1
|
Zhai Y, Zhao Y, Zhang Y, He J, Tang M, Liu Y, Yang G, Xue P, Yao Y, He M, Xu Y, Qu W, Zhang Y. Lead suppresses interferon γ to induce splenomegaly via modification on splenic endothelial cells and lymphoid tissue organizer cells in mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 244:114046. [PMID: 36057201 DOI: 10.1016/j.ecoenv.2022.114046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 08/21/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
Splenomegaly is a symptom characterized by the presence of an enlarged spleen. The impact of environmental factors on splenomegaly is largely unknown. In this study, C57BL/6 mice were treated with 125 ppm or 1250 ppm lead (Pb) via drinking water for 8 wk, and the process of splenomegaly was evaluated. Treatment with 1250 ppm Pb, but not 125 ppm Pb, caused splenomegaly, which was associated with increased capacity for erythrocyte clearance. Intriguingly, Pb-caused splenomegaly was independent of lymphoid tissue inducer (LTi) cells, which produce lymphotoxins α and β (LTα/β) to activate endothelial cells and LT organizer (LTo) cells and drive the development of spleen physiologically. A direct action of Pb on endothelial cells and LTo cells did not impact their proliferation. On the other hand, during steady state, a tonic level of interferon (IFN)γ acted on endothelial cells and LTo cells to suppress splenomegaly, as IFNγ receptor (IFNγR)-deficient mice had enlarged spleens relative to wild-type mice; during Pb exposure, splenic IFNγ production was suppressed, thus leading to a loss of the inhibitory effect of IFNγ on splenomegaly. Mechanically, Pb acted on splenic CD4+ T cells to suppress IFNγ production, which impaired the Janus kinase (Jak)1/ signal transducer and activator of transcription (STAT)1 signaling in endothelial cells and LTo cells; the weakened Jak1/STAT1 signaling resulted in the enhanced nuclear factor-κB (NF-κB) signaling in endothelial cells and LTo cells, which drove their proliferation and caused splenomegaly. The present study reveals a previously unrecognized mechanism for the immunotoxicity of Pb, which may extend our current understanding for Pb toxicology.
Collapse
Affiliation(s)
- Yue Zhai
- School of Public Health and Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai 200032, China
| | - Yifan Zhao
- School of Public Health and Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai 200032, China
| | - Yufan Zhang
- School of Public Health and Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai 200032, China
| | - Jinyi He
- School of Public Health and Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai 200032, China
| | - Mengke Tang
- School of Public Health and Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai 200032, China
| | - Yalin Liu
- School of Public Health and Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai 200032, China
| | - Guangrui Yang
- School of Public Health and Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai 200032, China
| | - Peng Xue
- School of Public Health and Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai 200032, China
| | - Ye Yao
- School of Public Health and Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai 200032, China
| | - Miao He
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Yanyi Xu
- School of Public Health and Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai 200032, China
| | - Weidong Qu
- School of Public Health and Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai 200032, China
| | - Yubin Zhang
- School of Public Health and Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai 200032, China.
| |
Collapse
|
2
|
Clottu AS, Humbel M, Fluder N, Karampetsou MP, Comte D. Innate Lymphoid Cells in Autoimmune Diseases. Front Immunol 2022; 12:789788. [PMID: 35069567 PMCID: PMC8777080 DOI: 10.3389/fimmu.2021.789788] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 11/22/2021] [Indexed: 12/29/2022] Open
Abstract
Innate lymphoid cells (ILC) are a heterogeneous group of immune cells characterized by lymphoid morphology and cytokine profile similar to T cells but which do not express clonally distributed diverse antigen receptors. These particular cells express transcription factors and cytokines reflecting their similarities to T helper (Th)1, Th2, and Th17 cells and are therefore referred to as ILC1, ILC2, and ILC3. Other members of the ILC subsets include lymphoid tissue inducer (LTi) and regulatory ILC (ILCreg). Natural killer (NK) cells share a common progenitor with ILC and also exhibit a lymphoid phenotype without antigen specificity. ILC are found in low numbers in peripheral blood but are much more abundant at barrier sites such as the skin, liver, airways, lymph nodes, and the gastrointestinal tract. They play an important role in innate immunity due to their capacity to respond rapidly to pathogens through the production of cytokines. Recent evidence has shown that ILC also play a key role in autoimmunity, as alterations in their number or function have been identified in systemic lupus erythematosus, systemic sclerosis, and rheumatoid arthritis. Here, we review recent advances in the understanding of the role of ILC in the pathogenesis of autoimmune diseases, with particular emphasis on their role as a potential diagnostic biomarker and as therapeutic targets.
Collapse
Affiliation(s)
- Aurelie S Clottu
- Service of Immunology and Allergy, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Morgane Humbel
- Service of Immunology and Allergy, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Natalia Fluder
- Service of Immunology and Allergy, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | | | - Denis Comte
- Service of Immunology and Allergy, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
3
|
Alankus B, Ecker V, Vahl N, Braun M, Weichert W, Macher-Göppinger S, Gehring T, Neumayer T, Zenz T, Buchner M, Ruland J. Pathological RANK signaling in B cells drives autoimmunity and chronic lymphocytic leukemia. J Exp Med 2021; 218:211464. [PMID: 33075129 PMCID: PMC7868734 DOI: 10.1084/jem.20200517] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 07/30/2020] [Accepted: 09/03/2020] [Indexed: 12/28/2022] Open
Abstract
Clinical evidence suggests alterations in receptor activator of NF-κB (RANK) signaling are key contributors to B cell autoimmunity and malignancy, but the pathophysiological consequences of aberrant B cell–intrinsic RANK signaling remain unknown. We generated mice that express a human lymphoma–derived, hyperactive RANKK240E variant in B lymphocytes in vivo. Forced RANK signaling disrupted B cell tolerance and induced a fully penetrant systemic lupus erythematosus–like disease in addition to the development of chronic lymphocytic leukemia (CLL). Importantly, RANKK240E transgenic CLL cells as well as CLL cells of independent murine and of human origin depend on microenvironmental RANK ligand (RANKL) for tumor cell survival. Consequently, inhibition of the RANKL–RANK axis with anti-RANKL antibodies killed murine and human CLL cells in vitro and in vivo. These results establish pathological B cell–intrinsic RANK signaling as a potential driver of autoimmunity and B cell malignancy, and they suggest the exploitation of clinically available anti-RANKL compounds for CLL treatment.
Collapse
Affiliation(s)
- Begüm Alankus
- Institut für Klinische Chemie und Pathobiochemie, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,TranslaTUM, Center for Translational Cancer Research, Technical University of Munich, Munich, Germany
| | - Veronika Ecker
- Institut für Klinische Chemie und Pathobiochemie, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,TranslaTUM, Center for Translational Cancer Research, Technical University of Munich, Munich, Germany
| | - Nathalie Vahl
- Institut für Klinische Chemie und Pathobiochemie, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Martina Braun
- Institut für Klinische Chemie und Pathobiochemie, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,TranslaTUM, Center for Translational Cancer Research, Technical University of Munich, Munich, Germany
| | - Wilko Weichert
- Institute of Pathology, Technical University of Munich, Munich, Germany.,German Cancer Consortium, Heidelberg, Germany
| | | | - Torben Gehring
- Institut für Klinische Chemie und Pathobiochemie, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Tanja Neumayer
- Institut für Klinische Chemie und Pathobiochemie, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,TranslaTUM, Center for Translational Cancer Research, Technical University of Munich, Munich, Germany
| | - Thorsten Zenz
- Department of Medical Oncology and Hematology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Maike Buchner
- Institut für Klinische Chemie und Pathobiochemie, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,TranslaTUM, Center for Translational Cancer Research, Technical University of Munich, Munich, Germany.,German Cancer Consortium, Heidelberg, Germany
| | - Jürgen Ruland
- Institut für Klinische Chemie und Pathobiochemie, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,TranslaTUM, Center for Translational Cancer Research, Technical University of Munich, Munich, Germany.,German Cancer Consortium, Heidelberg, Germany.,German Center for Infection Research, Munich, Germany
| |
Collapse
|
4
|
Honma M, Ikebuchi Y, Suzuki H. RANKL as a key figure in bridging between the bone and immune system: Its physiological functions and potential as a pharmacological target. Pharmacol Ther 2021; 218:107682. [DOI: 10.1016/j.pharmthera.2020.107682] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 09/09/2020] [Indexed: 02/06/2023]
|
5
|
Read KA, Jones DM, Freud AG, Oestreich KJ. Established and emergent roles for Ikaros transcription factors in lymphoid cell development and function. Immunol Rev 2020; 300:82-99. [PMID: 33331000 DOI: 10.1111/imr.12936] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/12/2020] [Accepted: 11/20/2020] [Indexed: 02/06/2023]
Abstract
Ikaros zinc finger transcription factors are important regulators of the gene programs underlying the development of hematopoietic cell lineages. The family consists of five members: Ikaros, Helios, Aiolos, Eos, and Pegasus, which engage in both homo- and heterotypic intrafamilial interactions to exert diverse functional effects. Pioneering studies focused on the role of these factors in early lymphoid development, as their absence resulted in severe defects in lymphocyte populations. More recent work has now begun to define nuanced, stage-specific roles for Ikaros family members in the differentiation and function of mature T, B, and innate lymphoid cell populations including natural killer (NK) cells. The precise transcriptional mechanisms by which these factors function, both independently and collaboratively, is an area of active investigation. However, several key themes appear to be emerging regarding the pathways influenced by Ikaros family members, including the end-to-end regulation of cytokine signaling. Here, we review roles for Ikaros factors in lymphoid cell development, differentiation, and function, including a discussion of the current understanding of the transcriptional mechanisms they employ and considerations for the future study of this important transcription factor family.
Collapse
Affiliation(s)
- Kaitlin A Read
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH, USA.,Biomedical Sciences Graduate Program, Columbus, OH, USA
| | - Devin M Jones
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH, USA.,Biomedical Sciences Graduate Program, Columbus, OH, USA
| | - Aharon G Freud
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH, USA.,Department of Pathology, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH, USA
| | - Kenneth J Oestreich
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH, USA
| |
Collapse
|
6
|
Bouis D, Kirstetter P, Arbogast F, Lamon D, Delgado V, Jung S, Ebel C, Jacobs H, Knapp AM, Jeremiah N, Belot A, Martin T, Crow YJ, André-Schmutz I, Korganow AS, Rieux-Laucat F, Soulas-Sprauel P. Severe combined immunodeficiency in stimulator of interferon genes (STING) V154M/wild-type mice. J Allergy Clin Immunol 2018; 143:712-725.e5. [PMID: 29800647 DOI: 10.1016/j.jaci.2018.04.034] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 02/24/2018] [Accepted: 04/03/2018] [Indexed: 12/23/2022]
Abstract
BACKGROUND Autosomal dominant gain-of-function mutations in human stimulator of interferon genes (STING) lead to a severe autoinflammatory disease called STING-associated vasculopathy with onset in infancy that is associated with enhanced expression of interferon-stimulated gene transcripts. OBJECTIVE The goal of this study was to analyze the phenotype of a new mouse model of STING hyperactivation and the role of type I interferons in this system. METHODS We generated a knock-in model carrying an amino acid substitution (V154M) in mouse STING, corresponding to a recurrent mutation seen in human patients with STING-associated vasculopathy with onset in infancy. Hematopoietic development and tissue histology were analyzed. Lymphocyte activation and proliferation were assessed in vitro. STING V154M/wild-type (WT) mice were crossed to IFN-α/β receptor (IFNAR) knockout mice to evaluate the type I interferon dependence of the mutant Sting phenotype recorded. RESULTS In STING V154M/WT mice we detected variable expression of inflammatory infiltrates in the lungs and kidneys. These mice showed a marked decrease in survival and developed a severe combined immunodeficiency disease (SCID) affecting B, T, and natural killer cells, with an almost complete lack of antibodies and a significant expansion of monocytes and granulocytes. The blockade in B- and T-cell development was present from early immature stages in bone marrow and thymus. In addition, in vitro experiments revealed an intrinsic proliferative defect of mature T cells. Although the V154M/WT mutant demonstrated increased expression of interferon-stimulated genes, the SCID phenotype was not reversed in STING V154M/WT IFNAR knockout mice. However, the antiproliferative defect in T cells was rescued partially by IFNAR deficiency. CONCLUSIONS STING gain-of-function mice developed an interferon-independent SCID phenotype with a T-cell, B-cell, and natural killer cell developmental defect and hypogammaglobulinemia that is associated with signs of inflammation in lungs and kidneys. Only the intrinsic proliferative defect of T cells was partially interferon dependent.
Collapse
Affiliation(s)
- Delphine Bouis
- CNRS UPR 3572 "Immunopathology and Therapeutic Chemistry"/Laboratory of Excellence Medalis, Institute of Molecular and Cellular Biology (IBMC), Strasbourg, France
| | - Peggy Kirstetter
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France; Institut National de la Santé et de la Recherche Médicale (INSERM), U964, Illkirch, France; Université de Strasbourg, Illkirch, France
| | - Florent Arbogast
- CNRS UPR 3572 "Immunopathology and Therapeutic Chemistry"/Laboratory of Excellence Medalis, Institute of Molecular and Cellular Biology (IBMC), Strasbourg, France; UFR Sciences de la Vie, Université de Strasbourg, Strasbourg, France
| | - Delphine Lamon
- CNRS UPR 3572 "Immunopathology and Therapeutic Chemistry"/Laboratory of Excellence Medalis, Institute of Molecular and Cellular Biology (IBMC), Strasbourg, France
| | - Virginia Delgado
- CNRS UPR 3572 "Immunopathology and Therapeutic Chemistry"/Laboratory of Excellence Medalis, Institute of Molecular and Cellular Biology (IBMC), Strasbourg, France
| | - Sophie Jung
- CNRS UPR 3572 "Immunopathology and Therapeutic Chemistry"/Laboratory of Excellence Medalis, Institute of Molecular and Cellular Biology (IBMC), Strasbourg, France; Hôpitaux Universitaires de Strasbourg, Pôle de Médecine et de Chirurgie Bucco-dentaires, Centre de référence des maladies rares orales et dentaires (O'Rares) et Université de Strasbourg, Faculté de Chirurgie Dentaire, Strasbourg, France
| | - Claudine Ebel
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France; Institut National de la Santé et de la Recherche Médicale (INSERM), U964, Illkirch, France; Université de Strasbourg, Illkirch, France
| | - Hugues Jacobs
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France; Institut National de la Santé et de la Recherche Médicale (INSERM), U964, Illkirch, France; Université de Strasbourg, Illkirch, France; Centre National de Recherche Scientifique (CNRS), UMR7104, Illkirch, France; CELPHEDIA, PHENOMIN, Institut Clinique de la Souris (ICS), Illkirch-Graffenstaden, France
| | - Anne-Marie Knapp
- CNRS UPR 3572 "Immunopathology and Therapeutic Chemistry"/Laboratory of Excellence Medalis, Institute of Molecular and Cellular Biology (IBMC), Strasbourg, France; UFR Médecine, Université de Strasbourg, Strasbourg, France
| | - Nadia Jeremiah
- Immunity and Cancer Department, Institut Curie, PSL Research University, INSERM U932, Paris, France
| | - Alexandre Belot
- Service de Néphrologie, Rhumatologie, Dermatologie pédiatriques, Centre de référence RAISE, HFME, Hospices Civils de Lyon, Lyon, France; INSERM UMR 1111, Université de Lyon, Lyon, France
| | - Thierry Martin
- CNRS UPR 3572 "Immunopathology and Therapeutic Chemistry"/Laboratory of Excellence Medalis, Institute of Molecular and Cellular Biology (IBMC), Strasbourg, France; UFR Médecine, Université de Strasbourg, Strasbourg, France; Department of Clinical Immunology and Internal Medicine, National Reference Center for Autoimmune Diseases, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Yanick J Crow
- INSERM UMR 1163, Laboratory of Neurogenetics and Neuroinflammation, Paris, France; Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France; Centre for Genomic and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Isabelle André-Schmutz
- Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France; Laboratory of Human Lymphohematopoiesis, INSERM UMR 1163, Paris, France
| | - Anne-Sophie Korganow
- CNRS UPR 3572 "Immunopathology and Therapeutic Chemistry"/Laboratory of Excellence Medalis, Institute of Molecular and Cellular Biology (IBMC), Strasbourg, France; UFR Médecine, Université de Strasbourg, Strasbourg, France; Department of Clinical Immunology and Internal Medicine, National Reference Center for Autoimmune Diseases, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Frédéric Rieux-Laucat
- Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France; Laboratory of Immunogenetics of Pediatric autoimmune Diseases, INSERM UMR 1163, Paris, France
| | - Pauline Soulas-Sprauel
- CNRS UPR 3572 "Immunopathology and Therapeutic Chemistry"/Laboratory of Excellence Medalis, Institute of Molecular and Cellular Biology (IBMC), Strasbourg, France; Department of Clinical Immunology and Internal Medicine, National Reference Center for Autoimmune Diseases, Hôpitaux Universitaires de Strasbourg, Strasbourg, France; UFR Sciences Pharmaceutiques, Université de Strasbourg, Illkirch-Graffenstaden, France.
| |
Collapse
|
7
|
Li S, Bostick JW, Zhou L. Regulation of Innate Lymphoid Cells by Aryl Hydrocarbon Receptor. Front Immunol 2018; 8:1909. [PMID: 29354125 PMCID: PMC5760495 DOI: 10.3389/fimmu.2017.01909] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 12/14/2017] [Indexed: 12/20/2022] Open
Abstract
With striking similarity to their adaptive T helper cell counterparts, innate lymphoid cells (ILCs) represent an emerging family of cell types that express signature transcription factors, including T-bet+ Eomes+ natural killer cells, T-bet+ Eomes- group 1 ILCs, GATA3+ group 2 ILCs, RORγt+ group 3 ILCs, and newly identified Id3+ regulatory ILC. ILCs are abundantly present in barrier tissues of the host (e.g., the lung, gut, and skin) at the interface of host-environment interactions. Active research has been conducted to elucidate molecular mechanisms underlying the development and function of ILCs. The aryl hydrocarbon receptor (Ahr) is a ligand-dependent transcription factor, best known to mediate the effects of xenobiotic environmental toxins and endogenous microbial and dietary metabolites. Here, we review recent progresses regarding Ahr function in ILCs. We focus on the Ahr-mediated cross talk between ILCs and other immune/non-immune cells in host tissues especially in the gut. We discuss the molecular mechanisms of the action of Ahr expression and activity in regulation of ILCs in immunity and inflammation, and the interaction between Ahr and other pathways/transcription factors in ILC development and function with their implication in disease.
Collapse
Affiliation(s)
- Shiyang Li
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States
| | - John W. Bostick
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, United States
| | - Liang Zhou
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States
| |
Collapse
|
8
|
Li S, Heller JJ, Bostick JW, Lee A, Schjerven H, Kastner P, Chan S, Chen ZE, Zhou L. Ikaros Inhibits Group 3 Innate Lymphoid Cell Development and Function by Suppressing the Aryl Hydrocarbon Receptor Pathway. Immunity 2017; 45:185-97. [PMID: 27438771 DOI: 10.1016/j.immuni.2016.06.027] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 04/27/2016] [Accepted: 05/10/2016] [Indexed: 02/08/2023]
Abstract
Group 3 innate lymphoid cells (ILC3s) expressing the transcription factor (TF) RORγt are important for the defense and homeostasis of host intestinal tissues. The zinc finger TF Ikaros, encoded by Ikzf1, is essential for the development of RORγt(+) fetal lymphoid tissue inducer (LTi) cells and lymphoid organogenesis, but its role in postnatal ILC3s is unknown. Here, we show that small-intestinal ILC3s had lower Ikaros expression than ILC precursors and other ILC subsets. Ikaros inhibited ILC3s in a cell-intrinsic manner through zinc-finger-dependent inhibition of transcriptional activity of the aryl hydrocarbon receptor, a key regulator of ILC3 maintenance and function. Ablation of Ikzf1 in RORγt(+) ILC3s resulted in increased expansion and cytokine production of intestinal ILC3s and protection against infection and colitis. Therefore, in contrast to being required for LTi development, Ikaros inhibits postnatal ILC3 development and function to regulate gut immune responses at steady state and in disease.
Collapse
Affiliation(s)
- Shiyang Li
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Infectious Diseases and Pathology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32608, USA
| | - Jennifer J Heller
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - John W Bostick
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Chemical and Biological Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Aileen Lee
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Hilde Schjerven
- Department of Laboratory Medicine, UCSF School of Medicine, San Francisco, CA 94143, USA
| | - Philippe Kastner
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM U964, CNRS UMR 7104, Université de Strasbourg, 67404 Illkirch, France
| | - Susan Chan
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM U964, CNRS UMR 7104, Université de Strasbourg, 67404 Illkirch, France
| | - Zongming E Chen
- Department of Laboratory Medicine in Geisinger Health System, 100 N. Academy Avenue, MC 19-20, Danville, PA 17822, USA
| | - Liang Zhou
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Infectious Diseases and Pathology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32608, USA.
| |
Collapse
|
9
|
Głobińska A, Kowalski ML. Innate lymphoid cells: the role in respiratory infections and lung tissue damage. Expert Rev Clin Immunol 2017; 13:991-999. [DOI: 10.1080/1744666x.2017.1366314] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Anna Głobińska
- Department of Immunology, Rheumatology and Allergy, Medical University of Lodz, Lodz, Poland
| | - Marek L Kowalski
- Department of Immunology, Rheumatology and Allergy, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
10
|
Hsao HM, Li W, Gelman AE, Krupnick AS, Kreisel D. The Role of Lymphoid Neogenesis in Allografts. Am J Transplant 2016; 16:1079-85. [PMID: 26614734 PMCID: PMC4803576 DOI: 10.1111/ajt.13645] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 11/22/2015] [Accepted: 11/22/2015] [Indexed: 01/25/2023]
Abstract
De novo induction of organized lymphoid aggregates at nonlymphoid sites has been observed in many chronic inflammatory conditions where foreign antigens such as infectious agents, autoantigens or alloantigens, persist. The prevailing opinion in the field of transplantation is that lymphoid neogenesis within allografts is detrimental to the establishment of immune tolerance. These structures, commonly referred to as tertiary lymphoid organs (TLOs), are thought to contribute to graft rejection by generating and propagating local alloimmune responses. However, recent studies have shown that TLOs rich in regulatory Foxp3(+) cells are present in long-term accepting allografts. The notion that TLOs can contribute to the local downregulation of immune responses has been corroborated in other chronic inflammation models. These findings suggest that contrary to previous suggestions that the induction of TLOs in allografts is necessarily harmful, the induction of "tolerogenic" TLOs may prove advantageous. In this review, we discuss our current understanding of how TLOs are induced and how they regulate immune responses with a particular focus on alloimmunity.
Collapse
Affiliation(s)
- Hsi-Min Hsao
- Department of Surgery, Washington University School of Medicine, St. Louis, MO
| | - Wenjun Li
- Department of Surgery, Washington University School of Medicine, St. Louis, MO
| | - Andrew E. Gelman
- Department of Surgery, Washington University School of Medicine, St. Louis, MO,Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO
| | - Alexander S. Krupnick
- Department of Surgery, Washington University School of Medicine, St. Louis, MO,Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO
| | - Daniel Kreisel
- Department of Surgery, Washington University School of Medicine, St. Louis, MO,Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO,Correspondence to: Daniel Kreisel, MD PhD, Professor of Surgery, Pathology & Immunology, Campus Box 8234, 660 South Euclid Avenue, Washington University School of Medicine, St. Louis, MO 63110, Tel: (314) 362-6021, Fax: (314) 367-8459,
| |
Collapse
|
11
|
Isailovic N, Daigo K, Mantovani A, Selmi C. Interleukin-17 and innate immunity in infections and chronic inflammation. J Autoimmun 2015; 60:1-11. [DOI: 10.1016/j.jaut.2015.04.006] [Citation(s) in RCA: 217] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 04/26/2015] [Indexed: 01/01/2023]
|
12
|
Koo J, Kim S, Jung WJ, Lee YE, Song GG, Kim KS, Kim MY. Increased Lymphocyte Infiltration in Rheumatoid Arthritis Is Correlated with an Increase in LTi-like Cells in Synovial Fluid. Immune Netw 2013; 13:240-8. [PMID: 24385942 PMCID: PMC3875782 DOI: 10.4110/in.2013.13.6.240] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 12/11/2013] [Accepted: 12/12/2013] [Indexed: 01/06/2023] Open
Abstract
In this study, we compared the immune cell populations in rheumatoid arthritis (RA) synovial fluid, which shows lymphoid tissue-like structure, with those in tonsils, which are normal secondary lymphoid tissues. Firstly, we found that CD4-CD11b+ macrophages were the major population in RA synovial fluid and that B cells were the major population in tonsils. In addition, synovial fluid from patients with osteoarthritis, which is a degenerative joint disease, contained CD4+CD11b+ monocytes as the major immune cell population. Secondly, we categorized three groups based on the proportion of macrophages found in RA synovial fluid: (1) the macrophage-high group, which contained more than 80% macrophages; (2) the macrophage-intermediate group, which contained between 40% and 80% macrophages; and (3) the macrophage-low group, which contained less than 40% macrophages. In the macrophage-low group, more lymphoid tissue inducer (LTi)-like cells were detected, and the expression of OX40L and TRANCE in these cells was higher than that in the other groups. In addition, in this group, the suppressive function of regulatory T cells was downregulated. Finally, CXCL13 expression was higher in RA synovial fluid than in tonsils, but CCL21 expression was comparable in synovial fluid from all groups and in tonsils. These data demonstrate that increased lymphocyte infiltration in RA synovial fluid is correlated with an increase in LTi-like cells and the elevation of the chemokine expression.
Collapse
Affiliation(s)
- Jihye Koo
- Department of Bioinformatics and Life Science, Soongsil University, Seoul 156-743, Korea
| | - Soochan Kim
- Department of Bioinformatics and Life Science, Soongsil University, Seoul 156-743, Korea
| | - Woong Jae Jung
- Department of Bioinformatics and Life Science, Soongsil University, Seoul 156-743, Korea
| | - Ye Eun Lee
- Department of Bioinformatics and Life Science, Soongsil University, Seoul 156-743, Korea
| | - Gwan Gyu Song
- Division of Rheumatology, Department of Internal Medicine, Korea University Guro Hospital, Seoul 152-703, Korea
| | - Kyung-Su Kim
- Department of Otorhinolaryngology, Human Barrier Research Institute, Yonsei University College of Medicine, Seoul 135-720, Korea
| | - Mi-Yeon Kim
- Department of Bioinformatics and Life Science, Soongsil University, Seoul 156-743, Korea
| |
Collapse
|
13
|
van Drunen CM, Mjösberg JM, Segboer CL, Cornet ME, Fokkens WJ. Role of innate immunity in the pathogenesis of chronic rhinosinusitis: progress and new avenues. Curr Allergy Asthma Rep 2013; 12:120-6. [PMID: 22311575 PMCID: PMC3296037 DOI: 10.1007/s11882-012-0249-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Chronic rhinosinusitis is a heterogeneous and multifactorial disease with unknown etiology. Aberrant responses to microorganisms have been suggested to play a role in the pathophysiology of the disease. Research has focused on the presence, detection, response to, and eradication of these potential threats. Main topics seem to center on the contribution of structural cells such as epithelium and fibroblasts, on the consequences of activation of pattern-recognition receptors, and on the role of antimicrobial agents. This research should be viewed not only in the light of a comparison between healthy and diseased individuals, but also in a comparison between patients who do or do not respond to treatment. New players that could play a role in the pathophysiology seem to surface at regular intervals, adding to our understanding (and the complexity) of the disease and opening new avenues that may help fight this incapacitating disease.
Collapse
Affiliation(s)
- Cornelis M van Drunen
- Department of Otorhinolaryngology, Academic Medical Center, Amsterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
14
|
Innate Lymphoid Cells in Immunity and Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 785:9-26. [DOI: 10.1007/978-1-4614-6217-0_2] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
15
|
Gerondakis S, Banerjee A, Grigoriadis G, Vasanthakumar A, Gugasyan R, Sidwell T, Grumont RJ. NF-κB subunit specificity in hemopoiesis. Immunol Rev 2012; 246:272-85. [PMID: 22435561 DOI: 10.1111/j.1600-065x.2011.01090.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Although the diverse functions served by the nuclear factor-κB (NF-κB) pathway in virtually all cell types are typically employed to deal with stress responses, NF-κB transcription factors also play key roles in the development of hemopoietic cells. This review focuses on how NF-κB transcription factors control various aspects of thymic T-cell and myeloid cell differentiation that include its roles in hemopoietic precursors, conventional αβ T cells, CD4(+) regulatory T cells, natural killer T cells, γδ T cells, macrophages, and dendritic cells.
Collapse
|
16
|
Burrell BE, Ding Y, Nakayama Y, Park KS, Xu J, Yin N, Bromberg JS. Tolerance and lymphoid organ structure and function. Front Immunol 2011; 2:64. [PMID: 22566853 PMCID: PMC3342028 DOI: 10.3389/fimmu.2011.00064] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Accepted: 11/07/2011] [Indexed: 12/11/2022] Open
Abstract
This issue of Frontiers in Immunologic Tolerance explores barriers to tolerance from a variety of views of cells, molecules, and processes of the immune system. Our laboratory has spent over a decade focused on the migration of the cells of the immune system, and dissecting the signals that determine how and where effector and suppressive regulatory T cells traffic from one site to another in order to reject or protect allografts. These studies have led us to a greater appreciation of the anatomic structure of the immune system, and the realization that the path taken by lymphocytes during the course of the immune response to implanted organs determines the final outcome. In particular, the structures, microanatomic domains, and the cells and molecules that lymphocytes encounter during their transit through blood, tissues, lymphatics, and secondary lymphoid organs are powerful determinants for whether tolerance is achieved. Thus, the understanding of complex cellular and molecular processes of tolerance will not come from “96-well plate immunology,” but from an integrated understanding of the temporal and spatial changes that occur during the response to the allograft. The study of the precise positioning and movement of cells in lymphoid organs has been difficult since it is hard to visualize cells within their three-dimensional setting; instead techniques have tended to be dominated by two-dimensional renderings, although advanced confocal and two-photon systems are changing this view. It is difficult to precisely modify key molecules and events in lymphoid organs, so that existing knockouts, transgenics, inhibitors, and activators have global and pleiotropic effects, rather than precise anatomically restricted influences. Lastly, there are no well-defined postal codes or tracking systems for leukocytes, so that while we can usually track cells from point A to point B, it is exponentially more difficult or even impossible to track them to point C and beyond. We believe this represents one of the fundamental barriers to understanding the immune system and devising therapeutic approaches that take into account anatomy and structure as major controlling principles of tolerance.
Collapse
Affiliation(s)
- Bryna E Burrell
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine Baltimore, MD, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Manifestation of spontaneous and early autoimmune gastritis in CCR7-deficient mice. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 179:754-65. [PMID: 21801869 DOI: 10.1016/j.ajpath.2011.04.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Revised: 03/16/2011] [Accepted: 04/12/2011] [Indexed: 11/20/2022]
Abstract
Autoimmune gastritis is a common autoimmune disorder characterized by chronic inflammatory cell infiltrates, atrophy of the corpus and fundus, and the occurrence of autoantibodies to parietal cell antigen. In CCR7-deficient mice, autoimmune gastritis developed spontaneously and was accompanied by metaplasia of the gastric mucosa and by the formation of tertiary lymphoid organs at gastric mucosal sites. T cells of CCR7-deficient mice showed an activated phenotype in the gastric mucosa, mesenteric lymph nodes, and peripheral blood. In addition, elevated serum IgG levels specific to gastric parietal cell antigen were detected. Because the role of organized lymphocytic aggregates at this inflammatory site is not completely understood, we first analyzed the cellular requirements for the formation of these structures. Autoreactive CD4(+) T cells were pivotal for tertiary lymphoid follicle formation, most likely in cooperation with dendritic cells, macrophages, and B cells. Second, we analyzed the necessity of secondary lymph nodes and tertiary lymphoid organs for the development of autoimmune gastritis using CCR7 single- and CCR7/lymphotoxin α double-deficient mice. Strikingly, manifestation of autoimmune gastritis was observed in the absence of secondary lymph nodes and preceded the development of tertiary lymphoid organs. Taken together, these findings identify an inflammatory process where gastric autoreactive T cells independent of organized tertiary lymphoid organs and classic lymph nodes can induce and maintain autoimmune gastritis.
Collapse
|
18
|
Kisand K, Lilic D, Casanova JL, Peterson P, Meager A, Willcox N. Mucocutaneous candidiasis and autoimmunity against cytokines in APECED and thymoma patients: clinical and pathogenetic implications. Eur J Immunol 2011; 41:1517-27. [PMID: 21574164 DOI: 10.1002/eji.201041253] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Revised: 03/09/2011] [Accepted: 04/14/2011] [Indexed: 12/16/2023]
Abstract
Much has been learnt about the mechanisms of thymic self-tolerance induction from work on both the rare autosomal recessive disease autoimmune polyendocrinopathy candidiasis ectodermal dystrophy (APECED) and the autoimmune regulator (AIRE) protein mutated in this disease. Normally, AIRE drives low-level expression of huge numbers of peripheral tissue-specific antigens (TSAgs) in medullary thymic epithelial cells (mTECs), leading to the deletion of TSAg-reactive thymocytes maturing nearby. The very recently discovered neutralizing autoantibodies (autoAbs) against Th17-related cells and cytokines in two autoimmunity-related syndromes associated with AIRE-mutant thymi or AIRE-deficient thymomas help to explain the chronic mucocutaneous candidiasis (CMC) seen in both syndromes. The surprising parallels between these syndromes also demand new hypotheses and research into the consequences of AIRE deficiency and the ensuing autoimmunizing pathways, and suggest more appropriate treatment regimens as discussed in this review.
Collapse
Affiliation(s)
- Kai Kisand
- Molecular Pathology Group, Institute of General and Molecular Pathology, University of Tartu, Tartu, Estonia.
| | | | | | | | | | | |
Collapse
|
19
|
Kim S, Han S, Withers DR, Gaspal F, Bae J, Baik S, Shin HC, Kim KS, Bekiaris V, Anderson G, Lane P, Kim MY. CD117⁺ CD3⁻ CD56⁻ OX40Lhigh cells express IL-22 and display an LTi phenotype in human secondary lymphoid tissues. Eur J Immunol 2011; 41:1563-72. [PMID: 21469096 DOI: 10.1002/eji.201040915] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2010] [Revised: 03/04/2011] [Accepted: 03/21/2011] [Indexed: 12/29/2022]
Abstract
Here, we identify cells within human adult secondary lymphoid tissues that are comparable in phenotype and location to the lymphoid tissue inducer (LTi) cells that persist in the adult mouse. Identified as CD117(+) CD3(-) CD56(-) cells, like murine LTi cells, they lack expression of many common lineage markers and express CD127, OX40L and TRANCE. These cells were detected at the interface between the B- and T- zones, as well as at the subcapsular sinus in LNs, the location where LTi cells reside in murine spleen and LNs. Furthermore, like murine LTi cells, these cells expressed high levels of IL-22 and upregulated IL-22 expression upon IL-23 stimulation. Importantly, these cells were not an NK cell subset since they showed no expression of IFN-γ and perforin. Interestingly, a subset of the CD117(+) CD3(-) CD56(-) OX40L(+) population expressed NKp46, again similar to recent findings in mice. Finally, these cells supported memory CD4(+) T-cell survival in an OX40L-dependent manner. Combined, these data indicate that the CD117(+) CD3(-) CD56(-) OX40L(+) cells in human secondary lymphoid tissues are comparable in phenotype, location and function to the LTi cells that persist within adult murine secondary lymphoid tissues.
Collapse
Affiliation(s)
- Soochan Kim
- Department of Bioinformatics and Life Science, Soongsil University, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Vanaudenaerde BM, Verleden SE, Vos R, Vleeschauwer SID, Willems-Widyastuti A, Geenens R, Raemdonck DEV, Dupont LJ, Verbeken EK, Meyts I. Innate and Adaptive Interleukin-17–producing Lymphocytes in Chronic Inflammatory Lung Disorders. Am J Respir Crit Care Med 2011; 183:977-86. [DOI: 10.1164/rccm.201007-1196pp] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
21
|
Sonnenberg GF, Monticelli LA, Elloso MM, Fouser LA, Artis D. CD4(+) lymphoid tissue-inducer cells promote innate immunity in the gut. Immunity 2011; 34:122-34. [PMID: 21194981 PMCID: PMC3035987 DOI: 10.1016/j.immuni.2010.12.009] [Citation(s) in RCA: 477] [Impact Index Per Article: 34.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Revised: 10/04/2010] [Accepted: 11/02/2010] [Indexed: 12/21/2022]
Abstract
Fetal CD4(+) lymphoid tissue inducer (LTi) cells play a critical role in the development of lymphoid tissues. Recent studies identified that LTi cells persist in adults and are related to a heterogeneous population of innate lymphoid cells that have been implicated in inflammatory responses. However, whether LTi cells contribute to protective immunity remains poorly defined. We demonstrate that after infection with Citrobacter rodentium, CD4(+) LTi cells were a dominant source of interleukin-22 (IL-22) early during infection. Infection-induced CD4(+) LTi cell responses were IL-23 dependent, and ablation of IL-23 impaired innate immunity. Further, depletion of CD4(+) LTi cells abrogated infection-induced expression of IL-22 and antimicrobial peptides, resulting in exacerbated host mortality. LTi cells were also found to be essential for host protective immunity in lymphocyte-replete hosts. Collectively these data demonstrate that adult CD4(+) LTi cells are a critical source of IL-22 and identify a previously unrecognized function for CD4(+) LTi cells in promoting innate immunity in the intestine.
Collapse
Affiliation(s)
- Gregory F. Sonnenberg
- Department of Microbiology and Institute for Immunology, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Laurel A. Monticelli
- Department of Microbiology and Institute for Immunology, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - M. Merle Elloso
- Discovery Research Immunology, Centocor Research and Development, Inc., Radnor, PA 19087, USA
| | - Lynette A. Fouser
- Inflammation and Immunology – Pfizer Biotherapeutics’ Research and Development, Cambridge, MA 02140, USA
| | - David Artis
- Department of Microbiology and Institute for Immunology, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
22
|
Reynolds JM, Angkasekwinai P, Dong C. IL-17 family member cytokines: regulation and function in innate immunity. Cytokine Growth Factor Rev 2010; 21:413-23. [PMID: 21074482 DOI: 10.1016/j.cytogfr.2010.10.002] [Citation(s) in RCA: 174] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Recently, the IL-17 family member cytokines have become prominent subjects of investigation. IL-17 (IL-17A) is the best-described member of this family where its production has been mainly attributed to a specialized T helper subset of the adaptive immune response termed Th17. However, recent research on this and other Th17 cytokines has revealed new sources and functions of IL-17 family members in the innate immune response. This review will highlight recent advances in the field of IL-17 family member cytokines and will predominantly focus on the innate regulation and function of IL-17, IL-17F, and IL-25.
Collapse
Affiliation(s)
- Joseph M Reynolds
- Department of Immunology and Center for Inflammation and Cancer, M.D. Anderson Cancer Center, Houston, TX 77054, USA
| | | | | |
Collapse
|
23
|
Kobayashi Y, Watanabe T. Synthesis of artificial lymphoid tissue with immunological function. Trends Immunol 2010; 31:422-8. [PMID: 20951645 DOI: 10.1016/j.it.2010.09.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Revised: 08/11/2010] [Accepted: 09/06/2010] [Indexed: 12/22/2022]
Abstract
The ability to generate functional artificial lymphoid tissue to induce specific immunity at ectopic sites could offer a potential breakthrough for treatment of diseases such as cancer and severe infection using immunotherapy. Artificial lymphoid tissue could also offer an informative tool to study further lymphoid tissue development and function in vivo. Here, we review the process of secondary and tertiary lymphoid organization, of which an understanding is essential for artificial lymphoid tissue synthesis. Using this knowledge, we consider the combination of cell types, soluble factors and scaffold properties that will enable proper accumulation and organization of lymphocytes into tissue grafts. Recent success in in vivo induction of artificial lymphoid tissue are also considered.
Collapse
Affiliation(s)
- Yuka Kobayashi
- Graduate School of Medicine, Kyoto University, Yoshida-konoe machi, Sakyo-ku, Kyoto 606-8501, Japan
| | | |
Collapse
|
24
|
Kim S, Han S, Kim MY. Heterogeneity of IL-22-producing Lymphoid Tissue Inducer-like Cells in Human and Mouse. Immune Netw 2010; 10:115-9. [PMID: 20844735 PMCID: PMC2939355 DOI: 10.4110/in.2010.10.4.115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Accepted: 08/16/2010] [Indexed: 01/05/2023] Open
Abstract
Lymphoid tissue inducer (LTi) cells have been characterized in mouse as a key cell when secondary lymphoid tissues are organized during development and memory T cells are formed after birth. In addition to their involvement in adaptive immune responses, recent studies show that they contribute to innate immune responses by producing large amount of interleukin (IL)-22 against microbial attack. Here, we compare IL-22-producing LTi and LTi-like cells in human and mouse and discuss their heterogeneity in different tissues.
Collapse
Affiliation(s)
- Soochan Kim
- Department of Bioinformatics and Life Science, Soongsil University, Seoul 156-743, Korea
| | | | | |
Collapse
|
25
|
Kim S, Han S, Kim MY. Effects of interleukin-15 on human CD3(-)CD117(+)CD56(-)OX40L(+) cell differentiation. Hum Immunol 2010; 71:745-50. [PMID: 20510321 DOI: 10.1016/j.humimm.2010.05.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2009] [Revised: 05/12/2010] [Accepted: 05/19/2010] [Indexed: 11/30/2022]
Abstract
Lymphoid tissue inducer (LTi) cells are essential for secondary lymphoid tissue development, and recently identified human LTi cells are closely related to natural killer (NK) cells. In this study, we investigate whether human CD3(-)CD117(+)CD56(-) cells that include LTi and immature NK cells respond to interleukin (IL)-15, which is an NK cell growth factor. In the presence of IL-15, CD3(-)CD117(+)CD56(-) cells proliferate and downregulate the expression of OX40L and mRNA for IL-22, lymphotoxin-alpha, and aryl hydrocarbon receptor, but not Id2. To examine whether CD(-)CD117(+)CD56(-) cells differentiate into CD3(-)CD117(+)CD56(+) NK cells by IL-15, we sorted CD3(-)CD117(+)CD56(-)OX40L(+) cells and cultured with IL-15 for 7 days. Approximately 75% of the cells differentiated into imterferon-gamma-expressing CD56(+) cells and approximately 25% of the cells did not. In addition, the latter population expressed LTi markers, including lymphotoxin-alpha and retinoid-related orphan receptor-gamma (RORC). These results show that approximately 25% of CD3(-)CD117(+)CD56(-)OX40L(+) cells are LTi cells and do not differentiate into CD56(+) NK cells by IL-15.
Collapse
Affiliation(s)
- Soochan Kim
- Department of Bioinformatics and Life Science, Soongsil University, Seoul, Korea
| | | | | |
Collapse
|
26
|
Abstract
This article focuses on the functions of NF-kappaB that vitally impact lymphocytes and thus adaptive immunity. NF-kappaB has long been known to be essential for many of the responses of mature lymphocytes to invading pathogens. In addition, NF-kappaB has important functions in shaping the immune system so it is able to generate adaptive responses to pathogens. In both contexts, NF-kappaB executes critical cell-autonomous functions within lymphocytes as well as within supportive cells, such as antigen-presenting cells or epithelial cells. It is these aspects of NF-kappaB's physiologic impact that we address in this article.
Collapse
|