1
|
Yuan L, Wang Y, Shen X, Ma F, Wang J, Yan F. Soluble form of immune checkpoints in autoimmune diseases. J Autoimmun 2024; 147:103278. [PMID: 38943864 DOI: 10.1016/j.jaut.2024.103278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/03/2024] [Accepted: 06/19/2024] [Indexed: 07/01/2024]
Abstract
Immune checkpoints are essential regulators of immune responses, either by activating or suppressing them. Consequently, they are regarded as pivotal elements in the management of infections, cancer, and autoimmune disorders. In recent years, researchers have identified numerous soluble immune checkpoints that are produced through various mechanisms and demonstrated biological activity. These soluble immune checkpoints can be produced and distributed in the bloodstream and various tissues, with their roles in immune response dysregulation and autoimmunity extensively documented. This review aims to provide a thorough overview of the generation of various soluble immune checkpoints, such as sPD-1, sCTLA-4, sTim-3, s4-1BB, sBTLA, sLAG-3, sCD200, and the B7 family, and their importance as indicators for the diagnosis and prediction of autoimmune conditions. Furthermore, the review will investigate the potential pathological mechanisms of soluble immune checkpoints in autoimmune diseases, emphasizing their association with autoimmune diseases development, prognosis, and treatment.
Collapse
Affiliation(s)
- Li Yuan
- Geriatric Diseases Institute of Chengdu, Department of Clinical Laboratory, Chengdu Fifth People's Hospital, Chengdu, Sichuan Province, China
| | - Yuxia Wang
- Geriatric Intensive Care Unit, Sichuan Geriatric Medical Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan Province, China
| | - Xuxia Shen
- Geriatric Diseases Institute of Chengdu, Department of Clinical Laboratory, Chengdu Fifth People's Hospital, Chengdu, Sichuan Province, China
| | - Fujun Ma
- Department of Training, Chengdu Fifth People's Hospital, Chengdu, Sichuan Province, China
| | - Jun Wang
- Department of Respiratory and Critical Care Medicine, Chengdu Fifth People's Hospital, Chengdu, Sichuan Province, China.
| | - Fang Yan
- Geriatric Diseases Institute of Chengdu, Department of Geriatrics, Chengdu Fifth People's Hospital, Chengdu, Sichuan Province, China; Geriatric Diseases Institute of Chengdu, Department of Intensive Care Medicine, Chengdu Fifth People's Hospital, Chengdu, Sichuan Province, China; Center for Medicine Research and Translation, Chengdu Fifth People's Hospital, Chengdu, Sichuan Province, China.
| |
Collapse
|
2
|
Daei Sorkhabi A, Komijani E, Sarkesh A, Ghaderi Shadbad P, Aghebati-Maleki A, Aghebati-Maleki L. Advances in immune checkpoint-based immunotherapies for multiple sclerosis: rationale and practice. Cell Commun Signal 2023; 21:321. [PMID: 37946301 PMCID: PMC10634124 DOI: 10.1186/s12964-023-01289-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/19/2023] [Indexed: 11/12/2023] Open
Abstract
Beyond the encouraging results and broad clinical applicability of immune checkpoint (ICP) inhibitors in cancer therapy, ICP-based immunotherapies in the context of autoimmune disease, particularly multiple sclerosis (MS), have garnered considerable attention and hold great potential for developing effective therapeutic strategies. Given the well-established immunoregulatory role of ICPs in maintaining a balance between stimulatory and inhibitory signaling pathways to promote immune tolerance to self-antigens, a dysregulated expression pattern of ICPs has been observed in a significant proportion of patients with MS and its animal model called experimental autoimmune encephalomyelitis (EAE), which is associated with autoreactivity towards myelin and neurodegeneration. Consequently, there is a rationale for developing immunotherapeutic strategies to induce inhibitory ICPs while suppressing stimulatory ICPs, including engineering immune cells to overexpress ligands for inhibitory ICP receptors, such as program death-1 (PD-1), or designing fusion proteins, namely abatacept, to bind and inhibit the co-stimulatory pathways involved in overactivated T-cell mediated autoimmunity, and other strategies that will be discussed in-depth in the current review. Video Abstract.
Collapse
Affiliation(s)
- Amin Daei Sorkhabi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Erfan Komijani
- Department of Veterinary, Medicine, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Aila Sarkesh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Pedram Ghaderi Shadbad
- Department of Veterinary, Medicine, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Ali Aghebati-Maleki
- Stem Cell Research Center, Tabriz University of Medical Science, Tabriz, Iran
| | - Leili Aghebati-Maleki
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
3
|
Wong HY, Prasad A, Gan SU, Chua JJE, Schwarz H. Identification of CD137-Expressing B Cells in Multiple Sclerosis Which Secrete IL-6 Upon Engagement by CD137 Ligand. Front Immunol 2020; 11:571964. [PMID: 33240262 PMCID: PMC7677239 DOI: 10.3389/fimmu.2020.571964] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 10/12/2020] [Indexed: 12/21/2022] Open
Abstract
The potent costimulatory effect of CD137 has been implicated in several murine autoimmune disease models. CD137 costimulates and polarizes antigen-specific T cells toward a potent Th1/Tc1 response, and is essential for the development of experimental autoimmune encephalomyelitis (EAE), a murine model of Multiple Sclerosis (MS). This study aimed to investigate a role of CD137 in MS. Immunohistochemical and immunofluorescence staining of MS brain tissues was used to identify expression of CD137. CD137+ cells were identified in MS brain samples, with active lesions having the highest frequency of CD137+ cells. CD137 expression was found on several leukocyte subsets, including T cells, B cells and endothelial cells. In particular, CD137+ B cells were found in meningeal infiltrates. In vitro experiments showed that CD137 engagement on activated B cells increased early TNF and persistent IL-6 secretion with increased cell proliferation. These CD137+ B cells could interact with CD137L-expressing cells, secrete pro-inflammatory cytokines and accumulate in the meningeal infiltrate. This study demonstrates CD137 expression by activated B cells, enhancement of the inflammatory activity of B cells upon CD137 engagement, and provides evidence for a pathogenic role of CD137+ B cells in MS.
Collapse
Affiliation(s)
- Hiu Yi Wong
- Department of Physiology, National University of Singapore, Singapore, Singapore.,Immunology Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Ankshita Prasad
- Institute for Health Innovation and Technology, National University of Singapore, Singapore, Singapore
| | - Shu Uin Gan
- Department of Surgery, National University of Singapore, Singapore, Singapore
| | - John Jia En Chua
- Department of Physiology, National University of Singapore, Singapore, Singapore.,Institute for Health Innovation and Technology, National University of Singapore, Singapore, Singapore.,LSI Neurobiology Programme, National University of Singapore, Singapore, Singapore
| | - Herbert Schwarz
- Department of Physiology, National University of Singapore, Singapore, Singapore.,Immunology Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
4
|
Wong HY, Schwarz H. CD137 / CD137 ligand signalling regulates the immune balance: A potential target for novel immunotherapy of autoimmune diseases. J Autoimmun 2020; 112:102499. [PMID: 32505443 DOI: 10.1016/j.jaut.2020.102499] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 05/24/2020] [Accepted: 05/25/2020] [Indexed: 02/08/2023]
Abstract
CD137 (TNFRSF9, 4-1BB) is a potent co-stimulatory molecule of the tumour necrosis factor receptor superfamily (TNFRSF) that is expressed by activated T cells. CD137/CD137 ligand (CD137L) signalling primarily induces a potent cell-mediated immune response, while signalling of cell surface-expressed CD137L into antigen presenting cells enhances their activation, differentiation and migratory capacity. Studies have shown that bidirectional CD137/CD137L signalling plays an important role in the pathogenesis of autoimmune diseases. This review discusses the mechanisms how CD137/CD137L signalling contributes to immune deviation of helper T cell pathways in various murine models, and the potential of developing immunotherapies targeting CD137/CD137L signalling for the treatment of autoimmune diseases.
Collapse
Affiliation(s)
- Hiu Yi Wong
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 117593, Singapore; Immunology Programme, Life Sciences Institute, National University of Singapore, 117456, Singapore
| | - Herbert Schwarz
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 117593, Singapore; Immunology Programme, Life Sciences Institute, National University of Singapore, 117456, Singapore.
| |
Collapse
|
5
|
Kumar P, Bhattacharya P, Prabhakar BS. A comprehensive review on the role of co-signaling receptors and Treg homeostasis in autoimmunity and tumor immunity. J Autoimmun 2018; 95:77-99. [PMID: 30174217 PMCID: PMC6289740 DOI: 10.1016/j.jaut.2018.08.007] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 08/22/2018] [Accepted: 08/26/2018] [Indexed: 12/22/2022]
Abstract
The immune system ensures optimum T-effector (Teff) immune responses against invading microbes and tumor antigens while preventing inappropriate autoimmune responses against self-antigens with the help of T-regulatory (Treg) cells. Thus, Treg and Teff cells help maintain immune homeostasis through mutual regulation. While Tregs can contribute to tumor immune evasion by suppressing anti-tumor Teff response, loss of Treg function can result in Teff responses against self-antigens leading to autoimmune disease. Thus, loss of homeostatic balance between Teff/Treg cells is often associated with both cancer and autoimmunity. Co-stimulatory and co-inhibitory receptors, collectively known as co-signaling receptors, play an indispensable role in the regulation of Teff and Treg cell expansion and function and thus play critical roles in modulating autoimmune and anti-tumor immune responses. Over the past three decades, considerable efforts have been made to understand the biology of co-signaling receptors and their role in immune homeostasis. Mutations in co-inhibitory receptors such as CTLA4 and PD1 are associated with Treg dysfunction, and autoimmune diseases in mice and humans. On the other hand, growing tumors evade immune surveillance by exploiting co-inhibitory signaling through expression of CTLA4, PD1 and PDL-1. Immune checkpoint blockade (ICB) using anti-CTLA4 and anti-PD1 has drawn considerable attention towards co-signaling receptors in tumor immunology and created renewed interest in studying other co-signaling receptors, which until recently have not been as well studied. In addition to co-inhibitory receptors, co-stimulatory receptors like OX40, GITR and 4-1BB have also been widely implicated in immune homeostasis and T-cell stimulation, and use of agonistic antibodies against OX40, GITR and 4-1BB has been effective in causing tumor regression. Although ICB has seen unprecedented success in cancer treatment, autoimmune adverse events arising from ICB due to loss of Treg homeostasis poses a major obstacle. Herein, we comprehensively review the role of various co-stimulatory and co-inhibitory receptors in Treg biology and immune homeostasis, autoimmunity, and anti-tumor immunity. Furthermore, we discuss the autoimmune adverse events arising upon targeting these co-signaling receptors to augment anti-tumor immune responses.
Collapse
Affiliation(s)
- Prabhakaran Kumar
- Department of Microbiology and Immunology, University of Illinois-College of Medicine, Chicago, IL, USA
| | - Palash Bhattacharya
- Department of Microbiology and Immunology, University of Illinois-College of Medicine, Chicago, IL, USA
| | - Bellur S Prabhakar
- Department of Microbiology and Immunology, University of Illinois-College of Medicine, Chicago, IL, USA; Department of Ophthalmology, Associate Dean for Technological Innovation and Training, University of Illinois College of Medicine, Room E-705, (M/C 790), 835 S. Wolcott Ave, Chicago, IL, 60612, USA.
| |
Collapse
|
6
|
He Y, Ao DH, Li XQ, Zhong SS, A R, Wang YY, Xiang YJ, Xu BL, Yang TT, Gao XG, Liu GZ. Increased Soluble CD137 Levels and CD4+ T-Cell-Associated Expression of CD137 in Acute Atherothrombotic Stroke. Clin Transl Sci 2018; 11:428-434. [PMID: 29697202 PMCID: PMC6039206 DOI: 10.1111/cts.12553] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 03/08/2018] [Indexed: 12/28/2022] Open
Abstract
As a proinflammatory cytokine, CD137 (4‐1BB, TNFRSF9) is present in membrane‐bound and soluble forms. Increased expression of CD137 was recently found in T cells in human atherosclerotic plaques. However, the exact role of CD137 in ischemic stroke is not clear. In this study we analyzed the protein levels of soluble CD137 (sCD137) and the expression of CD137 on CD4+ T cells in the peripheral blood of patients with acute atherothrombotic stroke by using the cytometry beads array (CBA) and flow cytometry. Within 24 hours of onset, the stroke patients showed elevated levels of sCD137 (2.7 pg/ml) and CD137 expression on CD4+ T cells (4.9 ± 3.2%) compared with normal controls (1.1 pg/ml, P < 0.01; 1.3 ± 1.0%, P < 0.01). Alterations in CD137 expression may enhance ischemia‐induced inflammatory responses via bidirectional signaling and, consequently, aggravate brain injury in early stages of this disorder.
Collapse
Affiliation(s)
- Yang He
- Department of Neurology, Peking University People's Hospital, Beijing, China
| | - Dong-Hui Ao
- Department of Neurology, Peking University People's Hospital, Beijing, China
| | - Xiao-Qing Li
- Department of Neurology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Shan-Shan Zhong
- Department of Neurology, Peking University People's Hospital, Beijing, China
| | - Rong A
- Department of Neurology, Peking University People's Hospital, Beijing, China
| | - Yang-Yang Wang
- Department of Neurology, Peking University People's Hospital, Beijing, China
| | - Ya-Juan Xiang
- Department of Neurology, Peking University People's Hospital, Beijing, China
| | - Bao-Lei Xu
- Department of Neurology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Ting-Ting Yang
- Department of Neurology, Peking University People's Hospital, Beijing, China
| | - Xu-Guang Gao
- Department of Neurology, Peking University People's Hospital, Beijing, China
| | - Guang-Zhi Liu
- Department of Neurology, Peking University People's Hospital, Beijing, China
| |
Collapse
|
7
|
Abstract
INTRODUCTION 4-1BB (CD137) is an important T-cell stimulating molecule. The 4-1BB mAb or its variants have shown remarkable therapeutic activity against autoimmunity, viral infections, and cancer. Antibodies to 4-1BB have recently entered clinical trials for the treatment of cancer with favorable toxicity profile. In this article, we present a review documenting the efficacy and pitfalls of 4-1BB therapy. AREAS COVERED An extensive literature search has been made on 4-1BB, spanning two decades, and a comprehensive report is presented here highlighting the origins, biological effects, therapeutic potential, and mechanistic basis of targeting 4-1BB as well as the side effects associated with such therapy. EXPERT OPINION Research so far indicates that 4-1BB is highly protective against various pathological conditions including cancer. However, a few important side effects of 4-1BB therapy such as liver toxicity, thrombocytopenia, anemia, and suppressive effects on certain immune competent cells should be taken into consideration before it is used for human therapy.
Collapse
Affiliation(s)
- Dass S Vinay
- a 1 Tulane University, Section of Clinical Immunology, Allergy and Rheumatology, Department of Medicine , New Orleans, LA 70112, USA
| | - Byoung S Kwon
- a 1 Tulane University, Section of Clinical Immunology, Allergy and Rheumatology, Department of Medicine , New Orleans, LA 70112, USA.,b 2 Cell and Immunobiology, and R & D Center for Cancer Therapeutics, National Cancer Center , Goyang 410-769, Korea ;
| |
Collapse
|
8
|
Development of experimental autoimmune encephalomyelitis critically depends on CD137 ligand signaling. J Neurosci 2013; 32:18246-52. [PMID: 23238738 DOI: 10.1523/jneurosci.2473-12.2012] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Multiple sclerosis (MS) is a degenerative autoimmune disease of the CNS. Experimental autoimmune encephalomyelitis (EAE) is a commonly used murine model for MS. Here we report that CD137 ligand (CD137L, 4-1BB ligand, TNFS9), a member of the TNF superfamily, is critical for the development of EAE. EAE symptoms were significantly ameliorated in CD137L(-/-) mice. In the absence of CD137L, myelin oligodendrocyte glycoprotein (MOG)-specific T-cells secreted lower levels of T(h)1/T(h)17 cell-associated cytokines. MOG-specific T-cells also trafficked less efficiently to the CNS in CD137L(-/-) mice, possibly as a consequence of reduced expression of vascular cell adhesion molecule-1 (VCAM-1), which regulates leukocyte extravasation. Thus, CD137L regulates many functions of MOG-specific T-cells that contribute to EAE and may represent a novel therapeutic target for the treatment of MS.
Collapse
|
9
|
Kachapati K, Adams DE, Wu Y, Steward CA, Rainbow DB, Wicker LS, Mittler RS, Ridgway WM. The B10 Idd9.3 locus mediates accumulation of functionally superior CD137(+) regulatory T cells in the nonobese diabetic type 1 diabetes model. THE JOURNAL OF IMMUNOLOGY 2012; 189:5001-15. [PMID: 23066155 DOI: 10.4049/jimmunol.1101013] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
CD137 is a T cell costimulatory molecule encoded by the prime candidate gene (designated Tnfrsf9) in NOD.B10 Idd9.3 congenic mice protected from type 1 diabetes (T1D). NOD T cells show decreased CD137-mediated T cell signaling compared with NOD.B10 Idd9.3 T cells, but it has been unclear how this decreased CD137 T cell signaling could mediate susceptibility to T1D. We and others have shown that a subset of regulatory T cells (Tregs) constitutively expresses CD137 (whereas effector T cells do not, and only express CD137 briefly after activation). In this study, we show that the B10 Idd9.3 region intrinsically contributes to accumulation of CD137(+) Tregs with age. NOD.B10 Idd9.3 mice showed significantly increased percentages and numbers of CD137(+) peripheral Tregs compared with NOD mice. Moreover, Tregs expressing the B10 Idd9.3 region preferentially accumulated in mixed bone marrow chimeric mice reconstituted with allotypically marked NOD and NOD.B10 Idd9.3 bone marrow. We demonstrate a possible significance of increased numbers of CD137(+) Tregs by showing functional superiority of FACS-purified CD137(+) Tregs in vitro compared with CD137(-) Tregs in T cell-suppression assays. Increased functional suppression was also associated with increased production of the alternatively spliced CD137 isoform, soluble CD137, which has been shown to suppress T cell proliferation. We show for the first time, to our knowledge, that CD137(+) Tregs are the primary cellular source of soluble CD137. NOD.B10 Idd9.3 mice showed significantly increased serum soluble CD137 compared with NOD mice with age, consistent with their increased numbers of CD137(+) Tregs with age. These studies demonstrate the importance of CD137(+) Tregs in T1D and offer a new hypothesis for how the NOD Idd9.3 region could act to increase T1D susceptibility.
Collapse
Affiliation(s)
- Kritika Kachapati
- Division of Immunology, Allergy and Rheumatology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
During the last decade, several defects in self-tolerance have been identified in multiple sclerosis. Dysfunction in central tolerance leads to the thymic output of antigen-specific T cells with T cell receptor alterations favouring autoimmune reactions. In addition, premature thymic involution results in a reduced export of naïve regulatory T cells, the fully suppressive clone. Alterations in peripheral tolerance concern costimulatory molecules as well as transcriptional and epigenetic mechanisms. Recent data underline the key role of regulatory T cells that suppress Th1 and Th17 effector cell responses and whose immunosuppressive activity is impaired in patients with multiple sclerosis. Those recent observations suggest that a defect in self-tolerance homeostasis might be the primary mover of multiple sclerosis leading to subsequent immune attacks, inflammation and neurodegeneration. The concept of multiple sclerosis as a consequence of the failure of central and peripheral tolerance mechanisms to maintain a self-tolerance state, particularly of regulatory T cells, may have therapeutic implications. Restoring normal thymic output and suppressive functions of regulatory T cells appears an appealing approach. Regulatory T cells suppress the general local immune response via bystander effects rather than through individual antigen-specific responses. Interestingly, the beneficial effects of currently approved immunomodulators (interferons β and glatiramer acetate) are associated with a restored regulatory T cell homeostasis. However, the feedback regulation between Th1 and Th17 effector cells and regulatory T cells is not so simple and tolerogenic mechanisms also involve other regulatory cells such as B cells, dendritic cells and CD56(bright) natural killer cells.
Collapse
Affiliation(s)
- R E Gonsette
- Fondation-Charcot-Stichting, Avenue Huart Hamoir 48, 1030 Brussels, Belgium.
| |
Collapse
|
11
|
Dalla Libera D, Di Mitri D, Bergami A, Centonze D, Gasperini C, Grasso MG, Galgani S, Martinelli V, Comi G, Avolio C, Martino G, Borsellino G, Sallusto F, Battistini L, Furlan R. T regulatory cells are markers of disease activity in multiple sclerosis patients. PLoS One 2011; 6:e21386. [PMID: 21731726 PMCID: PMC3123332 DOI: 10.1371/journal.pone.0021386] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Accepted: 05/26/2011] [Indexed: 11/18/2022] Open
Abstract
FoxP3⁺ Treg cells are believed to play a role in the occurrence of autoimmunity and in the determination of clinical recurrences. Contradictory reports are, however, available describing frequency and function of Treg cells during autoimmune diseases. We examined, by both polychromatic flow cytometry, and real-time RT-PCR, several Treg markers in peripheral blood mononuclear cells from patients with multiple sclerosis (MS), an autoimmune disease affecting the central nervous system. We found that Tregs, as defined by CD25, CD39, FoxP3, CTLA4, and GITR expression, were significantly decreased in stable MS patients as compared to healthy donors, but, surprisingly, restored to normal levels during an acute clinical attack. We conclude that Treg cells are not involved in causing clinical relapses, but rather react to inflammation in the attempt to restore homeostasis.
Collapse
Affiliation(s)
- Dacia Dalla Libera
- Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Mikulkova Z, Praksova P, Stourac P, Bednarik J, Michalek J. Imbalance in T-cell and cytokine profiles in patients with relapsing-remitting multiple sclerosis. J Neurol Sci 2011; 300:135-41. [PMID: 20884014 DOI: 10.1016/j.jns.2010.08.053] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Revised: 08/01/2010] [Accepted: 08/25/2010] [Indexed: 01/31/2023]
Abstract
Multiple sclerosis (MS) is characterized by autoimmune attack leading to demyelination of the white matter in the central nervous system with devastating clinical consequences. Several immune-mediated destruction mechanisms were previously proposed including different T-cell subsets but complex view on immune system function in patients with MS is missing. In the present study, T-lymphocyte populations and pro-inflammatory as well as suppressive cytokine profiles were evaluated in detail in previously untreated patients with relapsing-remitting MS (RRMS). CD4(+) and CD8(+) naïve, central memory (Tcm), effector memory (Tem), terminal effector memory (Ttem), CD4(+) regulatory T-cells (Treg) and CD8(+) T-suppressor cells (Ts) were analysed using flow cytometry, and levels of ten plasma cytokines were determined using fluorescent bead-based immunoassay. We evaluated two groups of RRMS with minor (n=33) and major (n=25) clinical impairment and compared them with healthy controls (n=40) in order to detect any correlation between severity of MS clinical symptoms and immune disturbances. Significant differences were noted in CD4(+)CD45RA(+)CCR7(+) naïve T-cells, CD4(+)CD45RO(+)CCR7(-) and CD8(+)CD45RO(+)CCR7(-) Tem cells, while no differences were recognized in Tcm, Ttem, Treg and Ts cells in RRMS patients. Nine out of ten studied cytokines were disturbed in plasma samples of patients with RRMS. In conclusion, we demonstrate complex immune dysbalances in untreated MS patients.
Collapse
Affiliation(s)
- Z Mikulkova
- University Cell Immunotherapy Center, Babak Research Institute, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00 Brno, Republic
| | | | | | | | | |
Collapse
|
13
|
Jadidi-Niaragh F, Mirshafiey A. Regulatory T-cell as orchestra leader in immunosuppression process of multiple sclerosis. Immunopharmacol Immunotoxicol 2011; 33:545-67. [DOI: 10.3109/08923973.2010.513391] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
14
|
The mRNA expression of pro- and anti-inflammatory cytokines in T regulatory cells in children with type 1 diabetes. Folia Histochem Cytobiol 2010; 48:93-100. [PMID: 20529823 DOI: 10.2478/v10042-008-0113-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Type 1 diabetes mellitus (T1DM) is caused by the autoimmune-mediated destruction of insulin-producing beta cells in the pancreas. T regulatory cells (Tregs) represent an active mechanism of suppressing autoreactive T cells that escape central tolerance. The aim of our study was to test the hypothesis that T regulatory cells express pro- and anti-inflammatory cytokines, elements of cytotoxicity and OX40/4-1BB molecules. The examined group consisted of 50 children with T1DM. Fifty two healthy individuals (control group) were enrolled into the study. A flow cytometric analysis of T-cell subpopulations was performed using the following markers: anti-CD3, anti-CD4, anti-CD25, anti-CD127, anti-CD134 and anti-CD137. Concurrently with the flow cytometric assessment of Tregs we separated CD4+CD25+CD127dim/- cells for further mRNA analysis. mRNA levels for transcription factor FoxP3, pro- and anti-inflammatory cytokines (interferon gamma, interleukin-2, interleukin-4, interleukin-10, transforming growth factor beta1 and tumor necrosis factor alpha), activatory molecules (OX40, 4-1BB) and elements of cytotoxicity (granzyme B, perforin 1) were determined by real-time PCR technique. We found no alterations in the frequency of CD4+CD25highCD127low cells between diabetic and control children. Treg cells expressed mRNA for pro- and anti-inflammatory cytokines. Lower OX40 and higher 4-1BB mRNA but not protein levels in Treg cells in diabetic patients compared to the healthy children were noted. Our observations confirm the presence of mRNA for pro- and anti-inflammatory cytokines in CD4+CD25+CD127dim/- cells in the peripheral blood of children with T1DM. Further studies with the goal of developing new strategies to potentiate Treg function in autoimmune diseases are warranted.
Collapse
|
15
|
Łuczyński W, Stasiak-Barmuta A, Wawrusiewicz-Kurylonek N, Kowalczuk O, Iłendo E, Głowińska-Olszewska B, Urban R, Szczepański W, Urban M, Kretowski A, Chyczewski L. Disturbances in some gene expression in T regulatory cells separated from children with metabolic syndrome. Scand J Immunol 2010; 71:115-22. [PMID: 20384863 DOI: 10.1111/j.1365-3083.2009.02354.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The metabolic syndrome (MS) is defined as a cluster of risk factors, including abdominal obesity, dyslipidaemia, glucose intolerance and hypertension, which increase the risk for coronary heart disease. The immunological aspects of obesity and MS, including the role of T regulatory cells, have been intensively investigated. The aim of this study was to determine whether there is any disturbance in T regulatory cells number and/or function in children with MS. The percentages of T regulatory cells in the peripheral blood of children fulfilling the International Diabetes Federation criteria of the disease (n = 47) were assessed. Treg cells were also separated for further analysis of multiple genes important in their function with the use of real-time RT-PCR. We did not observe any difference in Treg percentages between study and control group but there was lower expression of some molecules including transforming growth factor-beta and interleukin-12 family members in Treg cells separated from children with MS compared to the healthy subjects. Our study is the first to report significant disturbances in some gene expression in T regulatory cells separated from children with MS. The results should be useful for further research in this field, including immunotherapeutic interventions.
Collapse
Affiliation(s)
- W Łuczyński
- 2nd Department of Pediatrics, Medical University of Bialystok, Bialystok, Poland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Xu L, Xu Z, Xu M. Glucocorticoid treatment restores the impaired suppressive function of regulatory T cells in patients with relapsing-remitting multiple sclerosis. Clin Exp Immunol 2009; 158:26-30. [PMID: 19737227 DOI: 10.1111/j.1365-2249.2009.03987.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Patients relapsing from multiple sclerosis (MS) are treated with high-dose, short-term intravenous injection of glucocorticoid (GC), although its mechanism of action remains only partly understood. We evaluated the ex vivo and in vitro effects of GC on regulatory T cell (T(reg)) function in 14 relapsing-remitting MS (RR-MS) patients in acute phase and 20 healthy controls (HC). T(reg) function was enhanced significantly after 5 days of GC treatment. Furthermore, there was a trend towards increasing proportions of CD4(+)CD25(+)forkhead box P3(+) T cells and interleukin-10 secretion with GC treatment when compared with HC. In conclusion, GC treatment restores the impaired T(reg) function in patients with RR-MS in its acute phase.
Collapse
Affiliation(s)
- L Xu
- Department of Neurosurgery, Daping Hospital, Third Military Medical University, PLA, Chongqing, China
| | | | | |
Collapse
|
17
|
Lawson JM, Tremble J, Dayan C, Beyan H, Leslie RDG, Peakman M, Tree TIM. Increased resistance to CD4+CD25hi regulatory T cell-mediated suppression in patients with type 1 diabetes. Clin Exp Immunol 2009; 154:353-9. [PMID: 19037920 DOI: 10.1111/j.1365-2249.2008.03810.x] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Type I diabetes (T1D) is a T cell-mediated autoimmune disease characterized by loss of tolerance to islet autoantigens, leading to the destruction of insulin-producing beta cells. Peripheral tolerance to self is maintained in health through several regulatory mechanisms, including a population of CD4+CD25hi naturally occurring regulatory T cells (T(regs)), defects in which could contribute to loss of self-tolerance in patients with T1D. We have reported previously that near to T1D onset, patients demonstrate a reduced level of suppression by CD4+CD25hi T(regs) of autologous CD4+CD25- responder cells. Here we demonstrate that this defective regulation is also present in subjects with long-standing T1D (> 3 years duration; P = 0.009). No difference was observed in forkhead box P3 or CD127 expression on CD4+CD25hi T cells in patients with T1D that could account for this loss of suppression. Cross-over co-culture assays demonstrate a relative resistance to CD4+CD25hi T(reg)-mediated suppression within the CD4+CD25- T cells in all patients tested (P = 0.002), while there appears to be heterogeneity in the functional ability of CD4+CD25hi T(regs) from patients. In conclusion, this work demonstrates that defective regulation is a feature of T1D regardless of disease duration and that an impaired ability of responder T cells to be suppressed contributes to this defect.
Collapse
Affiliation(s)
- J M Lawson
- King's College London, Department of Immunobiology, King's College London, London, UK
| | | | | | | | | | | | | |
Collapse
|