells express pattern-recognition receptors on their cell membrane and cytoplasm. The majority of endogenous DNA is located intracellularly within nuclei and mitochondria. However, extracellular, cell-free DNA (cfDNA) can also be detected in a variety of diseases, such as autoimmune disorders and malignancies, which has sparked interest in using cfDNA as a possible biomarker. In recent years, the widespread use of liquid biopsies and the increasing demand for screening, as well as monitoring disease activity and therapy response, have enabled the revival of cfDNA research. The majority of studies have mainly focused on the function of cfDNA as a biomarker. However, research regarding the immunological consequences of cfDNA, such as its potential immunomodulatory or therapeutic benefits, is still in its infancy. This article discusses the involvement of various DNA-sensing receptors (e.g., absent in melanoma-2; Toll-like receptor 9; cyclic GMP-AMP synthase/activator of interferon genes) in identifying host cfDNA as a potent danger-associated molecular pattern. Furthermore, we aim to summarize the results of the experimental studies that we recently performed and highlight the immunomodulatory capacity of cfDNA, and thus, the potential for possible therapeutic consideration.
Collapse
Affiliation(s)
| | | | | | | | - Ferenc Sipos
- Correspondence: ; Tel.: +36-20-478-0752; Fax: +36-1-266-0816
| |
Collapse
|
2
|
Overview on the role of complement-specific autoantibodies in diseases. Mol Immunol 2022; 151:52-60. [PMID: 36084516 DOI: 10.1016/j.molimm.2022.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/03/2022] [Accepted: 08/15/2022] [Indexed: 11/24/2022]
Abstract
The complement system is recognized as a major pathogenic or contributing factor in an ever-growing number of diseases. In addition to inherited factors, autoantibodies to complement proteins have been detected in various systemic and organ-specific disorders. These include antibodies directed against complement components, regulators and receptors, but also protein complexes such as autoantibodies against complement convertases. In some cases, the autoantibodies are relatively well characterized and a pathogenic role is incurred and their detection has diagnostic value. In other cases, the relevance of the autoantibodies is rather unclear. This review summarizes what we know of complement specific autoantibodies in diseases and identifies unresolved questions regarding their functional effect and relevance.
Collapse
|
3
|
Duvvuri B, Lood C. Cell-Free DNA as a Biomarker in Autoimmune Rheumatic Diseases. Front Immunol 2019; 10:502. [PMID: 30941136 PMCID: PMC6433826 DOI: 10.3389/fimmu.2019.00502] [Citation(s) in RCA: 159] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 02/25/2019] [Indexed: 12/11/2022] Open
Abstract
Endogenous DNA is primarily found intracellularly in nuclei and mitochondria. However, extracellular, cell-free (cf) DNA, has been observed in several pathological conditions, including autoimmune diseases, prompting the interest of developing cfDNA as a potential biomarker. There is an upsurge in studies considering cfDNA to stratify patients, monitor the treatment response and predict disease progression, thus evaluating the prognostic potential of cfDNA for autoimmune diseases. Since the discovery of elevated cfDNA levels in lupus patients in the 1960s, cfDNA research in autoimmune diseases has mainly focused on the overall quantification of cfDNA and the association with disease activity. However, with recent technological advancements, including genomic and methylomic sequencing, qualitative changes in cfDNA are being explored in autoimmune diseases, similar to the ones used in molecular profiling of cfDNA in cancer patients. Further, the intracellular origin, e.g., if derived from mitochondrial or nuclear source, as well as the complexing with carrier molecules, including LL-37 and HMGB1, has emerged as important factors to consider when analyzing the quality and inflammatory potential of cfDNA. The clinical relevance of cfDNA in autoimmune rheumatic diseases is strengthened by mechanistic insights into the biological processes that result in an enhanced release of DNA into the circulation during autoimmune and inflammatory conditions. Prior work have established an important role of accelerated apoptosis and impaired clearance in leakage of nucleic acids into the extracellular environment. Findings from more recent studies, including our own investigations, have demonstrated that NETosis, a neutrophil cell death process, can result in a selective extrusion of inflammatory mitochondrial DNA; a process which is enhanced in patients with lupus and rheumatoid arthritis. In this review, we will summarize the evolution of cfDNA, both nuclear and mitochondrial DNA, as biomarkers for autoimmune rheumatic diseases and discuss limitations, challenges and implications to establish cfDNA as a biomarker for clinical use. This review will also highlight recent advancements in mechanistic studies demonstrating mitochondrial DNA as a central component of cfDNA in autoimmune rheumatic diseases.
Collapse
Affiliation(s)
- Bhargavi Duvvuri
- Division of Rheumatology, Department of Medicine, University of Washington, Seattle, WA, United States
| | - Christian Lood
- Division of Rheumatology, Department of Medicine, University of Washington, Seattle, WA, United States
| |
Collapse
|
4
|
Ahmed R, Cadman ET, Snapper CM, Lawrence RA. Decreased nematode clearance and anti-phosphorylcholine-specific IgM responses in mannose-binding lectin-deficient mice. Immunol Cell Biol 2019; 97:305-316. [DOI: 10.1111/imcb.12219] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 11/15/2018] [Accepted: 11/16/2018] [Indexed: 11/30/2022]
Affiliation(s)
- Rubina Ahmed
- Department of Comparative Biomedical Sciences; The Royal Veterinary College; Royal College Street London NW1 0TU UK
| | - Emma T Cadman
- Department of Comparative Biomedical Sciences; The Royal Veterinary College; Royal College Street London NW1 0TU UK
| | - Clifford M Snapper
- Department of Pathology; Uniformed Services University of the Health Sciences; 4301 Jones Bridge Road Bethesda MD 20814 USA
| | - Rachel A Lawrence
- Department of Comparative Biomedical Sciences; The Royal Veterinary College; Royal College Street London NW1 0TU UK
| |
Collapse
|
5
|
Truedsson L. Classical pathway deficiencies - A short analytical review. Mol Immunol 2015; 68:14-9. [PMID: 26038300 DOI: 10.1016/j.molimm.2015.05.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 05/04/2015] [Accepted: 05/07/2015] [Indexed: 01/05/2023]
Abstract
Deficiencies in the classical pathway of complement activation have some common features but show also great differences. Deficiencies of each of the components (C1q, C1s, C1r, C4 and C2) imply increased susceptibility to bacterial infections. They are also associated with increased risk to develop systemic lupus erythematosus where deficiency of C1q is strongly associated to the disease while C4 less and C2 much less. Deficiency of C1q affects only activation of the classical pathway while deficiency of C4 and C2 also prevent activation of the lectin pathway. Bypass mechanisms may result in complement activation also in absence of C2 but not in absence of C1q or C4. The genes for C2 and C4 isotypes are closely located within the MHC class III region on chromosome 6p and the genes for the 3 C1q chains are on chromosome 1p. Deficiencies of C1q and of C4 show genetic heterogeneity while deficiency of C2 in the great majority of cases is caused by a specific deletion. The production of C4 and C2 is mainly by the hepatocytes in the liver while C1q is produced by monocytic bone marrow derived cells. This has implications for the possibility to treat the deficiency and hematopoietic stem cell transplantation has been tried in C1q deficiency.
Collapse
Affiliation(s)
- Lennart Truedsson
- Department of Laboratory Medicine, Section of Microbiology, Immunology and Glycobiology, Lund University, University Hospital of Skåne, 22185 Lund, Sweden.
| |
Collapse
|
6
|
Sjöwall C, Zapf J, von Löhneysen S, Magorivska I, Biermann M, Janko C, Winkler S, Bilyy R, Schett G, Herrmann M, Muñoz LE. Altered glycosylation of complexed native IgG molecules is associated with disease activity of systemic lupus erythematosus. Lupus 2014; 24:569-81. [PMID: 25389233 DOI: 10.1177/0961203314558861] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 10/03/2014] [Indexed: 12/18/2022]
Abstract
In addition to the redundancy of the receptors for the Fc portion of immunoglobulins, glycans result in potential ligands for a plethora of lectin receptors found in immune effector cells. Here we analysed the exposure of glycans containing fucosyl residues and the fucosylated tri-mannose N-type core by complexed native IgG in longitudinal serum samples of well-characterized patients with systemic lupus erythematosus. Consecutive serum samples of a cohort of 15 patients with systemic lupus erythematosus during periods of increased disease activity and remission were analysed. All patients fulfilled the 1982 American College of Rheumatology classification criteria. Sera of 15 sex- and age-matched normal healthy blood donors served as controls. The levels and type of glycosylation of complexed random IgG was measured with lectin enzyme-immunosorbent assays. After specifically gathering IgG complexes from sera, biotinylated lectins Aleuria aurantia lectin and Lens culinaris agglutinin were employed to detect IgG-associated fucosyl residues and the fucosylated tri-mannose N-glycan core, respectively. In sandwich-ELISAs, IgG-associated IgM, IgA, C1q, C3c and C-reactive protein (CRP) were detected as candidates for IgG immune complex constituents. We studied associations of the glycan of complexed IgG and disease activity according to the physician's global assessment of disease activity and the systemic lupus erythematosus disease activity index 2000 documented at the moment of blood taking. Our results showed significantly higher levels of Aleuria aurantia lectin and Lens culinaris agglutinin binding sites exposed on IgG complexes of patients with systemic lupus erythematosus than on those of normal healthy blood donors. Disease activity in systemic lupus erythematosus correlated with higher exposure of Aleuria aurantia lectin-reactive fucosyl residues by immobilized IgG complexes. Top levels of Aleuria aurantia lectin-reactivity were found in samples taken during the highest activity of systemic lupus erythematosus. Our results show that native circulating IgG complexes from active systemic lupus erythematosus patients expose fucosyl residues and their glycan core is accessible to soluble lectins. Two putative mechanisms may contribute to the increased exposure of these glycans: (1) the canonical N-glycosylation site of the IgG-CH2 domain; (2) an IgG binding non-IgG molecule, like complement or C-reactive protein. In both cases the complexed IgG may be alternatively targeted to lectin receptors of effector cells, e.g. dendritic cells.
Collapse
Affiliation(s)
- C Sjöwall
- Rheumatology/AIR, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - J Zapf
- Department for Internal Medicine 3 and Institute for Clinical Immunology, Friedrich-Alexander University of Erlangen-Nuremberg (FAU), Germany
| | - S von Löhneysen
- Rheumatology/AIR, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden Department for Internal Medicine 3 and Institute for Clinical Immunology, Friedrich-Alexander University of Erlangen-Nuremberg (FAU), Germany
| | - I Magorivska
- Department for Internal Medicine 3 and Institute for Clinical Immunology, Friedrich-Alexander University of Erlangen-Nuremberg (FAU), Germany Institute of Cell Biology, National Academy of Sciences of Ukraine, Lviv, Ukraine
| | - M Biermann
- Department for Internal Medicine 3 and Institute for Clinical Immunology, Friedrich-Alexander University of Erlangen-Nuremberg (FAU), Germany
| | - C Janko
- Department for Internal Medicine 3 and Institute for Clinical Immunology, Friedrich-Alexander University of Erlangen-Nuremberg (FAU), Germany Department of Otorhinolaryngology, Head and Neck Surgery, Section for Experimental Oncology and Nanomedicine (SEON), University Hospital Erlangen, Germany
| | - S Winkler
- Department for Internal Medicine 3 and Institute for Clinical Immunology, Friedrich-Alexander University of Erlangen-Nuremberg (FAU), Germany
| | - R Bilyy
- Institute of Cell Biology, National Academy of Sciences of Ukraine, Lviv, Ukraine
| | - G Schett
- Department for Internal Medicine 3 and Institute for Clinical Immunology, Friedrich-Alexander University of Erlangen-Nuremberg (FAU), Germany
| | - M Herrmann
- Department for Internal Medicine 3 and Institute for Clinical Immunology, Friedrich-Alexander University of Erlangen-Nuremberg (FAU), Germany
| | - L E Muñoz
- Department for Internal Medicine 3 and Institute for Clinical Immunology, Friedrich-Alexander University of Erlangen-Nuremberg (FAU), Germany
| |
Collapse
|
7
|
Kristiansen M, Frisch M, Madsen HO, Garred P, Jacobsen S. Smoking and polymorphisms of genes encoding mannose-binding lectin and surfactant protein-D in patients with rheumatoid arthritis. Rheumatol Int 2013; 34:373-80. [DOI: 10.1007/s00296-013-2904-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2013] [Accepted: 11/12/2013] [Indexed: 10/26/2022]
|
8
|
Cai Y, Zhang W, Xiong S. Mannose-binding lectin blunts macrophage polarization and ameliorates lupus nephritis. PLoS One 2013; 8:e62465. [PMID: 23626823 PMCID: PMC3633861 DOI: 10.1371/journal.pone.0062465] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 03/20/2013] [Indexed: 12/31/2022] Open
Abstract
Background Deficiency in clearance of self nuclear antigens, including DNA, is the hallmark of systemic lupus erythematosus (SLE), a chronic autoimmnue disease characterized by the production of various autoantibodies, immune complex deposition and severe organ damage. Our previous studies revealed that administration of syngeneic BALB/c mice with activated lymphocyte-derived DNA (ALD-DNA) could induce SLE disease. Mannose-binding lectin (MBL), a secreted pattern recognition receptor with binding activity to DNA, has been proved to be a modulator of inflammation, but whether MBL takes responsibility for DNA clearance, modulates the DNA-mediated immune responses, and is involved in the development of DNA-induced SLE disease remain poorly understood. Methodology/Principal Findings The levels of serum MBL significantly decreased in lupus mice induced by ALD-DNA and were negatively correlated with SLE disease. MBL blunted macrophage M2b polarization by inhibiting the MAPK and NF-κB signaling while enhancing the activation of CREB. Furthermore, MBL suppressed the ability of ALD-DNA–stimulated macrophages to polarize T cells toward Th1 cells and Th17 cells. Importantly, MBL supplement in vivo could ameliorate lupus nephritis. Conclusion/Significance These results suggest MBL supplement could alleviate SLE disease and might imply a potential therapeutic strategy for DNA-induced SLE, which would further our understanding of the protective role of MBL in SLE disease.
Collapse
Affiliation(s)
- Yanxing Cai
- Department of Immunology and Institute for Immunobiology, Shanghai Medical College, Fudan University, Shanghai, People’s Republic of China
| | - Weijuan Zhang
- Department of Immunology and Institute for Immunobiology, Shanghai Medical College, Fudan University, Shanghai, People’s Republic of China
| | - Sidong Xiong
- Department of Immunology and Institute for Immunobiology, Shanghai Medical College, Fudan University, Shanghai, People’s Republic of China
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, People’s Republic of China
- * E-mail:
| |
Collapse
|
9
|
Pradhan V, Mahant G, Rajadhyaksha A, Surve P, Rajendran V, Patwardhan M, Nadkarni A, Dighe S, Ghosh K. A study on anti-mannose binding lectin (anti-MBL) antibodies and serum MBL levels in Indian systemic lupus erythematosus patients. Rheumatol Int 2012; 33:1533-9. [PMID: 23255139 DOI: 10.1007/s00296-012-2588-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Accepted: 11/30/2012] [Indexed: 11/26/2022]
Abstract
Systemic lupus erythematosus (SLE) is a prototype autoimmune disease characterized by systemic inflammation and autoantibody production. Anti-MBL autoantibodies have been studied in SLE for their possible effect on MBL levels and functional activity. This study aimed at detection of anti-MBL autoantibodies in Indian SLE patients and evaluates their relationship with related immunological parameters. Two hundred diagnosed SLE patients from Western India were included in the study where 87 patients were lupus nephritis (LN) (43.5 %) and remaining (56.5 %) were non-LN. Disease activity was assessed using the Systemic Lupus Erythematosus Disease Activity Index (SLEDAI). Anti-MBL autoantibodies to IgG and IgM isotypes, anti-C1q autoantibodies, MBL levels and circulating immune complex levels were detected by ELISA. C3, C4 and CRP levels were detected by nephelometer. Anti-MBL autoantibodies were detected in 52 % SLE patients, where 55 % had IgG-anti-MBL, 33.8 % had IgM-anti-MBL and 11.3 % had both subclasses. Low MBL levels were present in 64.4 % anti-MBL positives as compared with 61.5 % in anti-MBL negatives. Among anti-MBL positives, 74 % had anti-C1q antibodies, whereas 41.7 % of anti-MBL negatives had anti-C1q autoantibodies (p = 3.45E06). An inverse correlation was observed between serum MBL and CIC levels. A statistically significant difference was noted between anti-MBL positives and anti-MBL negative patients with hsCRP levels (p = 0.002). Occurrence of infections was higher among anti-MBL positives (65 %) as compared with anti-MBL negatives (35 %). The difference between SLEDAI scores among anti-MBL positive and negative groups was statistically insignificant. Anti-MBL autoantibodies in SLE patients can influence functional activity of MBL and have a significant role in SLE disease pathogenesis.
Collapse
Affiliation(s)
- Vandana Pradhan
- Department of Autoimmune Disorders, National Institute of Immunohaematology, Indian Council of Medical Research, King Edward Memorial Hospital, 13th floor, Parel, Mumbai 400 012, India.
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Pradhan V, Mahant G, Rajadhyaksha A, Surve P, Rajendran V, Patwardhan M, Nadkarni A, Dighe S, Ghosh K. A study on anti-mannose binding lectin (anti-MBL) antibodies and serum MBL levels in Indian systemic lupus erythematosus patients. Rheumatol Int 2012; 33:1193-9. [DOI: 10.1007/s00296-012-2519-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 08/23/2012] [Indexed: 11/28/2022]
|
11
|
Boldt ABW, Goeldner I, de Messias-Reason IJT. Relevance of the lectin pathway of complement in rheumatic diseases. Adv Clin Chem 2012; 56:105-53. [PMID: 22397030 DOI: 10.1016/b978-0-12-394317-0.00012-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Due to its importance both in the clearance of pathogens that contribute as rheumatic etiological agents and in the disposal of apoptotic bodies and potential autoimmune initiators, deficiencies of the components of the lectin pathway of complement have been found to increase susceptibility and modulate the severity of most rheumatic disorders. This chapter introduces the general aspects of the structure, function, and genetics of lectin pathway components and summarizes current knowledge of the field regarding rheumatic diseases predisposition and modulation.
Collapse
Affiliation(s)
- Angelica B W Boldt
- Molecular Immunopathology Laboratory, Department of Medical Pathology, Federal University of Paraná, Curitiba, Brazil
| | | | | |
Collapse
|
12
|
Saevarsdottir S, Ding B, Steinsson K, Grondal G, Valdimarsson H, Alfredsson L, Klareskog L, Padyukov L. Mannan Binding Lectin (MBL) genotypes coding for high MBL serum levels are associated with rheumatoid factor negative rheumatoid arthritis in never smokers. Arthritis Res Ther 2011; 13:R65. [PMID: 21496252 PMCID: PMC3132060 DOI: 10.1186/ar3321] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2010] [Revised: 02/24/2011] [Accepted: 04/15/2011] [Indexed: 12/15/2022] Open
Abstract
Introduction Previous studies have provided inconsistent results on whether variants in the MBL2 gene, coding for the complement-activating mannan-binding lectin (MBL) protein, associate with rheumatoid arthritis (RA). We re-evaluated this in context of the main environmental and genetic risk factors (smoking, HLA-DRB1 'shared epitope' (SE), PTPN22*620W), which predispose to rheumatoid factor (RF) and/or anti-citrullinated-protein antibody (ACPA)-positive RA. Methods In this population-based EIRA study, rheumatoid factor (RF), ACPA, smoking, SE and PTPN22*620W status was determined in incident RA cases and matched controls. MBL-high (n = 1330) and MBL-low (n = 1257) genotypes predicting MBL levels were constructed from four promoter and exon-1 polymorphisms in the MBL2 gene. Odds ratios with 95% confidence interval (OR, 95% CI) were calculated by logistic regression. In extended families (n = 316), previously reported data were re-analyzed, considering RF and smoking. Results MBL-high genotypes tended to be associated with RF-negative (OR = 1.20, 95% CI 0.96-1.51) but not RF-positive (OR = 1.00, 95% CI 0.83-1.20) RA. Results divided by ACPA status did not differ. When stratified for smoking, MBL-high genotype was strongly associated with RF-negative RA in never smokers (OR = 1.82, 95% CI 1.24-2.69) but not in ever smokers (OR = 0.96, 95% CI 0.73-1.30). In never smokers, the association was observed in both the RF-negative/ACPA-negative (OR = 1.67, 95% CI 1.10-2.55) and RF-negative/ACPA-positive subgroups (OR = 3.07, 95% CI 1.37-6.89), and remained on an SE/PTPN22*620W negative background. In the extended families, the reported association between high MBL and RA was in fact confined to never smokers. Conclusions High MBL may predispose to RF-negative RA but only in individuals who have never smoked. This illustrates the importance of phenotypic subgrouping in genetic studies.
Collapse
Affiliation(s)
- Saedis Saevarsdottir
- Rheumatology Unit, Department of Medicine, Karolinska University Hospital Solna, D2:01, 17176 Stockholm, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Erdei A, Isaák A, Török K, Sándor N, Kremlitzka M, Prechl J, Bajtay Z. Expression and role of CR1 and CR2 on B and T lymphocytes under physiological and autoimmune conditions. Mol Immunol 2009; 46:2767-73. [PMID: 19559484 DOI: 10.1016/j.molimm.2009.05.181] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Accepted: 05/29/2009] [Indexed: 11/17/2022]
Abstract
The involvement of complement in the development and regulation of antibody responses under both healthy and pathological conditions is known for long. Unravelling the molecular mechanisms underlying the events however is still in progress. This review focuses on the role of complement receptors CR1 (CD35) and CR2 (CD21) expressed on T and B cells. Alteration in the expression and function of these receptors may contribute to the initiation and maintenance of immune complex mediated autoimmune diseases such as systemic lupus erythematosus and rheumatoid arthritis. Recent data regarding complement receptor expression on T lymphocytes and on memory B cells are also discussed.
Collapse
Affiliation(s)
- Anna Erdei
- Department of Immunology, Biological Institute, Eötvös Loránd University, Budapest, Hungary.
| | | | | | | | | | | | | |
Collapse
|
14
|
Schafranski MD, Pereira Ferrari L, Scherner D, Torres R, Jensenius JC, de Messias-Reason IJ. High-producing MBL2 genotypes increase the risk of acute and chronic carditis in patients with history of rheumatic fever. Mol Immunol 2008; 45:3827-31. [DOI: 10.1016/j.molimm.2008.05.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2007] [Revised: 05/15/2008] [Accepted: 05/20/2008] [Indexed: 10/21/2022]
|