1
|
Ghiboub M, Bell M, Sinkeviciute D, Prinjha RK, de Winther MPJ, Harker NR, Tough DF, de Jonge WJ. The Epigenetic Reader Protein SP140 Regulates Dendritic Cell Activation, Maturation and Tolerogenic Potential. Curr Issues Mol Biol 2023; 45:4228-4245. [PMID: 37232738 DOI: 10.3390/cimb45050269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/04/2023] [Accepted: 05/08/2023] [Indexed: 05/27/2023] Open
Abstract
SP140 is an epigenetic reader protein expressed predominantly in immune cells. GWAS studies have shown an association between SP140 single nucleotide polymorphisms (SNPs) and diverse autoimmune and inflammatory diseases, suggesting a possible pathogenic role for SP140 in immune-mediated diseases. We previously demonstrated that treatment of human macrophages with the novel selective inhibitor of the SP140 protein (GSK761) reduced the expression of endotoxin-induced cytokines, implicating a role of SP140 in the function of inflammatory macrophages. In this study, we investigated the effects of GSK761 on in vitro human dendritic cell (DC) differentiation and maturation, assessing the expression of cytokines and co-stimulatory molecules and their capacity to stimulate T-cell activation and induce phenotypic changes. In DCs, lipopolysaccharide (LPS) stimulation induced an increase in SP140 expression and its recruitment to transcription start sites (TSS) of pro-inflammatory cytokine genes. Moreover, LPS-induced cytokines such as TNF, IL-6, and IL-1β were reduced in GSK761- or SP140 siRNA- treated DCs. Although GSK761 did not significantly affect the expression of surface markers that define the differentiation of CD14+ monocytes into immature DCs (iDCs), subsequent maturation of iDCs to mature DCs was significantly inhibited. GSK761 strongly reduced expression of the maturation marker CD83, the co-stimulatory molecules CD80 and CD86, and the lipid-antigen presentation molecule CD1b. Finally, when the ability of DCs to stimulate recall T-cell responses by vaccine-specific T cells was assessed, T cells stimulated by GSK761-treated DCs showed reduced TBX21 and RORA expression and increased FOXP3 expression, indicating a preferential generation of regulatory T cells. Overall, this study suggests that SP140 inhibition enhances the tolerogenic properties of DCs, supporting the rationale of targeting SP140 in autoimmune and inflammatory diseases where DC-mediated inflammatory responses contribute to disease pathogenesis.
Collapse
Affiliation(s)
- Mohammed Ghiboub
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology, Endocrinology Metabolism, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, 1105 BK Amsterdam, The Netherlands
- Immunology Research Unit, Medicines Research Centre, GlaxoSmithKline, Stevenage SG1 2NY, UK
| | - Matthew Bell
- Immunology Research Unit, Medicines Research Centre, GlaxoSmithKline, Stevenage SG1 2NY, UK
| | - Dovile Sinkeviciute
- Immunology Research Unit, Medicines Research Centre, GlaxoSmithKline, Stevenage SG1 2NY, UK
| | - Rab K Prinjha
- Immunology Research Unit, Medicines Research Centre, GlaxoSmithKline, Stevenage SG1 2NY, UK
| | - Menno P J de Winther
- Department of Medical Biochemistry, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Department of Medicine, Institute for Cardiovascular Prevention (IPEK), 80336 Munich, Germany
| | - Nicola R Harker
- Immunology Research Unit, Medicines Research Centre, GlaxoSmithKline, Stevenage SG1 2NY, UK
| | - David F Tough
- Immunology Research Unit, Medicines Research Centre, GlaxoSmithKline, Stevenage SG1 2NY, UK
| | - Wouter J de Jonge
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology, Endocrinology Metabolism, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, 1105 BK Amsterdam, The Netherlands
- Department of Surgery, University of Bonn, 53127 Bonn, Germany
| |
Collapse
|
2
|
Schrøder M, Melum GR, Landsverk OJB, Bujko A, Yaqub S, Gran E, Aamodt H, Bækkevold ES, Jahnsen FL, Richter L. CD1c-Expression by Monocytes - Implications for the Use of Commercial CD1c+ Dendritic Cell Isolation Kits. PLoS One 2016; 11:e0157387. [PMID: 27311059 PMCID: PMC4911075 DOI: 10.1371/journal.pone.0157387] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 05/27/2016] [Indexed: 12/24/2022] Open
Abstract
Conventional dendritic cells (cDCs) comprise a heterogeneous population of cells that are important regulators of immunity and homeostasis. CD1c+ cDCs are present in human blood and tissues, and found to efficiently activate naïve CD4+ T cells. While CD1c is thought to specifically identify this subset of human cDCs, we show here that also classical and intermediate monocytes express CD1c. Accordingly, the commercial CD1c (BDCA-1)+ Dendritic Cell Isolation Kit isolates two distinct cell populations from blood: CD1c+CD14− cDCs and CD1c+CD14+ monocytes. CD1c+ cDCs and CD1c+ monocytes exhibited strikingly different properties, including their differential regulation of surface marker expression, their levels of cytokine production, and their ability to stimulate naïve CD4+ T cells. These results demonstrate that a commercial CD1c (BDCA-1)+ Dendritic Cell Isolation Kit isolates two functionally different cell populations, which has important implications for the interpretation of previously generated data using this kit to characterize CD1c+ cDCs.
Collapse
Affiliation(s)
- Martine Schrøder
- Department of Pathology, Oslo University Hospital, Oslo, Norway
- Centre for Immune Regulation, University of Oslo, Oslo, Norway
| | | | - Ole J. B. Landsverk
- Department of Pathology, Oslo University Hospital, Oslo, Norway
- Centre for Immune Regulation, University of Oslo, Oslo, Norway
| | - Anna Bujko
- Department of Pathology, Oslo University Hospital, Oslo, Norway
- Centre for Immune Regulation, University of Oslo, Oslo, Norway
| | - Sheraz Yaqub
- Department of Gastrointestinal Surgery, Oslo University Hospital, Oslo, Norway
| | - Einar Gran
- Department of Otolaryngology, Lovisenberg Diakonale Hospital, Oslo, Norway
| | - Henrik Aamodt
- Department of Cardiothoracic Surgery, Oslo University Hospital, Oslo, Norway
- Tumor Immunology Group, Department of Pathology, Oslo University Hospital, Oslo, Norway
| | - Espen S. Bækkevold
- Department of Pathology, Oslo University Hospital, Oslo, Norway
- Centre for Immune Regulation, University of Oslo, Oslo, Norway
| | - Frode L. Jahnsen
- Department of Pathology, Oslo University Hospital, Oslo, Norway
- Centre for Immune Regulation, University of Oslo, Oslo, Norway
| | - Lisa Richter
- Department of Pathology, Oslo University Hospital, Oslo, Norway
- Centre for Immune Regulation, University of Oslo, Oslo, Norway
- * E-mail:
| |
Collapse
|