1
|
Ghoushi E, Poudineh M, Parsamanesh N, Jamialahmadi T, Sahebkar A. Curcumin as a regulator of Th17 cells: Unveiling the mechanisms. FOOD CHEMISTRY. MOLECULAR SCIENCES 2024; 8:100198. [PMID: 38525269 PMCID: PMC10959653 DOI: 10.1016/j.fochms.2024.100198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 03/08/2024] [Accepted: 03/09/2024] [Indexed: 03/26/2024]
Abstract
Curcumin, a polyphenol natural product derived from turmeric, possesses diverse pharmacological effects due to its interactions with various cells and molecules. Recent studies have highlighted its immunomodulatory properties, including its impact on immune cells and mediators involved in immune responses. Th17 cells play a crucial role in promoting immune responses against extracellular pathogens by recruiting neutrophils and inducing inflammation. These cells produce inflammatory cytokines such as TNF-α, IL-21, IL-17A, IL-23, IL-17F, IL-22, and IL-26. Curcumin has been shown to significantly inhibit the proliferation of Th17 cells and reduce the production of inflammatory cytokines, including TNF-α, IL-22, and IL-17. This review aims to assess the effectiveness of curcumin and its underlying mechanisms in modulating Th17 cells.
Collapse
Affiliation(s)
- Ehsan Ghoushi
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohadeseh Poudineh
- Student Research Committee, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Negin Parsamanesh
- Zanjan Metabolic Diseases Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
- Department of Genetics and Molecular Medicine, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Tannaz Jamialahmadi
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
2
|
Doctor MB, Basu S. Lacrimal Gland Insufficiency in Aqueous Deficiency Dry Eye Disease: Recent Advances in Pathogenesis, Diagnosis, and Treatment. Semin Ophthalmol 2022; 37:801-812. [PMID: 35587465 DOI: 10.1080/08820538.2022.2075706] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Aqueous deficiency dry eye disease is a chronic and potentially sight-threatening condition, that occurs due to the dysfunction of the lacrimal glands. The aim of this review was to describe the various recent developments in the understanding, diagnosis and treatment of lacrimal gland insufficiency in aqueous deficiency dry eye disease. METHODS A MEDLINE database search using PubMed was performed using the keywords: "dry eye disease/syndrome", "aqueous deficient/deficiency dry eye disease", "lacrimal gland" and "Sjogren's syndrome". After scanning through 750 relevant abstracts, 73 eligible articles published in the English language from 2016 to 2021 were included in the review. RESULTS Histopathological and ultrastructural studies have revealed new insights into the pathogenesis of cicatrising conjunctivitis-induced aqueous deficiency, where the lacrimal gland acini remain uninvolved and retain their secretory property, while significant ultrastructural changes in the gland have been observed. Recent advances in diagnosis include the techniques of direct clinical assessment of the lacrimal gland morphology and secretion, tear film osmolarity, tear film lysozyme and lactoferrin levels, tear film interferometry and lacrimal gland confocal microscopy. Developments in the treatment of aqueous deficiency dry eye disease, apart from the nanoparticle-based tear substitutes, include secretagogues like diquafosol tetrasodium and rebamipide, anti-inflammatory topical agents like nanomicellar form of cyclosporine and lifitegrast, scleral contact lenses, neurostimulation, and acupuncture for increasing the amount of tear production, minor salivary gland transplantation, faecal microbial transplantation, lacrimal gland regeneration and mesenchymal stem cell therapy. CONCLUSIONS Significant advances in the understanding, diagnosis and management of lacrimal gland insufficiency and its role in aqueous deficiency dry eye disease have taken place within the second half of the last decade. Of which, translational breakthroughs in terms of newer drug formulations and regenerative medicine are most promising.
Collapse
Affiliation(s)
- Mariya B Doctor
- Academy of Eye Care Education, L V Prasad Eye Institute, Hyderabad, India.,The Cornea Institute, L V Prasad Eye Institute, Hyderabad, India
| | - Sayan Basu
- The Cornea Institute, L V Prasad Eye Institute, Hyderabad, India.,Brien Holden Eye Research Centre, L V Prasad Eye Institute, Hyderabad, India
| |
Collapse
|
3
|
Heidari Z, Daei M, Boozari M, Jamialahmadi T, Sahebkar A. Curcumin supplementation in pediatric patients: A systematic review of current clinical evidence. Phytother Res 2021; 36:1442-1458. [PMID: 34904764 DOI: 10.1002/ptr.7350] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 01/01/2023]
Abstract
This systematic review was designed to determine the clinical efficacy and safety of curcumin supplementation for pediatric patients based on clinical trials in children. We systematically searched electronic databases including PubMed, EMBASE, Web of Science, and Scopus for all studies that investigated curcumin administration in the pediatric population without any time frame limitation. Finally, we identified 16 studies for this review. Clinical efficacy and safety of curcumin were assessed in children with inflammatory and immune disorders (including asthma, inflammatory bowel disease (IBD), and juvenile idiopathic arthritis (JIA)), metabolic disorders, autosomal dominant polycystic kidney disease (ADPKD), cystic fibrosis (CF), tetralogy of Fallot (TOF), and infectious diseases. Curcumin was administered in a wide range of doses (45 mg-4,000 mg daily) and durations (2-48 weeks). Overall, curcumin was well tolerated in all studies and improved the severity of inflammatory and immune disorders and metabolic diseases. However, more studies are needed to clarify the role of curcumin supplementation among children with ADPKD, CF, TOF, and infectious diseases. Because of substantial heterogeneity in methodological quality, design, outcomes, dose, duration of intake, formulations, and study populations across studies, no quantitative analysis was performed. Additional large-scale, randomized, placebo-controlled clinical trials are needed to confirm the results of the conducted studies.
Collapse
Affiliation(s)
- Zinat Heidari
- Department of Clinical Pharmacy, Faculty of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Daei
- Department of Clinical Pharmacy, Faculty of Pharmacy, Alborz University of Medical Sciences, Alborz, Iran
| | - Motahareh Boozari
- Department of Pharmacognosy, Faculty of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Tannaz Jamialahmadi
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Medicine, The University of Western Australia, Perth, Australia.,Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
4
|
Tabares-Guevara JH, Villa-Pulgarin JA, Hernandez JC. Atherosclerosis: immunopathogenesis and strategies for immunotherapy. Immunotherapy 2021; 13:1231-1244. [PMID: 34382409 DOI: 10.2217/imt-2021-0009] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Atherosclerosis, a chronic inflammatory condition in which atheroma accumulates within the intima of the arterial wall, is a life-threatening manifestation of cardiovascular disease, due to atheroma rupture, chronic luminal narrowing and thrombosis. Current knowledge of the role of a protective immune response in atherosclerotic lesions has provided promising opportunities to develop new immunotherapeutic strategies. In particular, Tregs exert an atheroprotective role by releasing anti-inflammatory cytokines (IL-10/TGF-β) and suppressing autoreactive T lymphocytes. In vivo animal experiments have shown that this can be achieved by developing vaccines that stimulate immunological tolerance to atheroma antigens. Here, we present an overview of the current knowledge of the proatherogenic immune response, and we discuss the strategies currently used as immunoregulatory therapy.
Collapse
Affiliation(s)
| | - Janny A Villa-Pulgarin
- Facultad de Ciencias de la Salud, Corporación Universitaria Remington, Medellín, Colombia
| | - Juan C Hernandez
- Infettare, Facultad de Medicina, Universidad Cooperativa de Colombia, Medellín, Colombia
| |
Collapse
|
5
|
Mohammadian Haftcheshmeh S, Khosrojerdi A, Aliabadi A, Lotfi S, Mohammadi A, Momtazi-Borojeni AA. Immunomodulatory Effects of Curcumin in Rheumatoid Arthritis: Evidence from Molecular Mechanisms to Clinical Outcomes. Rev Physiol Biochem Pharmacol 2021; 179:1-29. [PMID: 33404796 DOI: 10.1007/112_2020_54] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Rheumatoid arthritis (RA) is a chronic immune-mediated inflammatory disorder characterized by the destruction of the joint and bone resorption. The production of pro-inflammatory cytokines and chemokines, dysregulated functions of three important subtypes of T helper (TH) cells including TH1, TH17, and regulator T (Treg) cells are major causes of the initiation and development of RA. Moreover, B cells as a source of the production of several autoantibodies play key roles in the pathogenesis of RA. The last decades have seen increasingly rapid advances in the field of immunopharmacology using natural origin compounds for the management of various inflammatory diseases. Curcumin, a main active polyphenol compound isolated from turmeric, curcuma longa, possesses a wide range of pharmacologic properties for the treatment of several diseases. This review comprehensively will assess beneficial immunomodulatory effects of curcumin on the production of pro-inflammatory cytokines and also dysregulated functions of immune cells including TH1, TH17, Treg, and B cells in RA. We also seek the clinical efficacy of curcumin for the treatment of RA in several recent clinical trials. In conclusion, curcumin has been found to ameliorate RA complications through modulating inflammatory and autoreactive responses in immune cells and synovial fibroblast cells via inhibiting the expression or function of pro-inflammatory mediators, such as nuclear factor-κB (NF-κB), activated protein-1 (AP-1), and mitogen-activated protein kinases (MAPKs). Of note, curcumin treatment without any adverse effects can attenuate the clinical symptoms of RA patients and, therefore, has therapeutic potential for the treatment of the diseases.
Collapse
Affiliation(s)
| | - Arezou Khosrojerdi
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ali Aliabadi
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shadi Lotfi
- Department of Medical Immunology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Asadollah Mohammadi
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| | - Amir Abbas Momtazi-Borojeni
- Halal Research center of IRI, FDA, Tehran, Iran.
- Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
6
|
Rahimi K, Hassanzadeh K, Khanbabaei H, Haftcheshmeh SM, Ahmadi A, Izadpanah E, Mohammadi A, Sahebkar A. Curcumin: A Dietary Phytochemical for Targeting the Phenotype and Function of Dendritic Cells. Curr Med Chem 2021; 28:1549-1564. [PMID: 32410550 DOI: 10.2174/0929867327666200515101228] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 04/05/2020] [Accepted: 04/19/2020] [Indexed: 11/22/2022]
Abstract
Dendritic cells (DCs) are the most powerful antigen-presenting cells which link the innate and adaptive immune responses. Depending on the context, DCs initiate the immune responses or contribute to immune tolerance. Any disturbance in their phenotypes and functions may initiate inflammatory or autoimmune diseases. Hence, dysregulated DCs are the most attractive pharmacological target for the development of new therapies aiming at reducing their immunogenicity and at enhancing their tolerogenicity. Curcumin is the polyphenolic phytochemical component of the spice turmeric with a wide range of pharmacological activities. It acts in several ways as a modulator of DCs and converts them into tolerogenic DCs. Tolerogenic DCs possess anti-inflammatory and immunomodulatory activities that regulate the immune responses in health and disease. Curcumin by blocking maturation markers, cytokines and chemokines expression, and disrupting the antigen-presenting machinery of DCs render them non- or hypo-responsive to immunostimulants. It also reduces the expression of co-stimulatory and adhesion molecules on DCs and prevents them from both migration and antigen presentation but enhances their endocytosis capacity. Hence, curcumin causes DCs-inducing regulatory T cells and dampens CD4+ T helper 1 (Th1), Th2, and Th17 polarization. Inhibition of transcription factors such as NF-κB, AP-1, MAPKs (p38, JNK, ERK) and other intracellular signaling molecules such as JAK/STAT/SOCS provide a plausible explanation for most of these observations. In this review, we summarize the potential effects of curcumin on the phenotypes and functions of DCs as the key players in orchestration, stimulation, and modulation of the immune responses.
Collapse
Affiliation(s)
- Kaveh Rahimi
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Kambiz Hassanzadeh
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Hashem Khanbabaei
- Medical Physics Department, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Saeed M Haftcheshmeh
- Department of Medical Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad 91766-99199, Iran
| | - Abbas Ahmadi
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Esmael Izadpanah
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Asadollah Mohammadi
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | | |
Collapse
|
7
|
Martin BR. Treatment of Psoriatic Arthritis With Acupuncture, Turmeric ( Curcuma longa), Sarsaparilla ( Smilax officinalis) and Vitamin D: A Case Report. J Chiropr Med 2020; 19:194-200. [PMID: 33362443 DOI: 10.1016/j.jcm.2019.12.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 10/16/2019] [Accepted: 12/06/2019] [Indexed: 12/27/2022] Open
Abstract
Objective The purpose of this case report is to analyze the treatment of a patient with psoriatic arthritis (PsA) using natural medicine. Clinical Features A 73-year-old woman complained of PsA in her second and third digits with gradual onset over a 6-month period. PsA was manifesting as dactylitis with moderate to severe stiffness and edema in her proximal and distal interphalangeal joints and the surrounding soft tissue. A radiographic image revealed narrowing of the proximal and distal interphalangeal joints, mild erosion, and periosteal thickening. Intervention and Outcome Traditional Chinese Medicine-style acupuncture was combined with 500 mg of turmeric curcumin (Curcuma longa root extract) with 3 mg of black pepper extract (Piper nigrum) that was standardized to contain 95% curcuminoids, 425 mg of sarsaparilla root (Smilax officinalis) powdered capsules that were not standardized and 10,000 IU vitamin D3 as cholecalciferol oil capsules once a day. She received 2 acupuncture treatments in combination with the supplements. She experienced an increased range of motion and a reduction in edema and stiffness. She continued to experience a reduction in symptomatology while supplementing with turmeric curcumin, sarsaparilla root, and vitamin D3, which might have helped to control her symptoms. Supplementation with these agents may have helped to maintain the swelling and stiffness at a tolerable level for the past year. Conclusion The natural modalities administered to the patient might have been able to reduce her symptoms of PsA and maintain them at a tolerable level. Acupuncture, turmeric, sarsaparilla root, and vitamin D3 could be viable natural alternatives for the treatment of PsA.
Collapse
Affiliation(s)
- Brett R Martin
- Basic Science Department, National University of Health Sciences, Pinellas Park, Florida
| |
Collapse
|
8
|
Cunningham S, Hackstein H. Recent Advances in Good Manufacturing Practice-Grade Generation of Dendritic Cells. Transfus Med Hemother 2020; 47:454-463. [PMID: 33442340 DOI: 10.1159/000512451] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 10/11/2020] [Indexed: 12/23/2022] Open
Abstract
Dendritic cells (DCs) are pivotal regulators of immune responses, specialized in antigen presentation and bridging the gap between the innate and adaptive immune system. Due to these key features, DCs have become a pillar of the continuously growing field of cellular therapies. Here we review recent advances in good manufacturing practice strategies and their individual specificities in relation to DC production for clinical applications. These take into account both small-scale experimental approaches as well as automated systems for patient care.
Collapse
Affiliation(s)
- Sarah Cunningham
- Department of Transfusion Medicine and Hemostaseology, University Hospital Erlangen, Erlangen, Germany
| | - Holger Hackstein
- Department of Transfusion Medicine and Hemostaseology, University Hospital Erlangen, Erlangen, Germany
| |
Collapse
|
9
|
Wu T, Marakkath B, Ye Y, Khobahy E, Yan M, Hutcheson J, Zhu J, Zhou X, Mohan C. Curcumin Attenuates Both Acute and Chronic Immune Nephritis. Int J Mol Sci 2020; 21:E1745. [PMID: 32143311 PMCID: PMC7084772 DOI: 10.3390/ijms21051745] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/11/2020] [Accepted: 02/19/2020] [Indexed: 01/05/2023] Open
Abstract
Curcumin is known to have immunomodulatory potential in addition to anti-oxidant, anti-inflammatory and anti-carcinogenic effects. The aim of the present study is to investigate the therapeutic effects of curcumin on immune-mediated renal disease in an anti-glomerular basement membrane (GBM) model (representing acute kidney Injury, AKI) and murine lupus model (representing chronic kidney disease, CKD). In the AKI model, female anti-GBM 129/svj mice were administered with curcumin right before disease induction. In the CKD model, female MRL.lpr mice at the age of 8-10 weeks old were treated with curcumin or placebo via oral gavage daily for two months. After treatment, serum autoantibody levels, splenomegaly and spleen cellularity were reduced in murine lupus. Collectively, curcumin ameliorated kidney disease in the two mouse models with either acute or chronic nephritis, as marked by reduced proteinuria, blood urea nitrogen, glomerulonephritis, crescent formation, tubule-interstitial disease, and renal infiltration by lymphocytes. In addition, curcumin treatment reduced activation of the NFkB, MAPK, AKT and pBAD pathways either systemically, or within the inflamed kidneys. These findings suggest that natural food supplements could become an alternative approach to ameliorating immune-mediated kidney diseases.
Collapse
Affiliation(s)
- Tianfu Wu
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204, USA;
| | - Bindiya Marakkath
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204, USA;
| | - Yujin Ye
- Department of Internal Medicine/Rheumatology, University of Texas, Southwestern Medical center, Dallas, TX 75390, USA; (Y.Y.); (E.K.); (M.Y.); (J.H.); (J.Z.)
| | - Elhaum Khobahy
- Department of Internal Medicine/Rheumatology, University of Texas, Southwestern Medical center, Dallas, TX 75390, USA; (Y.Y.); (E.K.); (M.Y.); (J.H.); (J.Z.)
| | - Mei Yan
- Department of Internal Medicine/Rheumatology, University of Texas, Southwestern Medical center, Dallas, TX 75390, USA; (Y.Y.); (E.K.); (M.Y.); (J.H.); (J.Z.)
| | - Jack Hutcheson
- Department of Internal Medicine/Rheumatology, University of Texas, Southwestern Medical center, Dallas, TX 75390, USA; (Y.Y.); (E.K.); (M.Y.); (J.H.); (J.Z.)
| | - Jiankun Zhu
- Department of Internal Medicine/Rheumatology, University of Texas, Southwestern Medical center, Dallas, TX 75390, USA; (Y.Y.); (E.K.); (M.Y.); (J.H.); (J.Z.)
| | - Xinjin Zhou
- Department of Pathology, Baylor University Medical center at Dallas, Dallas, TX 75246, USA;
| | - Chandra Mohan
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204, USA;
| |
Collapse
|
10
|
Han P, Hanlon D, Sobolev O, Chaudhury R, Edelson RL. Ex vivo dendritic cell generation-A critical comparison of current approaches. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2019; 349:251-307. [PMID: 31759433 DOI: 10.1016/bs.ircmb.2019.10.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Dendritic cells (DCs) are professional antigen-presenting cells, required for the initiation of naïve and memory T cell responses and regulation of adaptive immunity. The discovery of DCs in 1973, which culminated in the Nobel Prize in Physiology or Medicine in 2011 for Ralph Steinman and colleagues, initially focused on the identification of adherent mononuclear cell fractions with uniquely stellate dendritic morphology, followed by key discoveries of their critical immunologic role in initiating and maintaining antigen-specific immunity and tolerance. The medical promise of marshaling these key capabilities of DCs for therapeutic modulation of antigen-specific immune responses has guided decades of research in hopes to achieve genuine physiologic partnership with the immune system. The potential uses of DCs in immunotherapeutic applications include cancer, infectious diseases, and autoimmune disorders; thus, methods for rapid and reliable large-scale production of DCs have been of great academic and clinical interest. However, difficulties in obtaining DCs from lymphoid and peripheral tissues, low numbers and poor survival in culture, have led to advancements in ex vivo production of DCs, both for probing molecular details of DC function as well as for experimenting with their clinical utility. Here, we review the development of a diverse array of DC production methodologies, ranging from cytokine-based strategies to genetic engineering tools devised for enhancing DC-specific immunologic functions. Further, we explore the current state of DC therapies in clinic, as well as emerging insights into physiologic production of DCs inspired by existing therapies.
Collapse
Affiliation(s)
- Patrick Han
- Department of Chemical and Environmental Engineering, School of Engineering and Applied Science, Yale University, New Haven, CT, United States
| | - Douglas Hanlon
- Department of Dermatology, School of Medicine, Yale University, New Haven, CT, United States
| | - Olga Sobolev
- Department of Dermatology, School of Medicine, Yale University, New Haven, CT, United States
| | - Rabib Chaudhury
- Department of Chemical and Environmental Engineering, School of Engineering and Applied Science, Yale University, New Haven, CT, United States
| | - Richard L Edelson
- Department of Dermatology, School of Medicine, Yale University, New Haven, CT, United States.
| |
Collapse
|
11
|
Cao WH, Li MH, Pan CQ, Lu Y, Zhang L, Ran CP, Wu SL, Hua WH, Liu SA, Shen G, Chang M, Liu RY, Hao HX, Hu LP, Xie Y. Quantitation of Plasmacytoid Dendritic Cells in Chronic Hepatitis B Patients with HBeAg Positivity During PEG-IFN and Entecavir Therapy. J Interferon Cytokine Res 2019; 38:197-205. [PMID: 29791282 DOI: 10.1089/jir.2018.0014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Plasmacytoid dendritic cells (pDCs) are crucial for control of chronic hepatitis B (CHB) virus infection. In this study, we evaluated the frequencies of pDCs and expression of functional molecules on pDCs in patients treated with PEG-IFN-α-2a or entecavir (ETV) and investigated changes during treatment. The mean fluorescence intensity of CD86 (CD86MFI) on the surface of pDCs and frequencies of pDCs and CD86+ pDCs in peripheral blood were measured. Compared with baseline, CD86+ pDC% and CD86MFI increased obviously after PEG-IFN-α-2a treatment for 12 and 24 weeks. For patients treated with ETV, only pDC% increased observably after treatment weeks 12 and 24 (P < 0.001) compared with baseline. Hepatitis B surface antigen (HBsAg) decline was significantly associated with elevated CD86+ pDC% (r = 0.348, P = 0.015) during PEG-IFN-α-2a treatment. In the HBsAg response group, CD86+ pDC% and CD86MFI (P < 0.001) increased observably after PEG-IFN-α-2a therapy, whereas only CD86MFI had a statistically significant difference after therapy compared with baseline (12 weeks versus 0 weeks, P = 0.022; 24 weeks versus 0 weeks, P = 0.015) in the HBsAg nonresponse group. CD86+ pDC% between the 2 groups had statistically significant differences at baseline (P = 0.001) and at the treatment time points of 12 and 24 weeks (P < 0.001), respectively. For patients receiving ETV therapy, pDC% increased observably, but CD86+ pDC% decreased significantly (P < 0.001) in the HBV DNA nonresponse group during early treatment with ETV. In CHB patients, HBsAg response in PEG-IFN-α-2a therapy correlated with the increase of CD86+ pDC% and HBV DNA nonresponse in ETV treatment correlated with the decrease of CD86+ pDC%.
Collapse
Affiliation(s)
- Wei-Hua Cao
- 1 Department of Hepatology Division 2, Liver Diseases Center, Peking University Ditan Teaching Hospital , Beijing, China
| | - Ming-Hui Li
- 2 Department of Hepatology Division 2, Liver Diseases Center, Beijing Ditan Hospital, Capital Medical University , Beijing, China
| | - Calvin Q Pan
- 3 Division of Gastroenterology and Hepatology, Department of Medicine, NYU Langone Health, New York University School of Medicine , New York, New York
| | - Yao Lu
- 2 Department of Hepatology Division 2, Liver Diseases Center, Beijing Ditan Hospital, Capital Medical University , Beijing, China
| | - Lu Zhang
- 2 Department of Hepatology Division 2, Liver Diseases Center, Beijing Ditan Hospital, Capital Medical University , Beijing, China
| | - Chong-Ping Ran
- 2 Department of Hepatology Division 2, Liver Diseases Center, Beijing Ditan Hospital, Capital Medical University , Beijing, China
| | - Shu-Ling Wu
- 2 Department of Hepatology Division 2, Liver Diseases Center, Beijing Ditan Hospital, Capital Medical University , Beijing, China
| | - Wen-Hao Hua
- 4 Clinical Test Center, Beijing Ditan Hospital, Capital Medical University , Beijing, China
| | - Shun-Ai Liu
- 5 Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University , Beijing, China
| | - Ge Shen
- 2 Department of Hepatology Division 2, Liver Diseases Center, Beijing Ditan Hospital, Capital Medical University , Beijing, China
| | - Min Chang
- 2 Department of Hepatology Division 2, Liver Diseases Center, Beijing Ditan Hospital, Capital Medical University , Beijing, China
| | - Ru-Yu Liu
- 2 Department of Hepatology Division 2, Liver Diseases Center, Beijing Ditan Hospital, Capital Medical University , Beijing, China
| | - Hong-Xiao Hao
- 2 Department of Hepatology Division 2, Liver Diseases Center, Beijing Ditan Hospital, Capital Medical University , Beijing, China
| | - Lei-Ping Hu
- 2 Department of Hepatology Division 2, Liver Diseases Center, Beijing Ditan Hospital, Capital Medical University , Beijing, China
| | - Yao Xie
- 1 Department of Hepatology Division 2, Liver Diseases Center, Peking University Ditan Teaching Hospital , Beijing, China
| |
Collapse
|
12
|
Karimi A, Ghodsi R, Kooshki F, Karimi M, Asghariazar V, Tarighat-Esfanjani A. Therapeutic effects of curcumin on sepsis and mechanisms of action: A systematic review of preclinical studies. Phytother Res 2019; 33:2798-2820. [PMID: 31429161 DOI: 10.1002/ptr.6467] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 05/28/2019] [Accepted: 07/12/2019] [Indexed: 12/18/2022]
Abstract
Sepsis is a complex disease that begins with an infectious disorder and causes excessive immune responses. Curcumin is considered as an active component of turmeric that can improve the condition in sepsis due to its anti-inflammatory and antioxidant properties. PubMed, Embase, Google Scholar, Web of Science, and Scopus databases were searched. Searching was not limited to a specific publication period. Only English-language original articles, which had examined the effect of curcumin on sepsis, were included. At first, 1,098 articles were totally found, and 209 articles were selected after excluding duplicated data; 46 articles were remained due to the curcumin effects on sepsis. These included 23 in vitro studies and 23 animal studies. Our results showed that curcumin and various analogs of curcumin can have an inhibitory effect on sepsis-induced complications. Curcumin has the ability to inhibit the inflammatory, oxidative coagulation factors, and regulation of immune responses in sepsis. Despite the promising evidence of the therapeutic effects of curcumin on the sepsis complication, further studies seem necessary to investigate its effect and possible mechanisms of action in human studies.
Collapse
Affiliation(s)
- Arash Karimi
- Student Research Committee, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Nutrition Research Center, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ramin Ghodsi
- Student Research Committee, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Nutrition Research Center, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fateme Kooshki
- Student Research Committee, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Nutrition Research Center, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mozhdeh Karimi
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Vahid Asghariazar
- Student Research Committee, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Tarighat-Esfanjani
- Nutrition Research Center, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
13
|
Rahimi K, Ahmadi A, Hassanzadeh K, Soleimani Z, Sathyapalan T, Mohammadi A, Sahebkar A. Targeting the balance of T helper cell responses by curcumin in inflammatory and autoimmune states. Autoimmun Rev 2019; 18:738-748. [PMID: 31059845 DOI: 10.1016/j.autrev.2019.05.012] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 01/18/2019] [Indexed: 12/17/2022]
Abstract
CD4+ T helper (Th) cells are a crucial player in host defense but under certain conditions can contribute to the pathogenesis of inflammatory and autoimmune diseases. Beside the Th1/Th2 subset, several additional Th subsets have been identified, each with a distinctive transcription factor, functional properties, signature cytokine profile, and possible role in the pathophysiology of diseases. These newer Th subsets include Th17, regulatory Th cells (Tregs), and more recently, Th9, Th22, and follicular T helper cells. Interestingly, imbalance of Th subsets contributes to the immunopathology of several disease states. Therefore, targeting the imbalance of Th subsets and their signature cytokine profiles by a safe, effective and inexpensive nutraceutical agent such as curcumin could be helpful to treat autoimmune and inflammatory diseases. In this study different Th subsets and how the imbalance of these subsets could promote pathology of several diseases has been reviewed. Furthermore, the role of curcumin in this process will be discussed and the impact of targeting Th subsets by curcumin.
Collapse
Affiliation(s)
- Kaveh Rahimi
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Abbas Ahmadi
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Kambiz Hassanzadeh
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Zahra Soleimani
- Immunology Research Center, Inflammation and Inflammatory Diseases Division, Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Thozhukat Sathyapalan
- Department of Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull, Hull HU3 2JZ, UK
| | - Asadollah Mohammadi
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran..
| |
Collapse
|
14
|
Yousefi F, Lavi Arab F, Jaafari MR, Rastin M, Tabasi N, Hatamipour M, Nikkhah K, Mahmoudi M. Immunoregulatory, proliferative and anti-oxidant effects of nanocurcuminoids on adipose-derived mesenchymal stem cells. EXCLI JOURNAL 2019; 18:405-421. [PMID: 31338010 PMCID: PMC6635727 DOI: 10.17179/excli2019-1366] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Accepted: 05/10/2019] [Indexed: 12/21/2022]
Abstract
Curcuminoids are dietary complexes extracted from the seeds of Curcuma longa L. that contain curcumin, bisdemethoxycurcumin and desmethoxycurcumin. Curcuminoids are popular for their pleiotropic therapeutic functions, such as their anti-inflammatory and anti-oxidant effects. Nonetheless, their clinical use is associated with poor systemic bioavailability and insolubility. The nano-formulation of curcuminoids eliminates these shortcomings. In the present study, we explored immunoregulatory, proliferative and anti-oxidant effects of nanocurcuminoids on adipose-derived mesenchymal stem cells (AT-MSCs). Flow cytometry analysis and MTT assay were employed to explore the effects of nanocurcuminoids on the apoptosis and proliferation of adipose-derived MSCs (AT-MSCs). The anti-oxidant effect of nanocurcuminoids on AT-MSCs also was examined. The immune regulatory effect of nanocurcuminoids was evaluated by the flow cytometric measurement of the T regulatory (Treg) population. The expression of inflammatory and anti-inflammatory cytokines was quantified using real-time PCR. Our findings demonstrate that low concentrations of nanocurcuminoids are beneficial for MSC proliferation, protection of MSCs from apoptosis, reducing inflammatory cytokines and SOD activity. A high concentration of nanocurcuminoids increases the population of Tregs and elevates the expression of TGFβ and FOXP3 genes. The beneficial effects of nanocurcuminoids on AT-MSCs were mainly observed at low doses of nanocurcuminoids.
Collapse
Affiliation(s)
- Forouzan Yousefi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fahimeh Lavi Arab
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Reza Jaafari
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Rastin
- Immunology Research Center, BuAli Research Institute, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Nafiseh Tabasi
- Immunology Research Center, BuAli Research Institute, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahdi Hatamipour
- Nanotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Karim Nikkhah
- Department of Neurology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Mahmoudi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- *To whom correspondence should be addressed: Mahmoud Mahmoudi, Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Tel: +98 9151156304, Fax: +98 5138022229, E-mail:
| |
Collapse
|
15
|
Herrera-Aco DR, Medina-Campos ON, Pedraza-Chaverri J, Sciutto-Conde E, Rosas-Salgado G, Fragoso-González G. Alpha-mangostin: Anti-inflammatory and antioxidant effects on established collagen-induced arthritis in DBA/1J mice. Food Chem Toxicol 2018; 124:300-315. [PMID: 30557668 DOI: 10.1016/j.fct.2018.12.018] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 11/23/2018] [Accepted: 12/13/2018] [Indexed: 12/15/2022]
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease that causes physical disability in people worldwide. Despite progress made in RA treatment in the past decade, new drugs with high efficacy but few long-term adverse effects are still needed. This study focused on evaluating the therapeutic potential of α-mangostin on established collagen-induced arthritis (CIA) in DBA/1J mice. Arthritic DBA/1J mice were orally administered with two doses of α-mangostin (10 and 40 mg/kg) daily, for 33 days. Alpha-mangostin significantly decreased the clinical score in the short term at both doses and decreased the histopathological score at the higher dose. This improvement was accompanied by a reduction on serum levels of anti-collagen IgG2a autoantibodies and of the production of LIX/CXCL5, IP-10/CXCL10, MIG/CXCL9, RANTES/CCL5, IL-6 and IL-33 in the joints of CIA mice. Alpha-mangostin also exhibited an anti-oxidant effect decreasing the NADPH oxidase activity and lipid peroxidation and preserving the levels of reduced glutathione in the arthritic joints. In vitro this xanthone demonstrated modulatory properties on LPS-activated dendritic cells, although in Th1 and Th17-polarized lymphocytes promotes a pro-apoptotic phenotype. Altogether this study illustrates the capacity of α-mangostin to ameliorate the early clinical and histological signs of established CIA by reducing the inflammatory and oxidative responses.
Collapse
Affiliation(s)
- Diana Rocio Herrera-Aco
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad Universitaria s/n, Ciudad de México, 04650, Mexico
| | - Omar Noel Medina-Campos
- Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria s/n, Ciudad de México, 04650, Mexico
| | - José Pedraza-Chaverri
- Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria s/n, Ciudad de México, 04650, Mexico
| | - Edda Sciutto-Conde
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria s/n, Ciudad de México, 04650, Mexico
| | - Gabriela Rosas-Salgado
- Facultad de Medicina, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, 62350, Mexico
| | - Gladis Fragoso-González
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria s/n, Ciudad de México, 04650, Mexico.
| |
Collapse
|
16
|
Boroumand N, Samarghandian S, Hashemy SI. Immunomodulatory, anti-inflammatory, and antioxidant effects of curcumin. JOURNAL OF HERBMED PHARMACOLOGY 2018. [DOI: 10.15171/jhp.2018.33] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
17
|
Navarro-Barriuso J, Mansilla MJ, Martínez-Cáceres EM. Searching for the Transcriptomic Signature of Immune Tolerance Induction-Biomarkers of Safety and Functionality for Tolerogenic Dendritic Cells and Regulatory Macrophages. Front Immunol 2018; 9:2062. [PMID: 30298066 PMCID: PMC6160751 DOI: 10.3389/fimmu.2018.02062] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 08/21/2018] [Indexed: 12/12/2022] Open
Abstract
The last years have witnessed a breakthrough in the development of cell-based tolerance-inducing cell therapies for the treatment of autoimmune diseases and solid-organ transplantation. Indeed, the use of tolerogenic dendritic cells (tolDC) and regulatory macrophages (Mreg) is currently being tested in Phase I and Phase II clinical trials worldwide, with the aim of finding an effective therapy able to abrogate the inflammatory processes causing these pathologies without compromising the protective immunity of the patients. However, there exists a wide variety of different protocols to generate human tolDC and Mreg and, consequently, the characteristics of each product are heterogeneous. For this reason, the identification of biomarkers able to define their functionality (tolerogenicity) is of great relevance, on the one hand, to guarantee the safety of tolDC and Mreg before administration and, on the other hand, to compare the results between different cell products and laboratories. In this article, we perform an exhaustive review of protocols generating human tolDC and Mreg in the literature, aiming to elucidate if there are any common transcriptomic signature or potential biomarkers of tolerogenicity among the different approaches. However, and although several effectors seem to be induced in common in some of the most reported protocols to generate both tolDC or Mreg, the transcriptomic profile of these cellular products strongly varies depending on the approach used to generate them.
Collapse
Affiliation(s)
- Juan Navarro-Barriuso
- Division of Immunology, Germans Trias i Pujol University Hospital and Research Institute, Barcelona, Spain.,Department of Cellular Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - María José Mansilla
- Division of Immunology, Germans Trias i Pujol University Hospital and Research Institute, Barcelona, Spain.,Department of Cellular Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Eva M Martínez-Cáceres
- Division of Immunology, Germans Trias i Pujol University Hospital and Research Institute, Barcelona, Spain.,Department of Cellular Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
18
|
Asteriou E, Gkoutzourelas A, Mavropoulos A, Katsiari C, Sakkas LI, Bogdanos DP. Curcumin for the Management of Periodontitis and Early ACPA-Positive Rheumatoid Arthritis: Killing Two Birds with One Stone. Nutrients 2018; 10:nu10070908. [PMID: 30012973 PMCID: PMC6073415 DOI: 10.3390/nu10070908] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 07/10/2018] [Accepted: 07/12/2018] [Indexed: 12/13/2022] Open
Abstract
We propose curcumin as a preventive measure to avoid/manage periodontitis (PD), and as a natural immunosuppressant for rheumatoid arthritis (RA). PD, mainly caused by Porphyromonas gingivalis forming biofilm and leading to tooth decay, is a major public health issue and a risk factor for the development of RA in humans. P. gingivalis is able to trigger experimental autoimmune arthritis in animal models and in humans can induce citrullinated peptides, which not only are a source of anti-citrullinated antibodies (ACPAs), but also participate in autoreactive responses and disease development. Curcumin appears to have efficient anti-bacterial activity against P. gingivalis infection and biofilm formation. In addition to antibacterial, anti-oxidant, and anti-inflammatory action, curcumin exerts unique immunosuppressant properties via the inhibition of Th17 pro-inflammatory responses and promotion of regulatory T cells, thus suppressing autoimmunity. We introduce curcumin as a natural product for the management of both PD and RA-related autoreactivity, possibly also as a preventive measure in early RA or individuals at high risk to develop RA.
Collapse
Affiliation(s)
- Eleni Asteriou
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly and University General Hospital of Larissa, 41110 Larissa, Greece.
| | - Athanasios Gkoutzourelas
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly and University General Hospital of Larissa, 41110 Larissa, Greece.
| | - Athanasios Mavropoulos
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly and University General Hospital of Larissa, 41110 Larissa, Greece.
| | - Christina Katsiari
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly and University General Hospital of Larissa, 41110 Larissa, Greece.
| | - Lazaros I Sakkas
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly and University General Hospital of Larissa, 41110 Larissa, Greece.
| | - Dimitrios P Bogdanos
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly and University General Hospital of Larissa, 41110 Larissa, Greece.
| |
Collapse
|
19
|
Naturally derived Heme-Oxygenase 1 inducers attenuate inflammatory responses in human dendritic cells and T cells: relevance for psoriasis treatment. Sci Rep 2018; 8:10287. [PMID: 29980703 PMCID: PMC6035209 DOI: 10.1038/s41598-018-28488-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 06/20/2018] [Indexed: 01/04/2023] Open
Abstract
Psoriasis is a chronic autoimmune disease mediated by dysregulated immune responses in dendritic cells (DC) and T cells. The stress-response enzyme heme oxygenase-1 (HO-1) has been described as protective in animal models of psoriasis, however, implementation of HO-1-based therapies is hindered by the lack of clinically-suitable HO-1 inducers. The plant-derived polyphenols, carnosol and curcumin, have been identified as candidate HO-1 inducers however there has been little investigation into their effects on human immune cells. We demonstrate that treatment of human DC with these polyphenols limits DC maturation, reduces pro-inflammatory cytokine production, and prevents induction of allospecific T cell responses, in a manner partially dependent on carbon monoxide (CO). We also characterised their effects in ex-vivo psoriasis PBMC and report that curcumin, but not carnosol, strongly reduces T cell proliferation and cytokine poly-functionality, with reduced expression of psoriatic cytokines IFNγ, IL-17, GM-CSF and IL-22. This study therefore supports reports highlighting the therapeutic potential of curcumin in psoriasis by providing insight into its immunological effects on healthy human DC and psoriasis PBMC. We also demonstrate, for the first time, the anti-inflammatory effects of carnosol in human immune cells.
Collapse
|
20
|
Abstract
Curcumin is a polyphenol natural product isolated from turmeric, interacting with different cellular and molecular targets and, consequently, showing a wide range of pharmacological effects. Recent preclinical and clinical trials have revealed immunomodulatory properties of curcumin that arise from its effects on immune cells and mediators involved in the immune response, such as various T-lymphocyte subsets and dendritic cells, as well as different inflammatory cytokines. Systemic lupus erythematosus (SLE) is an inflammatory, chronic autoimmune-mediated disease characterized by the presence of autoantibodies, deposition of immune complexes in various organs, recruitment of autoreactive and inflammatory T cells, and excessive levels of plasma proinflammatory cytokines. The function and numbers of dendritic cells and T cell subsets, such as T helper 1 (Th1), Th17, and regulatory T cells have been found to be significantly altered in SLE. In the present report, we reviewed the results of in vitro, experimental (pre-clinical), and clinical studies pertaining to the modulatory effects that curcumin produces on the function and numbers of dendritic cells and T cell subsets, as well as relevant cytokines that participate in SLE.
Collapse
|
21
|
Pflugfelder SC, de Paiva CS. The Pathophysiology of Dry Eye Disease: What We Know and Future Directions for Research. Ophthalmology 2017; 124:S4-S13. [PMID: 29055361 PMCID: PMC5657523 DOI: 10.1016/j.ophtha.2017.07.010] [Citation(s) in RCA: 274] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 07/10/2017] [Accepted: 07/11/2017] [Indexed: 12/31/2022] Open
Abstract
Clinical and laboratory studies performed over the past few decades have discovered that dry eye is a chronic inflammatory disease that can be initiated by numerous extrinsic or intrinsic factors that promote an unstable and hyperosmolar tear film. These changes in tear composition, in some cases combined with systemic factors, lead to an inflammatory cycle that causes ocular surface epithelial disease and neural stimulation. Acute desiccation activates stress signaling pathways in the ocular surface epithelium and resident immune cells. This triggers production of innate inflammatory mediators that stimulate the production of matrix metalloprotease, inflammatory cell recruitment, and dendritic cell maturation. These mediators, combined with exposure of autoantigens, can lead to an adaptive T cell-mediated response. Cornea barrier disruption develops by protease-mediated lysis of epithelial tight junctions, leading to accelerated cell death; desquamation; an irregular, poorly lubricated cornea surface; and exposure and sensitization of epithelial nociceptors. Conjunctival goblet cell dysfunction and death are promoted by the T helper 1 cytokine interferon gamma. These epithelial changes further destabilize the tear film, amplify inflammation, and create a vicious cycle. Cyclosporine and lifitegrast, the 2 US Food and Drug Administration-approved therapies, inhibit T-cell activation and cytokine production. Although these therapies represent a major advance in dry eye therapy, they are not effective in improving discomfort and corneal epithelial disease in all patients. Preclinical studies have identified other potential therapeutic targets, biomarkers, and strategies to bolster endogenous immunoregulatory pathways. These discoveries will, it is hoped, lead to further advances in diagnostic classification and treatment.
Collapse
Affiliation(s)
| | - Cintia S de Paiva
- Department of Ophthalmology, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
22
|
García-González PA, Schinnerling K, Sepúlveda-Gutiérrez A, Maggi J, Mehdi AM, Nel HJ, Pesce B, Larrondo ML, Aravena O, Molina MC, Catalán D, Thomas R, Verdugo RA, Aguillón JC. Dexamethasone and Monophosphoryl Lipid A Induce a Distinctive Profile on Monocyte-Derived Dendritic Cells through Transcriptional Modulation of Genes Associated With Essential Processes of the Immune Response. Front Immunol 2017; 8:1350. [PMID: 29109727 PMCID: PMC5660598 DOI: 10.3389/fimmu.2017.01350] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 10/03/2017] [Indexed: 02/02/2023] Open
Abstract
There is growing interest in the use of tolerogenic dendritic cells (tolDCs) as a potential target for immunotherapy. However, the molecular bases that drive the differentiation of monocyte-derived DCs (moDCs) toward a tolerogenic state are still poorly understood. Here, we studied the transcriptional profile of moDCs from healthy subjects, modulated with dexamethasone (Dex) and activated with monophosphoryl lipid A (MPLA), referred to as Dex-modulated and MPLA-activated DCs (DM-DCs), as an approach to identify molecular regulators and pathways associated with the induction of tolerogenic properties in tolDCs. We found that DM-DCs exhibit a distinctive transcriptional profile compared to untreated (DCs) and MPLA-matured DCs. Differentially expressed genes downregulated by DM included MMP12, CD1c, IL-1B, and FCER1A involved in DC maturation/inflammation and genes upregulated by DM included JAG1, MERTK, IL-10, and IDO1 involved in tolerance. Genes related to chemotactic responses, cell-to-cell signaling and interaction, fatty acid oxidation, metal homeostasis, and free radical scavenging were strongly enriched, predicting the activation of alternative metabolic processes than those driven by counterpart DCs. Furthermore, we identified a set of genes that were regulated exclusively by the combined action of Dex and MPLA, which are mainly involved in the control of zinc homeostasis and reactive oxygen species production. These data further support the important role of metabolic processes on the control of the DC-driven regulatory immune response. Thus, Dex and MPLA treatments modify gene expression in moDCs by inducing a particular transcriptional profile characterized by the activation of tolerance-associated genes and suppression of the expression of inflammatory genes, conferring the potential to exert regulatory functions and immune response modulation.
Collapse
Affiliation(s)
- Paulina A García-González
- Programa Disciplinario de Inmunología, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Katina Schinnerling
- Programa Disciplinario de Inmunología, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Alejandro Sepúlveda-Gutiérrez
- Programa de Genética Humana, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile
| | - Jaxaira Maggi
- Programa Disciplinario de Inmunología, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Ahmed M Mehdi
- Translational Research Institute, University of Queensland Diamantina Institute, Woolloongabba, QLD, Australia
| | - Hendrik J Nel
- Translational Research Institute, University of Queensland Diamantina Institute, Woolloongabba, QLD, Australia
| | - Bárbara Pesce
- Programa Disciplinario de Inmunología, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile
| | - Milton L Larrondo
- Banco de Sangre, Hospital Clínico de la Universidad de Chile, Santiago, Chile
| | - Octavio Aravena
- Programa Disciplinario de Inmunología, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile
| | - María C Molina
- Programa Disciplinario de Inmunología, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile
| | - Diego Catalán
- Programa Disciplinario de Inmunología, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Ranjeny Thomas
- Translational Research Institute, University of Queensland Diamantina Institute, Woolloongabba, QLD, Australia
| | - Ricardo A Verdugo
- Programa de Genética Humana, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile
| | - Juan C Aguillón
- Programa Disciplinario de Inmunología, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| |
Collapse
|
23
|
Abdollahi E, Momtazi AA, Johnston TP, Sahebkar A. Therapeutic effects of curcumin in inflammatory and immune‐mediated diseases: A nature‐made jack‐of‐all‐trades? J Cell Physiol 2017; 233:830-848. [DOI: 10.1002/jcp.25778] [Citation(s) in RCA: 190] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Accepted: 01/05/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Elham Abdollahi
- Department of Medical ImmunologySchool of Medicine, Mashhad University of Medical SciencesMashhadIran
- Student Research CommitteeMashhad University of Medical SciencesMashhadIran
| | - Amir Abbas Momtazi
- Student Research Committee, Nanotechnology Research Center, Department of Medical BiotechnologySchool of Medicine, Mashhad University of Medical SciencesMashhadIran
| | - Thomas P. Johnston
- Division of Pharmaceutical SciencesSchool of Pharmacy, University of Missouri‐Kansas CityKansas CityMissouri
| | - Amirhossein Sahebkar
- Biotechnology Research CenterMashhad University of Medical SciencesMashhadIran
- Neurogenic Inflammation Research CenterMashhad University of Medical SciencesMashhadIran
| |
Collapse
|
24
|
Brück J, Holstein J, Glocova I, Seidel U, Geisel J, Kanno T, Kumagai J, Mato N, Sudowe S, Widmaier K, Sinnberg T, Yazdi AS, Eberle FC, Hirahara K, Nakayama T, Röcken M, Ghoreschi K. Nutritional control of IL-23/Th17-mediated autoimmune disease through HO-1/STAT3 activation. Sci Rep 2017; 7:44482. [PMID: 28290522 PMCID: PMC5349589 DOI: 10.1038/srep44482] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 02/09/2017] [Indexed: 02/07/2023] Open
Abstract
The nutritional curcumin (CUR) is beneficial in cell-mediated autoimmune diseases. The molecular mechanisms underlying this food-mediated silencing of inflammatory immune responses are poorly understood. By investigating antigen-specific immune responses we found that dietary CUR impairs the differentiation of Th1/Th17 cells in vivo during encephalomyelitis and instead promoted Th2 cells. In contrast, feeding CUR had no inhibitory effect on ovalbumin-induced airway inflammation. Mechanistically, we found that CUR induces an anti-inflammatory phenotype in dendritic cells (DC) with enhanced STAT3 phosphorylation and suppressed expression of Il12b and Il23a. On the molecular level CUR readily induced NRF2-sensitive heme oxygenase 1 (HO-1) mRNA and protein in LPS-activated DC. HO-1 enhanced STAT3 phosphorylation, which enriched to Il12b and Il23a loci and negatively regulated their transcription. These findings demonstrate the underlying mechanism through which a nutritional can interfere with the immune response. CUR silences IL-23/Th17-mediated pathology by enhancing HO-1/STAT3 interaction in DC.
Collapse
Affiliation(s)
- Jürgen Brück
- Department of Dermatology, University Medical Center of the Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| | - Julia Holstein
- Department of Dermatology, University Medical Center of the Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| | - Ivana Glocova
- Department of Dermatology, University Medical Center of the Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| | - Ursula Seidel
- Department of Dermatology, University Medical Center of the Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| | - Julia Geisel
- Department of Dermatology, University Medical Center of the Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| | - Toshio Kanno
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Jin Kumagai
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Naoko Mato
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Stephan Sudowe
- Department of Dermatology, University Medical Center of the Johannes Gutenberg University Mainz, 55101 Mainz, Germany
| | - Katja Widmaier
- Department of Dermatology, University Medical Center of the Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| | - Tobias Sinnberg
- Department of Dermatology, University Medical Center of the Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| | - Amir S. Yazdi
- Department of Dermatology, University Medical Center of the Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| | - Franziska C. Eberle
- Department of Dermatology, University Medical Center of the Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| | - Kiyoshi Hirahara
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Toshinori Nakayama
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Martin Röcken
- Department of Dermatology, University Medical Center of the Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| | - Kamran Ghoreschi
- Department of Dermatology, University Medical Center of the Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
25
|
Guidetti G, Di Cerbo A, Giovazzino A, Rubino V, Palatucci AT, Centenaro S, Fraccaroli E, Cortese L, Bonomo MG, Ruggiero G, Canello S, Terrazzano G. In Vitro Effects of Some Botanicals with Anti-Inflammatory and Antitoxic Activity. J Immunol Res 2016; 2016:5457010. [PMID: 27597982 PMCID: PMC5002466 DOI: 10.1155/2016/5457010] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 07/19/2016] [Accepted: 07/21/2016] [Indexed: 12/15/2022] Open
Abstract
Several extrinsic factors, like drugs and chemicals, can foster autoimmunity. Tetracyclines, in particular oxytetracycline (OTC), appear to correlate with the emergence of immune-mediated diseases. Accumulation of OTC, the elective drug for gastrointestinal and respiratory infectious disease treatment in broiler chickens, was reported in chicken edible tissues and could represent a potential risk for pets and humans that could assume this antibiotic as residue in meat or in meat-derived byproducts. We investigated the in vitro anti-inflammatory properties of a pool of thirteen botanicals as a part of a nutraceutical diet, with proven immunomodulatory activity. In addition, we evaluated the effect of such botanicals in contrasting the in vitro proinflammatory toxicity of OTC. Our results showed a significant reduction in interferon- (INF-) γ production by human and canine lymphocytes in presence of botanicals ((⁎) p < 0.05). Increased INF-γ production, dependent on 24-hour OTC-incubation of T lymphocytes, was significantly reduced by the coincubation with Haematococcus pluvialis, with Glycine max, and with the mix of all botanicals ((⁎) p < 0.05). In conclusion, the use of these botanicals was shown to be able to contrast OTC-toxicity and could represent a new approach for the development of functional foods useful to enhance the standard pharmacological treatment in infections as well as in preventing or reducing the emergence of inflammatory diseases.
Collapse
Affiliation(s)
- Gianandrea Guidetti
- Division of Research and Development, SANYpet SpA, 35023 Bagnoli di Sopra, Italy
| | - Alessandro Di Cerbo
- School of Specialization in Clinical Biochemistry, “G. d'Annunzio” University, 66100 Chieti, Italy
| | - Angela Giovazzino
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy
| | - Valentina Rubino
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy
| | | | - Sara Centenaro
- Division of Research and Development, SANYpet SpA, 35023 Bagnoli di Sopra, Italy
| | - Elena Fraccaroli
- Division of Research and Development, SANYpet SpA, 35023 Bagnoli di Sopra, Italy
| | - Laura Cortese
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, 80100 Naples, Italy
| | | | - Giuseppina Ruggiero
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy
| | - Sergio Canello
- Division of Research and Development, SANYpet SpA, 35023 Bagnoli di Sopra, Italy
| | - Giuseppe Terrazzano
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy
- Department of Science, University of Basilicata, 85100 Potenza, Italy
| |
Collapse
|
26
|
García-González P, Ubilla-Olguín G, Catalán D, Schinnerling K, Aguillón JC. Tolerogenic dendritic cells for reprogramming of lymphocyte responses in autoimmune diseases. Autoimmun Rev 2016; 15:1071-1080. [PMID: 27485011 DOI: 10.1016/j.autrev.2016.07.032] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 07/16/2016] [Indexed: 12/14/2022]
Abstract
Dendritic cells (DCs) control immune responses by driving potent inflammatory actions against external and internal threats while generating tolerance to self and harmless components. This duality and their potential to reprogram immune responses in an antigen-specific fashion have made them an interesting target for immunotherapeutic strategies to control autoimmune diseases. Several protocols have been described for in vitro generation of tolerogenic DCs (tolDCs) capable of modulating adaptive immune responses and restoring tolerance through different mechanisms that involve anergy, generation of regulatory lymphocyte populations, or deletion of potentially harmful inflammatory T cell subsets. Recently, the capacity of tolDCs to induce interleukin (IL-10)-secreting regulatory B cells has been demonstrated. In vitro assays and rodent models of autoimmune diseases provide insights to the molecular regulators and pathways enabling tolDCs to control immune responses. Here we review mechanisms through which tolDCs modulate adaptive immune responses, particularly focusing on their suitability for reprogramming autoreactive CD4+ effector T cells. Furthermore, we discuss recent findings establishing that tolDCs also modulate B cell populations and discuss clinical trials applying tolDCs to patients with autoimmune diseases.
Collapse
Affiliation(s)
- Paulina García-González
- Immune Regulation and Tolerance Research Group, Programa Disciplinario de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile; Millenium Institute on Immunology and Immunotherapy (IMII), Santiago, Chile
| | - Gabriela Ubilla-Olguín
- Immune Regulation and Tolerance Research Group, Programa Disciplinario de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile; Millenium Institute on Immunology and Immunotherapy (IMII), Santiago, Chile
| | - Diego Catalán
- Immune Regulation and Tolerance Research Group, Programa Disciplinario de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile; Millenium Institute on Immunology and Immunotherapy (IMII), Santiago, Chile
| | - Katina Schinnerling
- Immune Regulation and Tolerance Research Group, Programa Disciplinario de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile; Millenium Institute on Immunology and Immunotherapy (IMII), Santiago, Chile.
| | - Juan Carlos Aguillón
- Immune Regulation and Tolerance Research Group, Programa Disciplinario de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile; Millenium Institute on Immunology and Immunotherapy (IMII), Santiago, Chile.
| |
Collapse
|
27
|
Amirghofran Z, Ahmadi H, Karimi MH, Kalantar F, Gholijani N, Malek-Hosseini Z. In vitro inhibitory effects of thymol and carvacrol on dendritic cell activation and function. PHARMACEUTICAL BIOLOGY 2016; 54:1125-1132. [PMID: 26067828 DOI: 10.3109/13880209.2015.1055579] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
CONTEXT Thyme has been used in traditional medicine for medicinal purposes since ancient times. OBJECTIVE The objective of this study was to investigate the effects of thymol and carvacrol as two major constituents of thyme on dendritic cells (DCs) maturation and T cell activation. MATERIALS AND METHODS Splenic DCs were treated with non-cytotoxic concentrations of the components and then analyzed for MHC II, CD86, and CD40 expression by flow cytometry. The effects of compounds on mitogenic, as well as allogenic T cell responses in mixed lymphocyte culture (MLR) and the release of cytokines were investigated. RESULTS At 0.1 µg/ml, reduced mean fluorescent intensity (MFI) of CD86 for thymol (80.3 ± 0.2% of untreated control) and CD40 for carvacrol (79.5 ± 0.14%) was observed (p < 0.001). Decreased mitogenic T cell proliferation by thymol [proliferation index (PI) from 0.93 ± 0.11 at 1 µg/ml to 0.42 ± 0.16 at 100 µg/ml (p < 0.01)] and carvacrol [PI from 1.08 ± 0.3 at 1 µg/ml to 0.28 ± 0.1 at 100 µg/ml (p < 0.001)] was seen. Ten micrograms/ml thymol (PI, 0.85 ± 0.04) and carvacrol (PI, 0.89 ± 0.03) inhibited allogenic T cell response (p < 0.05). Decreased IFN-γ level in MLR supernatant from 1441 ± 27.7 pg/ml in untreated cells to 944 ± 32.1 at 10 µg/ml of thymol and of carvacrol (886 ± 31.7 pg/ml) (p < 0.01) was found. IL-4 levels were decreased in the presence of both compounds (p < 0.01). CONCLUSION These data showed the suppressive effects of thymol and carvacrol on DCs maturation and function, as well as T cell responses.
Collapse
Affiliation(s)
- Zahra Amirghofran
- a Department of Immunology , Shiraz University of Medical Sciences , Shiraz , Iran
- b Autoimmune Diseases Research Center and Medicinal Natural Products Chemistry Research Center, Shiraz University of Medical Sciences , Shiraz , Iran
| | - Hossein Ahmadi
- a Department of Immunology , Shiraz University of Medical Sciences , Shiraz , Iran
- c Department of Immunology , School of Public Health, Tehran University of Medical Sciences , Tehran , Iran , and
| | | | - Fathollah Kalantar
- a Department of Immunology , Shiraz University of Medical Sciences , Shiraz , Iran
| | - Nasser Gholijani
- a Department of Immunology , Shiraz University of Medical Sciences , Shiraz , Iran
| | - Zahra Malek-Hosseini
- a Department of Immunology , Shiraz University of Medical Sciences , Shiraz , Iran
| |
Collapse
|
28
|
Farid M, Agrawal A, Fremgen D, Tao J, Chuyi H, Nesburn AB, BenMohamed L. Age-related Defects in Ocular and Nasal Mucosal Immune System and the Immunopathology of Dry Eye Disease. Ocul Immunol Inflamm 2016; 24:327-47. [PMID: 25535823 PMCID: PMC4478284 DOI: 10.3109/09273948.2014.986581] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Dry eye disease (DED) is a prevalent public health concern that affects up to 30% of adults and is particularly chronic and severe in the elderly. Two interconnected mechanisms cause DED: (1) an age-related dysfunction of lacrimal and meibomian glands, which leads to decreased tear production and/or an increase in tear evaporation; and (2) an age-related uncontrolled inflammation of the surface of the eye triggered by yet-to-be-determined internal immunopathological mechanisms, independent of tear deficiency and evaporation. In this review we summarize current knowledge on animal models that mimic both the severity and chronicity of inflammatory DED and that have been reliably used to provide insights into the immunopathological mechanisms of DED, and we provide an overview of the opportunities and limitations of the rabbit model in investigating the role of both ocular and nasal mucosal immune systems in the immunopathology of inflammatory DED and in testing novel immunotherapies aimed at delaying or reversing the uncontrolled age-related inflammatory DED.
Collapse
Affiliation(s)
- Marjan Farid
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, California, USA
| | - Anshu Agrawal
- Division of Basic and Clinical Immunology, Department of Medicine, University of California Irvine, School of Medicine, Irvine, California, USA
| | - Daniel Fremgen
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, California, USA
| | - Jeremiah Tao
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, California, USA
| | - He Chuyi
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, California, USA
| | - Anthony B. Nesburn
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, California, USA
| | - Lbachir BenMohamed
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, California, USA
- Department of Molecular Biology, University of California Irvine, School of Medicine, Irvine, California, USA
- Biochemistry and Institute for Immunology, University of California Irvine, School of Medicine, Irvine, California, USA
| |
Collapse
|
29
|
Schinnerling K, García-González P, Aguillón JC. Gene Expression Profiling of Human Monocyte-derived Dendritic Cells - Searching for Molecular Regulators of Tolerogenicity. Front Immunol 2015; 6:528. [PMID: 26539195 PMCID: PMC4609880 DOI: 10.3389/fimmu.2015.00528] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Accepted: 09/28/2015] [Indexed: 02/02/2023] Open
Abstract
The ability of dendritic cells (DCs) to initiate and modulate antigen-specific immune responses has made them attractive targets for immunotherapy. Since DC research in humans is limited by the scarcity of DC populations in the blood circulation, most of our knowledge about DC biology and function has been obtained in vitro from monocyte-derived DCs (moDCs), which can be readily generated in sufficient numbers and are able to differentiate into distinct functional subsets depending on the nature of stimulus. In particular, moDCs with tolerogenic properties (tolDCs) possess great therapeutic potential for the treatment of autoimmune diseases. Several protocols have been developed to generate tolDCs in vitro, able to reinstruct auto-reactive T cells and to promote regulatory cells. While ligands and soluble mediators, by which DCs shape immune responses, have been vastly studied, the intracellular pathways and transcriptional regulators that govern tolDC differentiation and function are poorly understood. Whole-genome microarrays and proteomics provide useful strategies to dissect the complex molecular processes that promote tolerogenicity. Only few attempts have been made to understand tolDC biology through a global view on "omics" profiles. So far, the identification of a common regulator of tolerogenicity has been hampered by the fact that each protocol, used for tolDC generation, targets distinct signaling pathways. Here, we review the progress in understanding the transcriptional regulation of moDC differentiation, with a special focus on tolDCs, and highlight candidate molecules that might be associated with DC tolerogenicity.
Collapse
Affiliation(s)
- Katina Schinnerling
- Immune Regulation and Tolerance Research Group, Programa Disciplinario de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile , Santiago , Chile ; Millennium Institute on Immunology and Immunotherapy (IMII) , Santiago , Chile
| | - Paulina García-González
- Immune Regulation and Tolerance Research Group, Programa Disciplinario de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile , Santiago , Chile ; Millennium Institute on Immunology and Immunotherapy (IMII) , Santiago , Chile
| | - Juan Carlos Aguillón
- Immune Regulation and Tolerance Research Group, Programa Disciplinario de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile , Santiago , Chile ; Millennium Institute on Immunology and Immunotherapy (IMII) , Santiago , Chile
| |
Collapse
|
30
|
Kinney SRM, Carlson L, Ser-Dolansky J, Thompson C, Shah S, Gambrah A, Xing W, Schneider SS, Mathias CB. Curcumin Ingestion Inhibits Mastocytosis and Suppresses Intestinal Anaphylaxis in a Murine Model of Food Allergy. PLoS One 2015; 10:e0132467. [PMID: 26147007 PMCID: PMC4493063 DOI: 10.1371/journal.pone.0132467] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Accepted: 06/15/2015] [Indexed: 12/31/2022] Open
Abstract
IgE antibodies and mast cells play critical roles in the establishment of allergic responses to food antigens. Curcumin, the active ingredient of the curry spice turmeric, has anti-inflammatory properties, and thus may have the capacity to regulate Th2 cells and mucosal mast cell function during allergic responses. We assessed whether curcumin ingestion during oral allergen exposure can modulate the development of food allergy using a murine model of ovalbumin (OVA)-induced intestinal anaphylaxis. Herein, we demonstrate that frequent ingestion of curcumin during oral OVA exposure inhibits the development of mastocytosis and intestinal anaphylaxis in OVA-challenged allergic mice. Intragastric (i.g.) exposure to OVA in sensitized BALB/c mice induced a robust IgE-mediated response accompanied by enhanced OVA-IgE levels, intestinal mastocytosis, elevated serum mMCP-1, and acute diarrhea. In contrast, mice exposed to oral curcumin throughout the experimental regimen appeared to be normal and did not exhibit intense allergic diarrhea or a significant enhancement of OVA-IgE and intestinal mast cell expansion and activation. Furthermore, allergic diarrhea, mast cell activation and expansion, and Th2 responses were also suppressed in mice exposed to curcumin during the OVA-challenge phase alone, despite the presence of elevated levels of OVA-IgE, suggesting that curcumin may have a direct suppressive effect on intestinal mast cell activation and reverse food allergy symptoms in allergen-sensitized individuals. This was confirmed by observations that curcumin attenuated the expansion of both adoptively transferred bone marrow-derived mast cells (BMMCs), and inhibited their survival and activation during cell culture. Finally, the suppression of intestinal anaphylaxis by curcumin was directly linked with the inhibition of NF-κB activation in curcumin-treated allergic mice, and curcumin inhibited the phosphorylation of the p65 subunit of NF-κB in BMMCs. In summary, our data demonstrates a protective role for curcumin during allergic responses to food antigens, suggesting that frequent ingestion of this spice may modulate the outcome of disease in susceptible individuals.
Collapse
Affiliation(s)
- Shannon R. M. Kinney
- Department of Pharmaceutical and Administrative Sciences, College of Pharmacy, Western New England University, Springfield, MA 01119, United States of America
| | - Logan Carlson
- Department of Pharmaceutical and Administrative Sciences, College of Pharmacy, Western New England University, Springfield, MA 01119, United States of America
| | - Jennifer Ser-Dolansky
- Pioneer Valley Life Sciences Institute, Baystate Medical Center, Springfield, MA 01199, United States of America
| | - Chelsea Thompson
- Department of Pharmaceutical and Administrative Sciences, College of Pharmacy, Western New England University, Springfield, MA 01119, United States of America
| | - Sagar Shah
- Department of Pharmaceutical and Administrative Sciences, College of Pharmacy, Western New England University, Springfield, MA 01119, United States of America
| | - Amos Gambrah
- Department of Pharmaceutical and Administrative Sciences, College of Pharmacy, Western New England University, Springfield, MA 01119, United States of America
| | - Wei Xing
- University of Massachusetts Medical School, Worcester, MA 01655, United States of America
| | - Sallie S. Schneider
- Pioneer Valley Life Sciences Institute, Baystate Medical Center, Springfield, MA 01199, United States of America
| | - Clinton B. Mathias
- Department of Pharmaceutical and Administrative Sciences, College of Pharmacy, Western New England University, Springfield, MA 01119, United States of America
- * E-mail:
| |
Collapse
|
31
|
Schinnerling K, Soto L, García-González P, Catalán D, Aguillón JC. Skewing dendritic cell differentiation towards a tolerogenic state for recovery of tolerance in rheumatoid arthritis. Autoimmun Rev 2015; 14:517-27. [PMID: 25633325 DOI: 10.1016/j.autrev.2015.01.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 01/20/2015] [Indexed: 12/14/2022]
Abstract
To date, the available options to treat autoimmune diseases such as rheumatoid arthritis (RA) include traditional corticoids and biological drugs, which are not exempt of adverse effects. The development of cellular therapies based on dendritic cells with tolerogenic functions (TolDCs) has opened a new possibility to efficiently eradicate symptoms and control the immune response in the field of autoimmunity. TolDCs are an attractive tool for antigen-specific immunotherapy to restore self-tolerance in RA and other autoimmune disorders. A promising strategy is to inject autologous self-antigen-loaded TolDCs, which are able to delete or reprogram autoreactive T cells. Different protocols for the generation of stable human TolDCs have been established and the therapeutic effect of TolDCs has been investigated in multiple rodent models of arthritis. Pilot studies in humans confirmed that TolDC application is safe, encouraging clinical trials using self-antigen-loaded TolDCs in RA patients. Although an abundance of molecular regulators of DC functions has been discovered in the last decade, no master regulator of tolerogenicity has been identified yet. Further research is required to define biomarkers or key regulators of tolerogenicity that might facilitate the induction and monitoring of TolDCs.
Collapse
Affiliation(s)
- Katina Schinnerling
- Programa Disciplinario de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile; Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Lilian Soto
- Programa Disciplinario de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile; Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Paulina García-González
- Programa Disciplinario de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile; Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Diego Catalán
- Programa Disciplinario de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile; Millennium Institute on Immunology and Immunotherapy, Santiago, Chile.
| | - Juan C Aguillón
- Programa Disciplinario de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile; Millennium Institute on Immunology and Immunotherapy, Santiago, Chile.
| |
Collapse
|
32
|
Tello Velasquez J, Watts ME, Todorovic M, Nazareth L, Pastrana E, Diaz-Nido J, Lim F, Ekberg JAK, Quinn RJ, John JAS. Low-dose curcumin stimulates proliferation, migration and phagocytic activity of olfactory ensheathing cells. PLoS One 2014; 9:e111787. [PMID: 25360677 PMCID: PMC4216124 DOI: 10.1371/journal.pone.0111787] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 09/30/2014] [Indexed: 12/22/2022] Open
Abstract
One of the promising strategies for neural repair therapies is the transplantation of olfactory ensheathing cells (OECs) which are the glial cells of the olfactory system. We evaluated the effects of curcumin on the behaviour of mouse OECs to determine if it could be of use to further enhance the therapeutic potential of OECs. Curcumin, a natural polyphenol compound found in the spice turmeric, is known for its anti-cancer properties at doses over 10 µM, and often at 50 µM, and it exerts its effects on cancer cells in part by activation of MAP kinases. In contrast, we found that low-dose curcumin (0.5 µM) applied to OECs strikingly modulated the dynamic morphology, increased the rate of migration by up to 4-fold, and promoted significant proliferation of the OECs. Most dramatically, low-dose curcumin stimulated a 10-fold increase in the phagocytic activity of OECs. All of these potently stimulated behavioural characteristics of OECs are favourable for neural repair therapies. Importantly, low-dose curcumin gave a transient activation of p38 kinases, which is in contrast to the high dose curcumin effects on cancer cells in which these MAP kinases tend to undergo prolonged activation. Low-dose curcumin mediated effects on OECs demonstrate cell-type specific stimulation of p38 and ERK kinases. These results constitute the first evidence that low-dose curcumin can modulate the behaviour of olfactory glia into a phenotype potentially more favourable for neural repair and thereby improve the therapeutic use of OECs for neural repair therapies.
Collapse
Affiliation(s)
| | - Michelle E. Watts
- Eskitis Institute for Drug Discovery, Griffith University, Brisbane, Australia
| | - Michael Todorovic
- Eskitis Institute for Drug Discovery, Griffith University, Brisbane, Australia
| | - Lynnmaria Nazareth
- Eskitis Institute for Drug Discovery, Griffith University, Brisbane, Australia
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, Australia
| | - Erika Pastrana
- Nature Communications, New York, New York, United States of America
| | | | - Filip Lim
- Universidad Autónoma de Madrid, Madrid, Spain
| | - Jenny A. K. Ekberg
- Eskitis Institute for Drug Discovery, Griffith University, Brisbane, Australia
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, Australia
| | - Ronald J. Quinn
- Eskitis Institute for Drug Discovery, Griffith University, Brisbane, Australia
| | - James A. St John
- Eskitis Institute for Drug Discovery, Griffith University, Brisbane, Australia
- * E-mail:
| |
Collapse
|
33
|
Ebadi P, Karimi MH, Amirghofran Z. Plant components for immune modulation targeting dendritic cells: implication for therapy. Immunotherapy 2014; 6:1037-53. [DOI: 10.2217/imt.14.77] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Medicinal plant utilization is as old as human life. There are thousands of herbs consumed for medicinal purposes all over the world, especially in east. Their value has not decreased over time and many modern pharmaceuticals have originated from traditional medicinal plants. Studying the reason for their influence is an attractive field of medicine. Among various types of herbs, some function via their immunomodulatory effects. Experiments have shown the regulatory influences of several plants on each type of immune cell, including T cells, B cells, dendritic cells (DCs), macrophages and NK cells. Because of the prominent role of DCs in antigen presentation as the major APC, this review summarizes the immunomodulatory effects of some plants performed through DC effects.
Collapse
Affiliation(s)
- Padideh Ebadi
- Islamic Azad University, Kazerun Branch, Kazerun, Iran
| | | | - Zahra Amirghofran
- Immunology Departments, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
34
|
Castro CN, Barcala Tabarrozzi AE, Winnewisser J, Gimeno ML, Antunica Noguerol M, Liberman AC, Paz DA, Dewey RA, Perone MJ. Curcumin ameliorates autoimmune diabetes. Evidence in accelerated murine models of type 1 diabetes. Clin Exp Immunol 2014; 177:149-60. [PMID: 24628444 DOI: 10.1111/cei.12322] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2014] [Indexed: 12/25/2022] Open
Abstract
Type 1 diabetes (T1DM) is a T cell-mediated autoimmune disease that selectively destroys pancreatic β cells. The only possible cure for T1DM is to control autoimmunity against β cell-specific antigens. We explored whether the natural compound curcumin, with anti-oxidant and anti-inflammatory activities, might down-regulate the T cell response that destroys pancreatic β cells to improve disease outcome in autoimmune diabetes. We employed two accelerated autoimmune diabetes models: (i) cyclophosphamide (CYP) administration to non-obese diabetic (NOD) mice and (ii) adoptive transfer of diabetogenic splenocytes into NODscid mice. Curcumin treatment led to significant delay of disease onset, and in some instances prevented autoimmune diabetes by inhibiting pancreatic leucocyte infiltration and preserving insulin-expressing cells. To investigate the mechanisms of protection we studied the effect of curcumin on key immune cell populations involved in the pathogenesis of the disease. Curcumin modulates the T lymphocyte response impairing proliferation and interferon (IFN)-γ production through modulation of T-box expressed in T cells (T-bet), a key transcription factor for proinflammatory T helper type 1 (Th1) lymphocyte differentiation, both at the transcriptional and translational levels. Also, curcumin reduces nuclear factor (NF)-κB activation in T cell receptor (TCR)-stimulated NOD lymphocytes. In addition, curcumin impairs the T cell stimulatory function of dendritic cells with reduced secretion of proinflammatory cytokines and nitric oxide (NO) and low surface expression of co-stimulatory molecules, leading to an overall diminished antigen-presenting cell activity. These in-vitro effects correlated with ex-vivo analysis of cells obtained from curcumin-treated mice during the course of autoimmune diabetes. These findings reveal an effective therapeutic effect of curcumin in autoimmune diabetes by its actions on key immune cells responsible for β cell death.
Collapse
Affiliation(s)
- C N Castro
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA), CONICET - Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Lv J, Shao Q, Wang H, Shi H, Wang T, Gao W, Song B, Zheng G, Kong B, Qu X. Effects and mechanisms of curcumin and basil polysaccharide on the invasion of SKOV3 cells and dendritic cells. Mol Med Rep 2013; 8:1580-6. [PMID: 24065177 DOI: 10.3892/mmr.2013.1695] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2013] [Accepted: 09/02/2013] [Indexed: 11/06/2022] Open
Abstract
In the present study, a polysaccharide extract was obtained from Ocimum basilicum (basil polysaccharide, BPS) and the effects of curcumin and BPS on the invasion activity of the SKOV3 ovarian cancer cells and human monocyte-derived dendritic cells (DCs) were investigated. SKOV3 cells and immature or mature DCs were treated with 50 µM curcumin or 100 µg/ml BPS. A transwell invasion assay demonstrated that curcumin and BPS differentially regulate the invasion of SKOV3 cells and DCs. Curcumin significantly decreased the invasion of SKOV3 cells and immature and mature DCs, while BPS only decreased SKOV3 cell invasion. Osteopontin (OPN) mRNA and protein expression were significantly reduced in curcumin and BPS-treated SKOV3 cells and curcumin-treated DCs. Furthermore, flow cytometry showed that curcumin significantly inhibited the surface expression of CD44 in SKOV3 cells and DCs, while BPS had a minimal effect on CD44 expression. Matrix metallopeptidase-9 (MMP-9) mRNA and protein expression were also reduced in all curcumin-treated cells and BPS-treated SKOV3 cells. The results indicated that curcumin and BPS regulated invasion of SKOV3 cells and DCs by distinctly downregulating OPN, CD44 and MMP-9 expression. Therefore, Curcumin and BPS may be suitable candidates for DC-based vaccines for ovarian cancer immunotherapy.
Collapse
Affiliation(s)
- Jing Lv
- Institute of Basic Medical Sciences, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Kim G, Jang MS, Son YM, Seo MJ, Ji SY, Han SH, Jung ID, Park YM, Jung HJ, Yun CH. Curcumin inhibits CD4(+) T cell activation, but augments CD69 expression and TGF-β1-mediated generation of regulatory T cells at late phase. PLoS One 2013; 8:e62300. [PMID: 23658623 PMCID: PMC3637266 DOI: 10.1371/journal.pone.0062300] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2011] [Accepted: 03/21/2013] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Curcumin is a promising candidate for a natural medicinal agent to treat chronic inflammatory diseases. Although CD4(+) T cells have been implicated in the pathogenesis of chronic inflammation, whether curcumin directly regulates CD4(+) T cells has not been definitively established. Here, we showed curcumin-mediated regulation of CD2/CD3/CD28-initiated CD4(+) T cell activation in vitro. METHODOLOGY/PRINCIPAL FINDINGS Primary human CD4(+) T cells were stimulated with anti-CD2/CD3/CD28 antibody-coated beads as an in vitro surrogate system for antigen presenting cell-T cell interaction and treated with curcumin. We found that curcumin suppresses CD2/CD3/CD28-initiated CD4(+) T cell activation by inhibiting cell proliferation, differentiation and cytokine production. On the other hand, curcumin attenuated the spontaneous decline of CD69 expression and indirectly increased expression of CCR7, L-selectin and Transforming growth factor-β1 (TGF-β1) at the late phase of CD2/CD3/CD28-initiated T cell activation. Curcumin-mediated up-regulation of CD69 at late phase was associated with ERK1/2 signaling. Furthermore, TGF-β1 was involved in curcumin-mediated regulation of T cell activation and late-phase generation of regulatory T cells. CONCLUSIONS/SIGNIFICANCE Curcumin not merely blocks, but regulates CD2/CD3/CD28-initiated CD4(+) T cell activation by augmenting CD69, CCR7, L-selectin and TGF-β1 expression followed by regulatory T cell generation. These results suggest that curcumin could directly reduce T cell-dependent inflammatory stress by modulating CD4(+) T cell activation at multiple levels.
Collapse
MESH Headings
- Anti-Inflammatory Agents, Non-Steroidal/pharmacology
- Antibodies/pharmacology
- Antigens, CD/genetics
- Antigens, CD/immunology
- Antigens, Differentiation, T-Lymphocyte/genetics
- Antigens, Differentiation, T-Lymphocyte/immunology
- CD4-Positive T-Lymphocytes/cytology
- CD4-Positive T-Lymphocytes/drug effects
- CD4-Positive T-Lymphocytes/immunology
- Cell Differentiation/drug effects
- Cell Proliferation/drug effects
- Curcumin/pharmacology
- Gene Expression Regulation/drug effects
- Humans
- L-Selectin/genetics
- L-Selectin/immunology
- Lectins, C-Type/agonists
- Lectins, C-Type/genetics
- Lectins, C-Type/immunology
- Lymphocyte Activation/drug effects
- Mitogen-Activated Protein Kinase 1/genetics
- Mitogen-Activated Protein Kinase 1/immunology
- Mitogen-Activated Protein Kinase 3/genetics
- Mitogen-Activated Protein Kinase 3/immunology
- Primary Cell Culture
- Receptors, CCR7/genetics
- Receptors, CCR7/immunology
- Signal Transduction
- T-Lymphocytes, Regulatory/cytology
- T-Lymphocytes, Regulatory/drug effects
- T-Lymphocytes, Regulatory/immunology
- Transforming Growth Factor beta1/pharmacology
Collapse
Affiliation(s)
- Girak Kim
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Mi Seon Jang
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Young Min Son
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Min Ji Seo
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Sang Yun Ji
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- National Institute of Animal Science, Suwon, Gyeonggi-do, Republic of Korea
| | - Seung Hyun Han
- Department of Oral Microbiology & Immunology, BK21 Program, and Dental Research Institute School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - In Duk Jung
- Konkuk University College of Medicine, Seoul, Republic of Korea
| | - Yeong-Min Park
- Konkuk University College of Medicine, Seoul, Republic of Korea
| | - Hyun Jung Jung
- National Institute of Animal Science, Suwon, Gyeonggi-do, Republic of Korea
| | - Cheol-Heui Yun
- Center for Food and Bioconvergence, Seoul National University, Seoul, Republic of Korea
- World Class University Biomodulation Major, Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
37
|
Maradana MR, Thomas R, O'Sullivan BJ. Targeted delivery of curcumin for treating type 2 diabetes. Mol Nutr Food Res 2013; 57:1550-6. [PMID: 23495213 DOI: 10.1002/mnfr.201200791] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 01/22/2013] [Accepted: 01/23/2013] [Indexed: 01/04/2023]
Abstract
Type 2 diabetes is a chronic condition in which cells have reduced insulin signalling, leading to hyperglycemia and long-term complications, including heart, kidney and liver disease. Macrophages activated by dying or stressed cells, induce the transcription factor nuclear factor kappa-B leading to the production of pro-inflammatory cytokines including TNF and IL-6. These inflammatory macrophages in liver and adipose tissue promote insulin resistance, and medications which reduce inflammation and enhance insulin signalling improve glucose control. Curcumin is an anti-oxidant and nuclear factor kappa-B inhibitor derived from turmeric. A number of studies have shown that dietary curcumin reduces inflammation and delays or prevents obesity-induced insulin resistance and associated complications, including atherosclerosis and immune mediate liver disease. Unfortunately dietary curcumin is poorly absorbed by the digestive system and undergoes glucuronidation and excretion rather than being released into the serum and systemically distributed. This confounds understanding of how dietary curcumin exerts its beneficial effects in type 2 diabetes and associated diseases. New improved methods of delivering curcumin are being developed including nanoparticles and lipid/liposome formulations that increase absorption and bioavailability of curcumin. Development and refinement of these technologies will enable cell-directed targeting of curcumin and improved therapeutic outcome.
Collapse
Affiliation(s)
- Muralidhara Rao Maradana
- Diamantina Institute for Cancer, Immunology and Metabolic Medicine, University of Queensland, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | | | | |
Collapse
|
38
|
Paulucci VP, Couto RO, Teixeira CC, Freitas LAP. Optimization of the extraction of curcumin from Curcuma longa rhizomes. REVISTA BRASILEIRA DE FARMACOGNOSIA-BRAZILIAN JOURNAL OF PHARMACOGNOSY 2013. [DOI: 10.1590/s0102-695x2012005000117] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
39
|
Vermorken A, Zhu J, Van de Ven W, Andrès E. Curcumin for monoclonal gammopathies. What can we hope for, what should we fear? Crit Rev Oncol Hematol 2012; 84:350-60. [DOI: 10.1016/j.critrevonc.2012.04.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Revised: 04/10/2012] [Accepted: 04/25/2012] [Indexed: 01/27/2023] Open
|
40
|
Rogers NM, Stephenson MD, Kitching AR, Horowitz JD, Coates PTH. Amelioration of renal ischaemia-reperfusion injury by liposomal delivery of curcumin to renal tubular epithelial and antigen-presenting cells. Br J Pharmacol 2012; 166:194-209. [PMID: 21745189 DOI: 10.1111/j.1476-5381.2011.01590.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND AND PURPOSE Renal ischaemia-reperfusion (IR) injury is an inevitable consequence of renal transplantation, causing significant graft injury, increasing the risk of rejection and contributing to poor long-term graft outcome. Renal injury is mediated by cytokine and chemokine synthesis, inflammation and oxidative stress resulting from activation of the NF-κB pathway. EXPERIMENTAL APPROACH We utilized liposomal incorporation of a potent inhibitor of the NF-κB pathway, curcumin, to target delivery to renal tubular epithelial and antigen-presenting cells. Liposomes containing curcumin were administered before bilateral renal ischaemia in C57/B6 mice, with subsequent reperfusion. Renal function was assessed from plasma levels of urea and creatinine, 4 and 24 h after reperfusion. Renal tissue was examined for NF-κB activity and oxidative stress (histology, immunostaining) and for apoptosis (TUNEL). Cytokines and chemokines were measured by RT-PCR and Western blotting. KEY RESULTS Liposomal curcumin significantly improved serum creatinine, reduced histological injury and cellular apoptosis and lowered Toll-like receptor-4, heat shock protein-70 and TNF-α mRNA expression. Liposomal curcumin also reduced neutrophil infiltration and diminished inflammatory chemokine expression. Curcumin liposomes reduced intracellular superoxide generation and increased superoxide dismutase levels, decreased inducible NOS mRNA expression and 3-nitrotyrosine staining consistent with limitations in nitrosative stress and inhibited renal tubular mRNA and protein expression of thioredoxin-interacting protein. These actions of curcumin were mediated by inhibition of NF-κB, MAPK and phospho-S6 ribosomal protein. CONCLUSIONS AND IMPLICATIONS Liposomal delivery of curcumin promoted effective, targeted delivery of this non-toxic compound that provided cytoprotection via anti-inflammatory and multiple antioxidant mechanisms following renal IR injury.
Collapse
Affiliation(s)
- N M Rogers
- Transplant Immunology Laboratory, Hanson Institute, Adelaide, SA, Australia
| | | | | | | | | |
Collapse
|
41
|
Zheng YY, Viswanathan B, Kesarwani P, Mehrotra S. Dietary agents in cancer prevention: an immunological perspective. Photochem Photobiol 2012; 88:1083-98. [PMID: 22372381 DOI: 10.1111/j.1751-1097.2012.01128.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Skin cancer is the most common form of cancer diagnosed in the United States. Exposure to solar ultraviolet (UV) radiations is believed to be the primary cause for skin cancer. Excessive UV radiation can lead to genetic mutations and damage in the skin's cellular DNA that in turn can lead to skin cancer. Lately, chemoprevention by administering naturally occurring non-toxic dietary compounds has proven to be a potential strategy to prevent the occurrence of tumors. Attention has been drawn toward several natural dietary agents such as resveratrol, one of the major components found in grapes, red wines, berries and peanuts, proanthocyanidins from grape seeds, (-)-epigallocatechin-3-gallate from green tea, etc. However, the effect these dietary agents have on the immune system and the immunological mechanisms involved therein are still being explored. In this review, we shall focus on the role of key chemopreventive agents on various immune cells and discuss their potential as antitumor agents with an immunological perspective.
Collapse
Affiliation(s)
- Ya Ying Zheng
- Department of Surgery, Medical University of South Carolina, Charleston, SC, USA
| | | | | | | |
Collapse
|
42
|
Rojas-Canales D, Krishnan R, Jessup CF, Coates PT. Early exposure of interferon-γ inhibits signal transducer and activator of transcription-6 signalling and nuclear factor κB activation in a short-term monocyte-derived dendritic cell culture promoting 'FAST' regulatory dendritic cells. Clin Exp Immunol 2012; 167:447-58. [PMID: 22288588 DOI: 10.1111/j.1365-2249.2011.04537.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Interferon (IFN)-γ is a cytokine with immunomodulatory properties, which has been shown previously to enhance the generation of tolerogenic dendritic cells (DC) when administered early ex vivo in 7-day monocyte-derived DC culture. To generate tolerogenic DC rapidly within 48 h, human monocytes were cultured for 24 h with interleukin (IL)-4 and granulocyte-macrophage colony-stimulating factor (GM-CSF) in the presence (IFN-γ-DC) or absence of IFN-γ (500 U/ml) (UT-DC). DC were matured for 24 h with TNF-α and prostaglandin E(2) (PGE(2) ). DC phenotype, signal transducer and activator of transcription-6 (STAT-6) phosphorylation and promotion of CD4(+) CD25(+) CD127(neg/low) forkhead box P3 (FoxP3)(hi) T cells were analysed by flow cytometry. DC nuclear factor (NF)-κB transcription factor reticuloendotheliosis viral oncogene homologue B (RELB) and IL-12p70 protein expression were also determined. Phenotypically, IFN-γ-DC displayed reduced DC maturation marker CD83 by 62% and co-stimulation molecules CD80 (26%) and CD86 (8%). IFN-γ treatment of monocytes inhibited intracellular STAT6, RELB nuclear translocation and IL-12p70 production. IFN-γ-DC increased the proportion of CD4(+) CD25(+) CD127(neg/low) foxp3(hi) T cells compared to UT-DC from 12 to 23%. IFN-γ-DC primed T cells inhibited antigen-specific, autologous naive T cell proliferation by 70% at a 1:1 naive T cells to IFN-γ-DC primed T cell ratio in suppression assays. In addition, we examined the reported paradoxical proinflammatory effects of IFN-γ and confirmed in this system that late IFN-γ exposure does not inhibit DC maturation marker expression. Early IFN-γ exposure is critical in promoting the generation of regulatory DC. Early IFN-γ modulated DC generated in 48 h are maturation arrested and promote the generation of antigen-specific regulatory T cells, which may be clinically applicable as a novel cellular therapy for allograft rejection.
Collapse
Affiliation(s)
- D Rojas-Canales
- Renal and Transplantation Immunobiology Laboratory, Hanson Institute, Royal Adelaide Hospital, Adelaide, SA, Australia
| | | | | | | |
Collapse
|
43
|
Pharmacological manipulation of dendritic cells in the pursuit of transplantation tolerance. Curr Opin Organ Transplant 2011; 16:372-8. [DOI: 10.1097/mot.0b013e3283484b42] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|