1
|
Balinisteanu I, Caba L, Florea A, Popescu R, Florea L, Ungureanu MC, Leustean L, Gorduza EV, Preda C. Unlocking the Genetic Secrets of Acromegaly: Exploring the Role of Genetics in a Rare Disorder. Curr Issues Mol Biol 2024; 46:9093-9121. [PMID: 39194755 DOI: 10.3390/cimb46080538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/14/2024] [Accepted: 08/18/2024] [Indexed: 08/29/2024] Open
Abstract
Acromegaly is a rare endocrine disorder characterized by the excessive production of growth hormone (GH) in adulthood. Currently, it is understood that certain pituitary neuroendocrine tumors (PitNETs) exhibit a hereditary predisposition. These tumors' genetic patterns fall into two categories: isolated and syndromic tumors. The isolated forms are characterized by molecular defects that predispose exclusively to PitNETs, including familial isolated pituitary adenomas (FIPAs) and sporadic genetic defects not characterized by hereditary predisposition. All the categories involve either germline or somatic mutations, or both, each associated with varying levels of penetrance and different phenotypes. This highlights the importance of genetic testing and the need for a more comprehensive view of the whole disease. Despite the availability of multiple treatment options, diagnosis often occurs after several years, and management is still difficult. Early detection and intervention are crucial for preventing complications and enhancing the quality of life for affected individuals. This review aims to elucidate the molecular, clinical, and histological characteristics of GH-secreting PitNETs, providing insights into their prevalence, treatment nuances, and the benefits of genetic testing for each type of genetic disorder associated with acromegaly.
Collapse
Affiliation(s)
- Ioana Balinisteanu
- Endocrinology Department, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Lavinia Caba
- Medical Genetics Department, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Andreea Florea
- Medical Genetics Department, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Roxana Popescu
- Medical Genetics Department, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Laura Florea
- Nephrology-Internal Medicine Department, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Maria-Christina Ungureanu
- Endocrinology Department, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Letitia Leustean
- Endocrinology Department, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Eusebiu Vlad Gorduza
- Medical Genetics Department, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Cristina Preda
- Endocrinology Department, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| |
Collapse
|
2
|
Gedvilaite-Vaicechauskiene G, Kriauciuniene L, Tamasauskas A, Rovite V, Mandrika I, Wu SN, Huang CW, Poskiene L, Liutkeviciene R. Pituitary Adenoma: SSTR2 rs2236750, SSTR5 rs34037914, and AIP rs267606574 Genetic Variants, Serum Levels, and Ki-67 Labeling Index Associations. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1252. [PMID: 39202532 PMCID: PMC11356775 DOI: 10.3390/medicina60081252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 07/27/2024] [Accepted: 07/29/2024] [Indexed: 09/03/2024]
Abstract
Background and Objectives: This study explores the complex pathogenesis of pituitary adenomas (PAs), prevalent intracranial tumors in the pituitary gland. Despite their generally benign nature, PAs exhibit a diverse clinical spectrum involving hormone hypersecretion and varying invasiveness, hinting at multifaceted molecular mechanisms and abnormalities in tumorigenesis and gene regulation. Materials and Methods: The investigation focuses on the Ki-67 labeling index, SSTR2 rs2236750, SSTR5 rs34037914, and AIP rs267606574 polymorphisms, alongside serum levels of SSTR2, SSTR5, and AIP, to discern their association with PAs. The Ki-67 labeling index was assessed using immunohistochemical analysis with the monoclonal antibody clone SP6, representing the percentage of tumor cells showing positive staining. Genotyping was performed via real-time polymerase chain reaction, and serum levels were analyzed using ELISA. The study included 128 PA patients and 272 reference group subjects. Results: The results derived from binary logistic regression analysis revealed an intriguing correlation between the SSTR2 rs2236750 AG genotype and approximately a 1.6-fold increased likelihood of PA occurrence. When analyzing SSTR5 rs34037914, statistically significant differences were found between Micro-PA and the reference group (p = 0.022). Additionally, the SSTR5 rs34037914 TT genotype, compared with CC + CT, under the most robust genetic model (selected based on the lowest AIC value), was associated with a 12-fold increased odds of Micro-PA occurrence. However, it is noteworthy that after applying Bonferroni correction, these findings did not retain statistical significance. Conclusions: Consequently, while this study hinted at a potential link between SSTR2 rs2236750 and pituitary adenoma development, as well as a potential link between SSTR5 rs34037914 and Micro-PA development, it underscored the need for further analysis involving a larger cohort to robustly validate these findings.
Collapse
Affiliation(s)
- Greta Gedvilaite-Vaicechauskiene
- Neuroscience Institute, Medical Academy, Lithuanian University of Health Sciences, Eiveniu 2, 50161 Kaunas, Lithuania; (G.G.-V.); (L.K.); (A.T.)
| | - Loresa Kriauciuniene
- Neuroscience Institute, Medical Academy, Lithuanian University of Health Sciences, Eiveniu 2, 50161 Kaunas, Lithuania; (G.G.-V.); (L.K.); (A.T.)
| | - Arimantas Tamasauskas
- Neuroscience Institute, Medical Academy, Lithuanian University of Health Sciences, Eiveniu 2, 50161 Kaunas, Lithuania; (G.G.-V.); (L.K.); (A.T.)
| | - Vita Rovite
- Latvian Biomedical Research and Study Centre (BMC), LV-1067 Rīga, Latvia; (V.R.); (I.M.)
| | - Ilona Mandrika
- Latvian Biomedical Research and Study Centre (BMC), LV-1067 Rīga, Latvia; (V.R.); (I.M.)
| | - Sheng-Nan Wu
- Department of Neurology, National Cheng Kung University Hospital, Tainan City 704, Taiwan; (S.-N.W.); (C.-W.H.)
| | - Chin-Wei Huang
- Department of Neurology, National Cheng Kung University Hospital, Tainan City 704, Taiwan; (S.-N.W.); (C.-W.H.)
| | - Lina Poskiene
- Department of Pathology, Medical Academy, Lithuanian University of Health Sciences, 50161 Kaunas, Lithuania;
| | - Rasa Liutkeviciene
- Neuroscience Institute, Medical Academy, Lithuanian University of Health Sciences, Eiveniu 2, 50161 Kaunas, Lithuania; (G.G.-V.); (L.K.); (A.T.)
| |
Collapse
|
3
|
Korbonits M, Blair JC, Boguslawska A, Ayuk J, Davies JH, Druce MR, Evanson J, Flanagan D, Glynn N, Higham CE, Jacques TS, Sinha S, Simmons I, Thorp N, Swords FM, Storr HL, Spoudeas HA. Consensus guideline for the diagnosis and management of pituitary adenomas in childhood and adolescence: Part 1, general recommendations. Nat Rev Endocrinol 2024; 20:278-289. [PMID: 38336897 DOI: 10.1038/s41574-023-00948-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/19/2023] [Indexed: 02/12/2024]
Abstract
Tumours of the anterior part of the pituitary gland represent just 1% of all childhood (aged <15 years) intracranial neoplasms, yet they can confer high morbidity and little evidence and guidance is in place for their management. Between 2014 and 2022, a multidisciplinary expert group systematically developed the first comprehensive clinical practice consensus guideline for children and young people under the age 19 years (hereafter referred to as CYP) presenting with a suspected pituitary adenoma to inform specialist care and improve health outcomes. Through robust literature searches and a Delphi consensus exercise with an international Delphi consensus panel of experts, the available scientific evidence and expert opinions were consolidated into 74 recommendations. Part 1 of this consensus guideline includes 17 pragmatic management recommendations related to clinical care, neuroimaging, visual assessment, histopathology, genetics, pituitary surgery and radiotherapy. While in many aspects the care for CYP is similar to that of adults, key differences exist, particularly in aetiology and presentation. CYP with suspected pituitary adenomas require careful clinical examination, appropriate hormonal work-up, dedicated pituitary imaging and visual assessment. Consideration should be given to the potential for syndromic disease and genetic assessment. Multidisciplinary discussion at both the local and national levels can be key for management. Surgery should be performed in specialist centres. The collection of outcome data on novel modalities of medical treatment, surgical intervention and radiotherapy is essential for optimal future treatment.
Collapse
Affiliation(s)
- Márta Korbonits
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
| | | | - Anna Boguslawska
- Department of Endocrinology, Jagiellonian University Medical College, Krakow, Poland
| | - John Ayuk
- University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Justin H Davies
- University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Maralyn R Druce
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Jane Evanson
- Neuroradiology, Barts Health NHS Trust, London, UK
| | | | - Nigel Glynn
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | | | - Thomas S Jacques
- Great Ormond Street Institute of Child Health, University College London, London, UK
- Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Saurabh Sinha
- Sheffield Children's and Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Ian Simmons
- The Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Nicky Thorp
- The Christie NHS Foundation Trust, Manchester, UK
| | | | - Helen L Storr
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Helen A Spoudeas
- Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
- University College London Hospitals NHS Foundation Trust, London, UK
| |
Collapse
|
4
|
Ramírez-Rentería C, Hernández-Ramírez LC. Genetic diagnosis in acromegaly and gigantism: From research to clinical practice. Best Pract Res Clin Endocrinol Metab 2024; 38:101892. [PMID: 38521632 DOI: 10.1016/j.beem.2024.101892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/25/2024]
Abstract
It is usually considered that only 5% of all pituitary neuroendocrine tumours are due to inheritable causes. Since this estimate was reported, however, multiple genetic defects driving syndromic and nonsyndromic somatotrophinomas have been unveiled. This heterogeneous genetic background results in overlapping phenotypes of GH excess. Genetic tests should be part of the approach to patients with acromegaly and gigantism because they can refine the clinical diagnoses, opening the possibility to tailor the clinical conduct to each patient. Even more, genetic testing and clinical screening of at-risk individuals have a positive impact on disease outcomes, by allowing for the timely detection and treatment of somatotrophinomas at early stages. Future research should focus on determining the actual frequency of novel genetic drivers of somatotrophinomas in the general population, developing up-to-date disease-specific multi-gene panels for clinical use, and finding strategies to improve access to modern genetic testing worldwide.
Collapse
Affiliation(s)
- Claudia Ramírez-Rentería
- Unidad de Investigación Médica en Enfermedades Endocrinas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Laura C Hernández-Ramírez
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México, e Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico.
| |
Collapse
|
5
|
Boukerrouni A, Cuny T, Anjou T, Raingeard I, Ferrière A, Grunenwald S, Maïza JC, Marquant E, Sahakian N, Fodil-Cherif S, Salle L, Niccoli P, Randrianaivo H, Sonnet E, Chevalier N, Thuillier P, Vezzosi D, Reynaud R, Dufour H, Brue T, Tabarin A, Delemer B, Kerlan V, Castinetti F, Barlier A, Romanet P. Genetic testing in prolactinomas: a cohort study. Eur J Endocrinol 2023; 189:567-574. [PMID: 37956455 DOI: 10.1093/ejendo/lvad148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/28/2023] [Accepted: 10/19/2023] [Indexed: 11/15/2023]
Abstract
BACKGROUND Prolactinomas represent 46%-66% of pituitary adenomas, but the prevalence of germline mutations is largely unknown. We present here the first study focusing on hereditary predisposition to prolactinoma. OBJECTIVE We studied the prevalence of germline mutations in a large cohort of patients with isolated prolactinomas. MATERIALS AND METHODS A retrospective study was performed combining genetic and clinical data from patients referred for genetic testing of MEN1, AIP, and CDKN1B between 2003 and 2020. SF3B1 was Sanger sequenced in genetically negative patients. RESULTS About 506 patients with a prolactinoma were included: 80 with microprolactinoma (15.9%), 378 with macroprolactinoma (74.7%), 48 unknown; 49/506 in a familial context (9.7%). Among these, 14 (2.8%) had a (likely) pathogenic variant (LPV) in MEN1 or AIP, and none in CDKN1B. All positive patients had developed a macroprolactinoma before age 30. The prevalence of germline mutations in patients with isolated macroprolactinoma under 30 was 4% (11/258) in a sporadic context and 15% (3/20) in a familial context. Prevalence in sporadic cases younger than 18 was 15% in men (5/33) and 7% in women (4/57). No R625H SF3B1 germline mutation was identified in 264 patients with macroprolactinomas. CONCLUSIONS We did not identify any LPVs in patients over 30 years of age, either in a familial or in a sporadic context, and in a sporadic context in our series or the literature. Special attention should be paid to young patients and to familial context.
Collapse
Affiliation(s)
- Amina Boukerrouni
- Aix Marseille Univ, APHM, INSERM, MMG, Laboratory of Molecular Biology Hospital La Conception, MarMaRa Institute, 13005 Marseille, France
| | - Thomas Cuny
- Aix Marseille Univ, APHM, INSERM, MMG, Department of Endocrinology Hospital La Conception, MarMaRa Institute, 13305 Marseille, France
| | - Thibaut Anjou
- Aix Marseille Univ, APHM, INSERM, MMG, Laboratory of Molecular Biology Hospital La Conception, MarMaRa Institute, 13005 Marseille, France
| | - Isabelle Raingeard
- CHRU de Montpellier, Service d'Endocrinologie, Diabète, Maladies Métaboliques, 34000 Montpellier, France
| | - Amandine Ferrière
- Department of Endocrinology, University Hospital of Bordeaux, Haut Lévêque, 33318 Pessac, France
| | - Solange Grunenwald
- Department of Endocrinology and Metabolic Disease, Hospital Larrey CHU (University Hospital Centre), 31029 Toulouse, France
| | - Jean-Christophe Maïza
- Department of Endocrinology, Diabetes and Nutrition, GHSR, Centre Hospitalo-Universitaire de la Réunion, 97416 Saint-Pierre, La Réunion, France
| | - Emeline Marquant
- Aix Marseille Univ, APHM, INSERM, MMG, Department of pediatrics, hospital La Timone Enfants, MarMaRa Institute, 13005 Marseille, France
| | - Nicolas Sahakian
- Aix Marseille Univ, APHM, INSERM, MMG, Department of Endocrinology Hospital La Conception, MarMaRa Institute, 13305 Marseille, France
| | - Sarah Fodil-Cherif
- CHRU de Montpellier, Service d'Endocrinologie, Diabète, Maladies Métaboliques, 34000 Montpellier, France
| | - Laurence Salle
- Inserm, University Limoges, CHU de Limoges, IRD, U1094 Tropical Neuroepidemiology, Institute of Epidemiology and Tropical Neurology, GEIST, 87000 Limoges, France
| | | | - Hanitra Randrianaivo
- UF de Génétique Médicale, GHSR, CHU de La Réunion, 97416 Saint Pierre, La Réunion, France
| | - Emmanuel Sonnet
- Department of Endocrinology and Diabetes, Brest University Hospital, Boulevard Tanguy Prigent, 29200 Brest, France
| | - Nicolas Chevalier
- Centre Hospitalier Universitaire de Nice, Hôpital de l'Archet 2, Service d'Endocrinologie, Diabétologie et Médecine de la Reproduction, 151 route de Saint-Antoine de Ginestière, CS 23079, Nice 06202 Cedex 3, France
| | - Philippe Thuillier
- Department of Endocrinology and Diabetes, Brest University Hospital, Boulevard Tanguy Prigent, 29200 Brest, France
| | - Delphine Vezzosi
- Institut CardioMet, 31000 Toulouse, France
- Service d'endocrinologie, Hôpital Larrey, 24, Chemin de Pouvourville, Toulouse 31029 Cedex 9, France
| | - Rachel Reynaud
- Aix Marseille Univ, APHM, INSERM, MMG, Department of pediatrics, hospital La Timone Enfants, MarMaRa Institute, 13005 Marseille, France
| | - Henry Dufour
- Aix Marseille Univ, APHM, INSERM, MMG, Department of Neurosurgery Hospital la Timone Adulte, MarMaRa Institute, 13005 Marseille, France
| | - Thierry Brue
- Aix Marseille Univ, APHM, INSERM, MMG, Department of Endocrinology Hospital La Conception, MarMaRa Institute, 13305 Marseille, France
| | - Antoine Tabarin
- Department of Endocrinology, University Hospital of Bordeaux, Haut Lévêque, 33318 Pessac, France
| | - Brigitte Delemer
- Endocrinology, Diabetology and Nutrition Unit, University Hospital of Reims, 51454 Reims, France
| | - Véronique Kerlan
- Department of Endocrinology and Diabetes, Brest University Hospital, Boulevard Tanguy Prigent, 29200 Brest, France
| | - Frédéric Castinetti
- Aix Marseille Univ, APHM, INSERM, MMG, Department of Endocrinology Hospital La Conception, MarMaRa Institute, 13305 Marseille, France
| | - Anne Barlier
- Aix Marseille Univ, APHM, INSERM, MMG, Laboratory of Molecular Biology Hospital La Conception, MarMaRa Institute, 13005 Marseille, France
| | - Pauline Romanet
- Aix Marseille Univ, APHM, INSERM, MMG, Laboratory of Molecular Biology Hospital La Conception, MarMaRa Institute, 13005 Marseille, France
| |
Collapse
|
6
|
Akkuş G, Korbonits M. Genetic Testing in Hereditary Pituitary Tumors. Arch Med Res 2023; 54:102920. [PMID: 38007383 DOI: 10.1016/j.arcmed.2023.102920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/26/2023] [Accepted: 11/13/2023] [Indexed: 11/27/2023]
Abstract
Genetic testing is becoming part of mainstream endocrinology. An increasing number of rare and not-so-rare endocrine diseases have an identifiable genetic cause, either at the germline or at the somatic level. Here we summerise germline genetic alterations in patients with pituitary neuroendocrine tumors (pituitary adenomas). These may be disorders with isolated pituitary tumors, such as X-linked acrogigantism, or AIP-related pituitary tumors, or as part of syndromic diseases, such as multiple endocrine neoplasia type 1 or Carney complex. In some cases, this could be relevant for treatment choices and follow-up, as well as for family members, as cascade screening leads to early identification of affected relatives and improved clinical outcomes.
Collapse
Affiliation(s)
- Gamze Akkuş
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Márta Korbonits
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
| |
Collapse
|
7
|
Pierotti L, Pardi E, Dinoi E, Piaggi P, Borsari S, Della Valentina S, Sardella C, Michelucci A, Caligo MA, Bogazzi F, Marcocci C, Cetani F. Cutaneous lesions and other non-endocrine manifestations of Multiple Endocrine Neoplasia type 1 syndrome. Front Endocrinol (Lausanne) 2023; 14:1191040. [PMID: 37484956 PMCID: PMC10360178 DOI: 10.3389/fendo.2023.1191040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/13/2023] [Indexed: 07/25/2023] Open
Abstract
Background Multiple Endocrine Neoplasia type 1 is a rare genetic syndrome mainly caused by mutations of MEN1 gene and characterized by a combination of several endocrine and non-endocrine manifestations. The objective of this study was to describe cutaneous lesions and other non-endocrine manifestations of MEN1 in a cohort of patients with familial (F) and sporadic (S) MEN1, compare the prevalence of these manifestations between the two cohorts, and investigate the correlation with MEN1 mutation status. Methods We collected phenotypic and genotypic data of 185 patients with F-MEN1 and S-MEN1 followed from 1997 to 2022. The associations between F-MEN1 and S-MEN1 or MEN1 mutation-positive and mutation-negative patients and non-endocrine manifestations were determined using chi-square or Fisher's exact tests or multivariate exact logistic regression analyses. Results The prevalence of angiofibromas was significantly higher in F-MEN1 than in S-MEN1 in both the whole (p < 0.001) and index case (p = 0.003) cohorts. The prevalence of lipomas was also significantly higher in F-MEN1 than in S-MEN1 (p = 0.009) and in MEN1 mutation-positive than in MEN1 mutation-negative (p = 0.01) index cases. In the whole cohort, the prevalence of lipomas was significantly higher in MEN1 mutation-positive compared to MEN1 mutation-negative patients (OR = 2.7, p = 0.02) and in F-MEN1 than in S-MEN1 (p = 0.03), only after adjustment for age. No significant differences were observed for the other non-endocrine manifestations between the two cohorts. Hibernoma and collagenoma were each present in one patient (0.5%) and meningioma and neuroblastoma in 2.7% and 0.5%, respectively. Gastric leiomyoma was present in 1.1% of the patients and uterine leiomyoma in 14% of women. Thyroid cancer, breast cancer, lung cancer, basal cell carcinoma, melanoma, and colorectal cancer were present in 4.9%, 2.7%, 1.6%, 1.6%, 2.2%, and 0.5% of the whole series, respectively. Conclusions We found a significantly higher prevalence of angiofibromas and lipomas in F-MEN1 compared with S-MEN1 and in MEN1 mutation-positive compared to MEN1 mutation-negative patients. In patients with one major endocrine manifestation of MEN1 , the presence of cutaneous lesions might suggest the diagnosis of MEN1 and a possible indication for genetic screening.
Collapse
Affiliation(s)
- Laura Pierotti
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Elena Pardi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Elisa Dinoi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Paolo Piaggi
- Department of Information Engineering, University of Pisa, Pisa, Italy
| | - Simona Borsari
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | - Chiara Sardella
- Unit of Endocrinology, University Hospital of Pisa, Pisa, Italy
| | - Angela Michelucci
- Laboratory of Molecular Genetics, University Hospital of Pisa, Pisa, Italy
| | | | - Fausto Bogazzi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Claudio Marcocci
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
- Unit of Endocrinology, University Hospital of Pisa, Pisa, Italy
| | - Filomena Cetani
- Unit of Endocrinology, University Hospital of Pisa, Pisa, Italy
| |
Collapse
|
8
|
Abstract
Hereditary pituitary tumorigenesis is seen in a relatively small proportion (around 5%) of patients with pituitary neuroendocrine tumors (PitNETs). The aim of the current review is to describe the main clinical and molecular features of such pituitary tumors associated with hereditary or familial characteristics, many of which have now been genetically identified. The genetic patterns of inheritance are classified into isolated familial PitNETs and the syndromic tumors. In general, the established genetic causes of familial tumorigenesis tend to present at a younger age, often pursue a more aggressive course, and are more frequently associated with growth hormone hypersecretion compared to sporadic tumors. The mostly studied molecular pathways implicated are the protein kinase A and phosphatidyl-inositol pathways, which are in the main related to mutations in the syndromes of familial isolated pituitary adenoma (FIPA), Carney complex syndrome, and X-linked acrogigantism. Another well-documented mechanism consists of the regulation of p27 or p21 proteins, with further acceleration of the pituitary cell cycle through the check points G1/S and M/G1, mostly documented in multiple endocrine neoplasia type 4. In conclusion, PitNETs may occur in relation to well-established familial germline mutations which may determine the clinical phenotype and the response to treatment, and may require family screening.
Collapse
Affiliation(s)
- Eleni Armeni
- Dept. of Endocrinology, Royal Free Hospital, London, NW3 2QG, UK.
| | - Ashley Grossman
- Dept. of Endocrinology, Royal Free Hospital, London, NW3 2QG, UK
- Centre for Endocrinology, Barts and the London School of Medicine, London, UK
- Green Templeton College, University of Oxford, Oxford, UK
| |
Collapse
|
9
|
Trofimiuk-Müldner M, Domagała B, Sokołowski G, Skalniak A, Hubalewska-Dydejczyk A. AIP gene germline variants in adult Polish patients with apparently sporadic pituitary macroadenomas. Front Endocrinol (Lausanne) 2023; 14:1098367. [PMID: 36843582 PMCID: PMC9950257 DOI: 10.3389/fendo.2023.1098367] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/23/2023] [Indexed: 02/12/2023] Open
Abstract
INTRODUCTION Up to 5% of all pituitary tumors are hereditary e.g. due to MEN1 or aryl hydrocarbon receptor-interacting protein (AIP) genes mutations. OBJECTIVES The study was aimed at the assessment of the frequency and characteristics of AIP-mutation related tumors in patients with apparently sporadic pituitary macroadenomas in the Polish population. MATERIALS AND METHODS The study included 131 patients (57 males, 74 females; median age 42 years) diagnosed with pituitary macroadenomas, and with a negative family history of familial isolated pituitary adenoma (FIPA) or multiple endocrine neoplasia type 1 (MEN1) syndromes. Sanger sequencing was used for the assessment of AIP gene variants. The study was approved by the Ethics Board of JUMC. RESULTS AIP variants were identified in five of the 131 included subjects (3.8%): one diagnosed with Cushing's disease, two with acromegaly, and two with non-secreting adenomas. Patients harboring hereditary AIP gene alterations did not differ from the rest of the study group in median age at diagnosis (41.0 vs. 42.5 years, P=0.8), median largest tumor diameter (25 vs. 24 mm, P=0.6), gender distribution (60.0% vs. 56.3% females, P=0.8), secreting tumor frequency (60.0% vs. 67.5%, P=0.7), or acromegaly diagnosis frequency (40.0% vs.37.3%, P=0.9). CONCLUSIONS In our series of apparently sporadic pituitary macroadenomas, AIP gene variant carriers did not differ substantially from patients with negative genetic testing. A risk factor-centred approach to AIP genetic screening may result in missing germline variants. Considering the clinical impact of such genetic variants and their relatively low penetrance, it is, however, doubtful if general genetic screening benefits the whole cohort of pituitary macroadenoma patients and their families.
Collapse
Affiliation(s)
- Małgorzata Trofimiuk-Müldner
- Chair and Department of Endocrinology, Jagiellonian University Medical College, Kraków, Poland
- *Correspondence: Małgorzata Trofimiuk-Müldner,
| | - Bartosz Domagała
- Department of Endocrinology, Endocrine Oncology and Nuclear Medicine, University Hospital in Kraków, Kraków, Poland
| | - Grzegorz Sokołowski
- Chair and Department of Endocrinology, Jagiellonian University Medical College, Kraków, Poland
| | - Anna Skalniak
- Chair and Department of Endocrinology, Jagiellonian University Medical College, Kraków, Poland
| | | |
Collapse
|
10
|
Florez Romero A, Rojas W, Reverend L. C, Torres L, Quintero G. Proteína moduladora de la actividad del receptor de aril hidrocarburos (AIP): genética, bioquímica e impacto clínico. REPERTORIO DE MEDICINA Y CIRUGÍA 2021. [DOI: 10.31260/repertmedcir.01217273.888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
El gen AIP (proteína moduladora de la actividad del receptor de aril hidrocarburos) se localiza en la región 11q13.2 y codifica para una proteína de 330 aminoácidos que interactúa con el factor de transcripción AhR (receptor para aril hidrocarburos). Las mutaciones en este gen se han asociado con adenomas pituitarios aislados de tipo familiar (APAF). Se caracterizan por una presentación temprana (alrededor de 20 años), por lo regular producen hormona de crecimiento y/o prolactina, tienen un comportamiento clínico agresivo y poca respuesta a análogos de somatostatina.
Collapse
|
11
|
Genetics of Acromegaly and Gigantism. J Clin Med 2021; 10:jcm10071377. [PMID: 33805450 PMCID: PMC8036715 DOI: 10.3390/jcm10071377] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 12/11/2022] Open
Abstract
Growth hormone (GH)-secreting pituitary tumours represent the most genetically determined pituitary tumour type. This is true both for germline and somatic mutations. Germline mutations occur in several known genes (AIP, PRKAR1A, GPR101, GNAS, MEN1, CDKN1B, SDHx, MAX) as well as familial cases with currently unknown genes, while somatic mutations in GNAS are present in up to 40% of tumours. If the disease starts before the fusion of the epiphysis, then accelerated growth and increased final height, or gigantism, can develop, where a genetic background can be identified in half of the cases. Hereditary GH-secreting pituitary adenoma (PA) can manifest as isolated tumours, familial isolated pituitary adenoma (FIPA) including cases with AIP mutations or GPR101 duplications (X-linked acrogigantism, XLAG) or can be a part of systemic diseases like multiple endocrine neoplasia type 1 or type 4, McCune-Albright syndrome, Carney complex or phaeochromocytoma/paraganglioma-pituitary adenoma association. Family history and a search for associated syndromic manifestations can help to draw attention to genetic causes; many of these are now tested as part of gene panels. Identifying genetic mutations allows appropriate screening of associated comorbidities as well as finding affected family members before the clinical manifestation of the disease. This review focuses on germline and somatic mutations predisposing to acromegaly and gigantism.
Collapse
|
12
|
Abstract
BACKGROUND Pituitary tumours are usually benign and relatively common intracranial tumours, with under- and overexpression of pituitary hormones and local mass effects causing considerable morbidity and increased mortality. While most pituitary tumours are sporadic, around 5% of the cases arise in a familial setting, either isolated [familial isolated pituitary adenoma, related to AIP or X-linked acrogigantism], or in a syndromic disorder, such as multiple endocrine neoplasia type 1 or 4, Carney complex, McCune-Albright syndrome, phaeochromocytoma/paraganglioma with pituitary adenoma, DICER1 syndrome, Lynch syndrome, and USP8-related syndrome. Genetically determined pituitary tumours usually present at younger age and show aggressive behaviour, and are often resistant to different treatment modalities. SUBJECT In this practical summary, we take a practical approach: which genetic syndromes should be considered in case of different presentation, such as tumour type, family history, age of onset and additional clinical features of the patient. CONCLUSION The identification of the causative mutation allows genetic and clinical screening of relatives at risk, resulting in earlier diagnosis, a better therapeutic response and ultimately to better long-term outcomes.
Collapse
Affiliation(s)
- Judit Dénes
- Divison of Endocrinology, 2nd Department of Medicine, Health Center, Hungarian Defence Forces, Budapest, Hungary
| | - Márta Korbonits
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University of London, London, UK.
| |
Collapse
|
13
|
Srirangam Nadhamuni V, Korbonits M. Novel Insights into Pituitary Tumorigenesis: Genetic and Epigenetic Mechanisms. Endocr Rev 2020; 41:bnaa006. [PMID: 32201880 PMCID: PMC7441741 DOI: 10.1210/endrev/bnaa006] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 03/19/2020] [Indexed: 02/08/2023]
Abstract
Substantial advances have been made recently in the pathobiology of pituitary tumors. Similar to many other endocrine tumors, over the last few years we have recognized the role of germline and somatic mutations in a number of syndromic or nonsyndromic conditions with pituitary tumor predisposition. These include the identification of novel germline variants in patients with familial or simplex pituitary tumors and establishment of novel somatic variants identified through next generation sequencing. Advanced techniques have allowed the exploration of epigenetic mechanisms mediated through DNA methylation, histone modifications and noncoding RNAs, such as microRNA, long noncoding RNAs and circular RNAs. These mechanisms can influence tumor formation, growth, and invasion. While genetic and epigenetic mechanisms often disrupt similar pathways, such as cell cycle regulation, in pituitary tumors there is little overlap between genes altered by germline, somatic, and epigenetic mechanisms. The interplay between these complex mechanisms driving tumorigenesis are best studied in the emerging multiomics studies. Here, we summarize insights from the recent developments in the regulation of pituitary tumorigenesis.
Collapse
Affiliation(s)
- Vinaya Srirangam Nadhamuni
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, UK
| | - Márta Korbonits
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, UK
| |
Collapse
|
14
|
Marques P, Caimari F, Hernández-Ramírez LC, Collier D, Iacovazzo D, Ronaldson A, Magid K, Lim CT, Stals K, Ellard S, Grossman AB, Korbonits M. Significant Benefits of AIP Testing and Clinical Screening in Familial Isolated and Young-onset Pituitary Tumors. J Clin Endocrinol Metab 2020; 105:5717684. [PMID: 31996917 PMCID: PMC7137887 DOI: 10.1210/clinem/dgaa040] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 01/28/2020] [Indexed: 12/20/2022]
Abstract
CONTEXT Germline mutations in the aryl hydrocarbon receptor-interacting protein (AIP) gene are responsible for a subset of familial isolated pituitary adenoma (FIPA) cases and sporadic pituitary neuroendocrine tumors (PitNETs). OBJECTIVE To compare prospectively diagnosed AIP mutation-positive (AIPmut) PitNET patients with clinically presenting patients and to compare the clinical characteristics of AIPmut and AIPneg PitNET patients. DESIGN 12-year prospective, observational study. PARTICIPANTS & SETTING We studied probands and family members of FIPA kindreds and sporadic patients with disease onset ≤18 years or macroadenomas with onset ≤30 years (n = 1477). This was a collaborative study conducted at referral centers for pituitary diseases. INTERVENTIONS & OUTCOME AIP testing and clinical screening for pituitary disease. Comparison of characteristics of prospectively diagnosed (n = 22) vs clinically presenting AIPmut PitNET patients (n = 145), and AIPmut (n = 167) vs AIPneg PitNET patients (n = 1310). RESULTS Prospectively diagnosed AIPmut PitNET patients had smaller lesions with less suprasellar extension or cavernous sinus invasion and required fewer treatments with fewer operations and no radiotherapy compared with clinically presenting cases; there were fewer cases with active disease and hypopituitarism at last follow-up. When comparing AIPmut and AIPneg cases, AIPmut patients were more often males, younger, more often had GH excess, pituitary apoplexy, suprasellar extension, and more patients required multimodal therapy, including radiotherapy. AIPmut patients (n = 136) with GH excess were taller than AIPneg counterparts (n = 650). CONCLUSIONS Prospectively diagnosed AIPmut patients show better outcomes than clinically presenting cases, demonstrating the benefits of genetic and clinical screening. AIP-related pituitary disease has a wide spectrum ranging from aggressively growing lesions to stable or indolent disease course.
Collapse
Affiliation(s)
- Pedro Marques
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Francisca Caimari
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Laura C Hernández-Ramírez
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- Section on Endocrinology & Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland
| | - David Collier
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Donato Iacovazzo
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Amy Ronaldson
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Kesson Magid
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Chung Thong Lim
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Karen Stals
- Exeter Genomics Laboratory, Royal Devon & Exeter NHS Foundation Trust, UK
| | - Sian Ellard
- Exeter Genomics Laboratory, Royal Devon & Exeter NHS Foundation Trust, UK
| | - Ashley B Grossman
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Márta Korbonits
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- Correspondence and Reprint Requests: Márta Korbonits, Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK. E-mail:
| | | |
Collapse
|
15
|
Coopmans EC, Muhammad A, Daly AF, de Herder WW, van Kemenade FJ, Beckers A, de Haan M, van der Lely AJ, Korpershoek E, Neggers SJCMM. The role of AIP variants in pituitary adenomas and concomitant thyroid carcinomas in the Netherlands: a nationwide pathology registry (PALGA) study. Endocrine 2020; 68:640-649. [PMID: 32333269 PMCID: PMC7308253 DOI: 10.1007/s12020-020-02303-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 04/04/2020] [Indexed: 12/24/2022]
Abstract
PURPOSE Germline mutations in the aryl-hydrocarbon receptor interacting protein (AIP) have been identified often in the setting of familial isolated pituitary adenoma (FIPA). To date there is no strong evidence linking germline AIP mutations to other neoplasms apart from the pituitary. Our primary objective was to investigate the prevalence of AIP gene mutations and mutations in genes that have been associated with neuroendocrine tumors in series of tumors from patients presenting with both pituitary adenomas and differentiated thyroid carcinomas (DTCs). METHODS Pathology samples were retrieved from all pituitary adenomas in patients with concomitant DTCs, including one with a known germline AIP variant. Subsequently, two additional patients with known germline AIP variants were included, of which one presented only with a follicular thyroid carcinoma (FTC). RESULTS In total, 17 patients (14 DTCs and 15 pituitary adenomas) were investigated by targeted next generation sequencing (NGS). The pituitary tumor samples revealed no mutations, while among the thyroid tumor samples BRAF (6/14, 42.9%) was the most frequently mutated gene, followed by NRAS (3/11, 27.3%). In one AIP-mutated FIPA kindred, the AIP-variant c.853C>T; p.Q285* was confirmed in the FTC specimen, including evidence of loss of heterozygosity (LOH) at the AIP locus in the tumor DNA. CONCLUSION Although most observed variants in pituitary adenomas and DTCs were similar to those of sporadic DTCs, we confirmed in one AIP mutation-positive case the AIP-variant and LOH at this locus in an FTC specimen, which raises the potential role of the AIP mutation as a rare initiating event.
Collapse
Affiliation(s)
- E C Coopmans
- Department of Medicine, Endocrinology section, Pituitary Center Rotterdam, Erasmus University Medical Center, Rotterdam, The Netherlands.
| | - A Muhammad
- Department of Medicine, Endocrinology section, Pituitary Center Rotterdam, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - A F Daly
- Department of Endocrinology, Centre Hospitalier Universitaire de Liege, University of Liege, 4000, Liege, Belgium
| | - W W de Herder
- Department of Medicine, Endocrinology section, Pituitary Center Rotterdam, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - F J van Kemenade
- Department of Pathology, Erasmus Medical Center Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - A Beckers
- Department of Endocrinology, Centre Hospitalier Universitaire de Liege, University of Liege, 4000, Liege, Belgium
| | - M de Haan
- Department of Pathology, Erasmus Medical Center Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - A J van der Lely
- Department of Medicine, Endocrinology section, Pituitary Center Rotterdam, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - E Korpershoek
- Department of Pathology, Erasmus Medical Center Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - S J C M M Neggers
- Department of Medicine, Endocrinology section, Pituitary Center Rotterdam, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
16
|
Dutta P, Reddy KS, Rai A, Madugundu AK, Solanki HS, Bhansali A, Radotra BD, Kumar N, Collier D, Iacovazzo D, Gupta P, Raja R, Gowda H, Pandey A, Devgun JS, Korbonits M. Surgery, Octreotide, Temozolomide, Bevacizumab, Radiotherapy, and Pegvisomant Treatment of an AIP Mutation‒Positive Child. J Clin Endocrinol Metab 2019; 104:3539-3544. [PMID: 31125088 PMCID: PMC6619489 DOI: 10.1210/jc.2019-00432] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 05/20/2019] [Indexed: 12/21/2022]
Abstract
CONTEXT Inactivating germline mutations in the aryl hydrocarbon receptor interacting protein (AIP) gene are linked to pituitary adenoma predisposition. Here, we present the youngest known patient with AIP-related pituitary adenoma. CASE DESCRIPTION The patient presented at the age of 4 years with pituitary apoplexy and left ptosis with severe visual loss following a 1-year history of abdominal pain, headaches, and rapid growth. His IGF-1 level was 5× the upper limit of normal, and his random GH level was 1200 ng/mL. MRI showed a 43 × 24 × 35‒mm adenoma with suprasellar extension invading the left cavernous sinus (Knosp grade 4). After transsphenoidal surgery, histology showed a grade 2A sparsely granulated somatotropinoma with negative O6-methylguanine-DNA methyltransferase and positive vascular endothelial growth factor staining. Genetic testing identified a heterozygous germline nonsense AIP mutation (p.Arg81Ter). Exome sequencing of the tumor revealed that it had lost the entire maternal chromosome-11, rendering it hemizygous for chromosome-11 and therefore lacking functional copies of AIP in the tumor. He was started on octreotide, but because the tumor rapidly regrew and IGF-1 levels were unchanged, temozolomide was initiated, and intensity-modulated radiotherapy was administered 5 months after surgery. Two months later, bevacizumab was added, resulting in excellent tumor response. Although these treatments stabilized tumor growth over 4 years, IGF-1 was normalized only after pegvisomant treatment, although access to this medication was intermittent. At 3.5 years of follow-up, gamma knife treatment was administered, and pegvisomant dose increase was indicated. CONCLUSION Multimodal treatment with surgery, long-acting octreotide, radiotherapy, temozolomide, bevacizumab, and pegvisomant can control genetically driven, aggressive, childhood-onset somatotropinomas.
Collapse
Affiliation(s)
- Pinaki Dutta
- Department of Endocrinology, Postgraduate Institution of Medical Education and Research, Chandigarh, India
| | - Kavita S Reddy
- Institute of Bioinformatics, International Tech Park, Bangalore, Karnataka, India
| | - Ashutosh Rai
- Department of Translational and Regenerative Medicine, Postgraduate Institution of Medical Education and Research, Chandigarh, India
| | - Anil K Madugundu
- Institute of Genetic Medicine, Division of Proteomics, Mayo Clinic, Rochester, Minnesota
- Manipal Academy of Higher Education, Manipal, Karnataka, India
- Center for Individualized Medicine and Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Hitendra S Solanki
- Department of Translational and Regenerative Medicine, Postgraduate Institution of Medical Education and Research, Chandigarh, India
- School of Biotechnology, KIIT University, Bhubaneswar, India
| | - Anil Bhansali
- Department of Endocrinology, Postgraduate Institution of Medical Education and Research, Chandigarh, India
| | - Bishan D Radotra
- Department of Histopathology, Postgraduate Institution of Medical Education and Research, Chandigarh, India
| | - Narendra Kumar
- Department of Radiotherapy, Postgraduate Institution of Medical Education and Research, Chandigarh, India
| | - David Collier
- Centre for Endocrinology, William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, London, United Kingdom
| | - Donato Iacovazzo
- Centre for Endocrinology, William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, London, United Kingdom
| | | | - Remya Raja
- Department of Translational and Regenerative Medicine, Postgraduate Institution of Medical Education and Research, Chandigarh, India
| | - Harsha Gowda
- Department of Translational and Regenerative Medicine, Postgraduate Institution of Medical Education and Research, Chandigarh, India
| | - Akhilesh Pandey
- Institute of Genetic Medicine, Division of Proteomics, Mayo Clinic, Rochester, Minnesota
- Center for Individualized Medicine and Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Jagtar Singh Devgun
- Department of Pathology, Maharishi Markandeshwar Institute of Medical Science and Research, Ambala, Haryana, India
| | - Márta Korbonits
- Centre for Endocrinology, William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, London, United Kingdom
- Correspondence and Reprint Requests: Márta Korbonits, MD, PhD Centre for of Endocrinology, William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, United Kingdom. E-mail:
| |
Collapse
|
17
|
García WR, Cortes HT, Romero AF. Pituitary gigantism: a case series from Hospital de San José (Bogotá, Colombia). ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2019; 63:385-393. [PMID: 31365626 PMCID: PMC10528647 DOI: 10.20945/2359-3997000000150] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 04/24/2019] [Indexed: 11/23/2022]
Abstract
INTRODUCTION Gigantism is a rare pediatric disease characterized by increased production of growth hormone (GH) before epiphyseal closure, that manifests clinically as tall stature, musculoskeletal abnormalities, and multiple comorbidities. MATERIALS AND METHODS Case series of 6 male patients with gigantism evaluated at the Endocrinology Service of Hospital de San José (Bogotá, Colombia) between 2010 and 2016. RESULTS All patients had macroadenomas and their mean final height was 2.01 m. The mean age at diagnosis was 16 years, and the most common symptoms were headache (66%) and hyperhidrosis (66%). All patients had acral changes, and one had visual impairment secondary to compression of the optic chiasm. All patients underwent surgery, and 5 (83%) required additional therapy for biochemical control, including radiotherapy (n = 4, 66%), somatostatin analogues (n = 5, 83%), cabergoline (n = 3, 50%), and pegvisomant (n = 2, 33%). Three patients (50%) achieved complete biochemical control, while 2 patients showed IGF-1 normalization with pegvisomant. Two patients were genetically related and presented a mutation in the aryl hydrocarbon receptor-interacting protein (AIP) gene (pathogenic variant, c.504G>A in exon 4, p.Trp168*), fulfilling the diagnostic criteria of familial isolated pituitary adenoma. CONCLUSIONS This is the largest case series of patients with gigantism described to date in Colombia. Transsphenoidal surgery was the first-choice procedure, but additional pharmacological therapy was usually required. Mutations in the AIP gene should be considered in familial cases of GH-producing adenomas.
Collapse
Affiliation(s)
- William Rojas García
- Hospital de San JoséEndocrinology UnitHospital de San JoséColombia Head of the Endocrinology Unit, Hospital de San José;
- Fundación Universitaria de Ciencias de la SaludBogotáDCColombiaassociate professor, Fundación Universitaria de Ciencias de la Salud, Bogotá, DC, Colombia
| | - Henry Tovar Cortes
- Hospital de San JoséColombiaHospital de San José;
- Fundación Universitaria de Ciencias de la SaludBogotáDCColombiaassistant professor, Fundación Universitaria de Ciencias de la Salud, Bogotá, DC, Colombia
| | | |
Collapse
|
18
|
Fuentes-Fayos AC, García-Martínez A, Herrera-Martínez AD, Jiménez-Vacas JM, Vázquez-Borrego MC, Castaño JP, Picó A, Gahete MD, Luque RM. Molecular determinants of the response to medical treatment of growth hormone secreting pituitary neuroendocrine tumors. MINERVA ENDOCRINOL 2019; 44:109-128. [PMID: 30650942 DOI: 10.23736/s0391-1977.19.02970-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Acromegaly is a chronic systemic disease mainly caused by a growth hormone (GH)-secreting pituitary neuroendocrine tumor (PitNETs), which is associated with many health complications and increased mortality when not adequately treated. Transsphenoidal surgery is considered the treatment of choice in GH-secreting PitNETs, but patients in whom surgery cannot be considered or with persistent disease after surgery require medical therapy. Treatment with available synthetic somatostatin analogues (SSAs) is considered the mainstay in the medical management of acromegaly which exert their beneficial effects through the binding to a family of G-protein coupled receptors encoded by 5 genes (SSTR1-5). However, although it has been demonstrated that the SST1-5 receptors are physically present in tumor cells, SSAs are in many cases ineffective (i.e. approximately 10-30% of patients with GH-secreting PitNET are unresponsive to SSAs), suggesting that other cellular/molecular determinants could be essential for the response to the pharmacological treatment in patients with GH-secreting PitNETs. Therefore, the scrutiny of these determinants might be used for the identification of subgroups of patients in whom an appropriate pharmacological treatment can be successfully employed (responders vs. non-responders). In this review, we will describe some of the existing, classical and novel, genetic and molecular determinants involved in the response of patients with GH-secreting PitNETs to the available therapeutic treatments, as well as new molecular/therapeutic approaches that could be potentially useful for the treatment of GH-secreting PitNETs.
Collapse
Affiliation(s)
- Antonio C Fuentes-Fayos
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), Cordoba, Spain.,Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, Spain.,Reina Sofia University Hospital (HURS), Cordoba, Spain.,CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Cordoba, Spain
| | - Araceli García-Martínez
- Research Laboratory, Hospital General Universitario de Alicante-Institute for Health and Biomedical Research (ISABIAL), Alicante, Spain
| | - Aura D Herrera-Martínez
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), Cordoba, Spain.,Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, Spain.,Reina Sofia University Hospital (HURS), Cordoba, Spain.,CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Cordoba, Spain
| | - Juan M Jiménez-Vacas
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), Cordoba, Spain.,Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, Spain.,Reina Sofia University Hospital (HURS), Cordoba, Spain.,CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Cordoba, Spain
| | - Mari C Vázquez-Borrego
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), Cordoba, Spain.,Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, Spain.,Reina Sofia University Hospital (HURS), Cordoba, Spain.,CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Cordoba, Spain
| | - Justo P Castaño
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), Cordoba, Spain.,Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, Spain.,Reina Sofia University Hospital (HURS), Cordoba, Spain.,CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Cordoba, Spain
| | - Antonio Picó
- Department of Endocrinology and Nutrition, Hospital General Universitario de Alicante-ISABIAL, Miguel Hernández University, CIBERER, Alicante, Spain
| | - Manuel D Gahete
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), Cordoba, Spain.,Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, Spain.,Reina Sofia University Hospital (HURS), Cordoba, Spain.,CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Cordoba, Spain
| | - Raúl M Luque
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), Cordoba, Spain - .,Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, Spain.,Reina Sofia University Hospital (HURS), Cordoba, Spain.,CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Cordoba, Spain
| |
Collapse
|
19
|
Giant Prolactinoma of Young Onset: A Clue to Diagnosis of MEN-1 Syndrome. Case Rep Endocrinol 2018; 2018:2875074. [PMID: 30186640 PMCID: PMC6112072 DOI: 10.1155/2018/2875074] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 08/01/2018] [Indexed: 11/18/2022] Open
Abstract
Multiple endocrine neoplasia (MEN) type 1 syndrome is an autosomal dominant disorder caused by germline mutations in MEN1 gene, characterized by tumours in endocrine and nonendocrine organs. Giant prolactinoma is defined as tumours larger than 40mm with very high prolactin secretion. We report two unrelated Sri Lankan patients (8-year-old boy and a 20-year-old female) who presented with giant prolactinomas with mass effects of the tumours. The female patient showed complete response to medical therapy, while the boy developed recurrent resistant prolactinoma needing surgery and radiotherapy. During follow-up, both developed pancreatic neuroendocrine tumours. Genetic analysis revealed that one was heterozygous for a nonsense mutation and other for missense mutation in MEN1 gene. Screening confirmed familial MEN-1 syndrome in their families. High clinical suspicion upon unusual clinical presentation prompted genetic evaluation in these patients and detection of MEN1 gene mutation. Pituitary adenomas in children with MEN-1 syndrome are larger tumours with higher rates of treatment resistance. This report emphasizes importance of screening young patients with giant prolactinoma for MEN-1 syndrome and arranging long-term follow-up for them expecting variable treatment outcomes. Sri Lanka requires further studies to describe the genotypic-phenotypic variability of MEN-1 syndrome in this population.
Collapse
|
20
|
Aflorei ED, Klapholz B, Chen C, Radian S, Dragu AN, Moderau N, Prodromou C, Ribeiro PS, Stanewsky R, Korbonits M. In vivo bioassay to test the pathogenicity of missense human AIP variants. J Med Genet 2018; 55:522-529. [PMID: 29632148 PMCID: PMC6073908 DOI: 10.1136/jmedgenet-2017-105191] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 02/23/2018] [Accepted: 03/01/2018] [Indexed: 12/17/2022]
Abstract
Background Heterozygous germline loss-of-function mutations in the aryl hydrocarbon receptor-interacting protein gene (AIP) predispose to childhood-onset pituitary tumours. The pathogenicity of missense variants may pose difficulties for genetic counselling and family follow-up. Objective To develop an in vivo system to test the pathogenicity of human AIP mutations using the fruit fly Drosophila melanogaster. Methods We generated a null mutant of the Drosophila AIP orthologue, CG1847, a gene located on the Xchromosome, which displayed lethality at larval stage in hemizygous knockout male mutants (CG1847exon1_3). We tested human missense variants of ‘unknown significance’, with ‘pathogenic’ variants as positive control. Results We found that human AIP can functionally substitute for CG1847, as heterologous overexpression of human AIP rescued male CG1847exon1_3 lethality, while a truncated version of AIP did not restore viability. Flies harbouring patient-specific missense AIP variants (p.C238Y, p.I13N, p.W73R and p.G272D) failed to rescue CG1847exon1_3 mutants, while seven variants (p.R16H, p.Q164R, p.E293V, p.A299V, p.R304Q, p.R314W and p.R325Q) showed rescue, supporting a non-pathogenic role for these latter variants corresponding to prevalence and clinical data. Conclusion Our in vivo model represents a valuable tool to characterise putative disease-causing human AIP variants and assist the genetic counselling and management of families carrying AIP variants.
Collapse
Affiliation(s)
- Elena Daniela Aflorei
- Centre for Endocrinology, Barts and the London School of Medicine, Queen Mary University of London, London, UK
| | - Benjamin Klapholz
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Chenghao Chen
- Department of Cell and Developmental Biology, Division of Biosciences, Faculty of Life Sciences, University College London, London, UK
| | - Serban Radian
- Centre for Endocrinology, Barts and the London School of Medicine, Queen Mary University of London, London, UK.,Department of Endocrinology, C.I. Parhon National Institute of Endocrinology, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Anca Neluta Dragu
- Centre for Endocrinology, Barts and the London School of Medicine, Queen Mary University of London, London, UK.,Department of Cell and Developmental Biology, Division of Biosciences, Faculty of Life Sciences, University College London, London, UK
| | - Nina Moderau
- Protein Dynamics and Cell Signalling Laboratory, Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | | | - Paulo S Ribeiro
- Protein Dynamics and Cell Signalling Laboratory, Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Ralf Stanewsky
- Department of Cell and Developmental Biology, Division of Biosciences, Faculty of Life Sciences, University College London, London, UK.,Institute of Neuro- and Behavioural Biology, Westfälische Wilhelms University, Münster, Germany
| | - Márta Korbonits
- Centre for Endocrinology, Barts and the London School of Medicine, Queen Mary University of London, London, UK
| |
Collapse
|
21
|
Caimari F, Hernández-Ramírez LC, Dang MN, Gabrovska P, Iacovazzo D, Stals K, Ellard S, Korbonits M. Risk category system to identify pituitary adenoma patients with AIP mutations. J Med Genet 2018; 55:254-260. [PMID: 29440248 PMCID: PMC5869708 DOI: 10.1136/jmedgenet-2017-104957] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 11/19/2017] [Accepted: 11/21/2017] [Indexed: 12/13/2022]
Abstract
Background Predictive tools to identify patients at risk for gene mutations related to pituitary adenomas are very helpful in clinical practice. We therefore aimed to develop and validate a reliable risk category system for aryl hydrocarbon receptor-interacting protein (AIP) mutations in patients with pituitary adenomas. Methods An international cohort of 2227 subjects were consecutively recruited between 2007 and 2016, including patients with pituitary adenomas (familial and sporadic) and their relatives. All probands (n=1429) were screened for AIP mutations, and those diagnosed with a pituitary adenoma prospectively, as part of their clinical screening (n=24), were excluded from the analysis. Univariate analysis was performed comparing patients with and without AIP mutations. Based on a multivariate logistic regression model, six potential factors were identified for the development of a risk category system, classifying the individual risk into low-risk, moderate-risk and high-risk categories. An internal cross-validation test was used to validate the system. Results 1405 patients had a pituitary tumour, of which 43% had a positive family history, 55.5% had somatotrophinomas and 81.5% presented with macroadenoma. Overall, 134 patients had an AIP mutation (9.5%). We identified four independent predictors for the presence of an AIP mutation: age of onset providing an odds ratio (OR) of 14.34 for age 0-18 years, family history (OR 10.85), growth hormone excess (OR 9.74) and large tumour size (OR 4.49). In our cohort, 71% of patients were identified as low risk (<5% risk of AIP mutation), 9.2% as moderate risk and 20% as high risk (≥20% risk). Excellent discrimination (c-statistic=0.87) and internal validation were achieved. Conclusion We propose a user-friendly risk categorisation system that can reliably group patients into high-risk, moderate-risk and low-risk groups for the presence of AIP mutations, thus providing guidance in identifying patients at high risk of carrying an AIP mutation. This risk score is based on a cohort with high prevalence of AIP mutations and should be applied cautiously in other populations.
Collapse
Affiliation(s)
- Francisca Caimari
- Centre of Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK.,Department of Endocrinology, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Laura Cristina Hernández-Ramírez
- Centre of Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK.,Section of Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Mary N Dang
- Centre of Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Plamena Gabrovska
- Centre of Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Donato Iacovazzo
- Centre of Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Karen Stals
- Department of Molecular Genetics, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK
| | - Sian Ellard
- Department of Molecular Genetics, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK
| | - Márta Korbonits
- Centre of Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | | |
Collapse
|
22
|
Marques P, Barry S, Ronaldson A, Ogilvie A, Storr HL, Goadsby PJ, Powell M, Dang MN, Chahal HS, Evanson J, Kumar AV, Grieve J, Korbonits M. Emergence of Pituitary Adenoma in a Child during Surveillance: Clinical Challenges and the Family Members' View in an AIP Mutation-Positive Family. Int J Endocrinol 2018; 2018:8581626. [PMID: 29849625 PMCID: PMC5904812 DOI: 10.1155/2018/8581626] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 01/30/2018] [Indexed: 12/11/2022] Open
Abstract
INTRODUCTION Germline aryl hydrocarbon receptor-interacting protein (AIP) mutations are responsible for 15-30% of familial isolated pituitary adenomas (FIPAs). We report a FIPA kindred with a heterozygous deletion in AIP, aiming to highlight the indications and benefits of genetic screening, variability in clinical presentations, and management challenges in this setting. PATIENTS An 18-year-old male was diagnosed with a clinically nonfunctioning pituitary adenoma (NFPA). Two years later, his brother was diagnosed with a somatolactotrophinoma, and a small Rathke's cleft cyst and a microadenoma were detected on screening in their 17-year-old sister. Following amenorrhoea, their maternal cousin was diagnosed with hyperprolactinaemia and two distinct pituitary microadenomas. A 12-year-old niece developed headache and her MRI showed a microadenoma, not seen on a pituitary MRI scan 3 years earlier. DISCUSSION Out of the 14 members harbouring germline AIP mutations in this kindred, 5 have pituitary adenoma. Affected members had different features and courses of disease. Bulky pituitary and not fully suppressed GH on OGTT can be challenging in the evaluation of females in teenage years. Multiple pituitary adenomas with different secretory profiles may arise in the pituitary of these patients. Small, stable NFPAs can be present in mutation carriers, similar to incidentalomas in the general population. Genetic screening and baseline review, with follow-up of younger subjects, are recommended in AIP mutation-positive families.
Collapse
Affiliation(s)
- Pedro Marques
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Sayka Barry
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Amy Ronaldson
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Arla Ogilvie
- West Hertfordshire Hospitals NHS Trust, Watford, UK
| | - Helen L. Storr
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Peter J. Goadsby
- Basic & Clinical Neuroscience and NIHR-Wellcome Trust King's Clinical Research Facility, King's College London, London, UK
| | - Michael Powell
- The National Hospital for Neurology and Neurosurgery, UCLH, NHS Trust, London, UK
| | - Mary N. Dang
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Harvinder S. Chahal
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London, UK
| | - Jane Evanson
- Department of Radiology, Barts and the London School of Medicine, Queen Mary University of London, London EC1M 6BQ, UK
| | - Ajith V. Kumar
- North East Thames Regional Genetics Service, Great Ormond Street Hospital, London, UK
| | - Joan Grieve
- The National Hospital for Neurology and Neurosurgery, UCLH, NHS Trust, London, UK
| | - Márta Korbonits
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
23
|
Araujo PB, Kasuki L, de Azeredo Lima CH, Ogino L, Camacho AHS, Chimelli L, Korbonits M, Gadelha MR. AIP mutations in Brazilian patients with sporadic pituitary adenomas: a single-center evaluation. Endocr Connect 2017; 6:914-925. [PMID: 29074612 PMCID: PMC5704447 DOI: 10.1530/ec-17-0237] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 10/26/2017] [Indexed: 12/29/2022]
Abstract
Aryl hydrocarbon receptor-interacting protein (AIP) gene mutations (AIPmut) are the most frequent germline mutations found in apparently sporadic pituitary adenomas (SPA). Our aim was to evaluate the frequency of AIPmut among young Brazilian patients with SPA. We performed an observational cohort study between 2013 and 2016 in a single referral center. AIPmut screening was carried out in 132 SPA patients with macroadenomas diagnosed up to 40 years or in adenomas of any size diagnosed until 18 years of age. Twelve tumor samples were also analyzed. Leukocyte DNA and tumor tissue DNA were sequenced for the entire AIP-coding region for evaluation of mutations. Eleven (8.3%) of the 132 patients had AIPmut, comprising 9/74 (12%) somatotropinomas, 1/38 (2.6%) prolactinoma, 1/10 (10%) corticotropinoma and no non-functioning adenomas. In pediatric patients (≤18 years), AIPmut frequency was 13.3% (2/15). Out of the 5 patients with gigantism, two had AIPmut, both truncating mutations. The Y268* mutation was described in Brazilian patients and the K273Rfs*30 mutation is a novel mutation in our patient. No somatic AIP mutations were found in the 12 tumor samples. A tumor sample from an acromegaly patient harboring the A299V AIPmut showed loss of heterozygosity. In conclusion, AIPmut frequency in SPA Brazilian patients is similar to other populations. Our study identified two mutations exclusively found in Brazilians and also shows, for the first time, loss of heterozygosity in tumor DNA from an acromegaly patient harboring the A299V AIPmut Our findings corroborate previous observations that AIPmut screening should be performed in young patients with SPA.
Collapse
Affiliation(s)
- Paula Bruna Araujo
- Department of Internal Medicine and Endocrine UnitMedical School and Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
- Diagnósticos da América SARio de Janeiro, Rio de Janeiro, Brazil
| | - Leandro Kasuki
- Department of Internal Medicine and Endocrine UnitMedical School and Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
- Neuroendocrinology UnitInstituto Estadual do Cérebro Paulo Niemeyer, Rio de Janeiro, Rio de Janeiro, Brazil
- Endocrinology UnitHospital Federal de Bonsucesso, Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Liana Ogino
- Molecular Genetics LaboratoryInstituto Estadual do Cérebro Paulo Niemeyer, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Aline H S Camacho
- Neuropathology Laboratory Instituto Estadual do Cérebro Paulo NiemeyerRio de Janeiro, Rio de Janeiro, Brazil
- National Cancer InstituteRio de Janeiro, Rio de Janeiro, Brazil
| | - Leila Chimelli
- Neuropathology Laboratory Instituto Estadual do Cérebro Paulo NiemeyerRio de Janeiro, Rio de Janeiro, Brazil
| | - Márta Korbonits
- Centre for EndocrinologyWilliam Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, Charterhouse Square, London, UK
| | - Monica R Gadelha
- Department of Internal Medicine and Endocrine UnitMedical School and Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
- Molecular Genetics LaboratoryInstituto Estadual do Cérebro Paulo Niemeyer, Rio de Janeiro, Rio de Janeiro, Brazil
- Neuroendocrinology UnitInstituto Estadual do Cérebro Paulo Niemeyer, Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
24
|
Pardi E, Borsari S, Saponaro F, Bogazzi F, Urbani C, Mariotti S, Pigliaru F, Satta C, Pani F, Materazzi G, Miccoli P, Grantaliano L, Marcocci C, Cetani F. Mutational and large deletion study of genes implicated in hereditary forms of primary hyperparathyroidism and correlation with clinical features. PLoS One 2017; 12:e0186485. [PMID: 29036195 PMCID: PMC5643132 DOI: 10.1371/journal.pone.0186485] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 10/01/2017] [Indexed: 12/24/2022] Open
Abstract
The aim of this study was to carry out genetic screening of the MEN1, CDKN1B and AIP genes, both by direct sequencing of the coding region and multiplex ligation-dependent probe amplification (MLPA) assay in the largest monocentric series of Italian patients with Multiple Endocrine Neoplasia type 1 syndrome (MEN1) and Familial Isolated Hyperparathyroidism (FIHP). The study also aimed to describe and compare the clinical features of MEN1 mutation-negative and mutation-positive patients during long-term follow-up and to correlate the specific types and locations of MEN1 gene mutations with onset and aggressiveness of the main MEN1 manifestations. A total of 69 index cases followed at the Endocrinology Unit in Pisa over a period of 19 years, including 54 MEN1 and 15 FIHP kindreds were enrolled. Seven index cases with MEN1 but MEN1 mutation-negative, followed at the University Hospital of Cagliari, were also investigated. FIHP were also tested for CDC73 and CaSR gene alterations. MEN1 germline mutations were identified in 90% of the index cases of familial MEN1 (F-MEN1) and in 23% of sporadic cases (S-MEN1). MEN1 and CDC73 mutations accounted for 13% and 7% of the FIHP cohort, respectively. A CDKN1B mutation was identified in one F-MEN1. Two AIP variants of unknown significance were detected in two MEN1-negative S-MEN1. A MEN1 positive test best predicted the onset of all three major MEN1-related manifestations or parathyroid and gastro-entero-pancreatic tumors during follow-up. A comparison between the clinical characteristics of F and S-MEN1 showed a higher prevalence of a single parathyroid disease and pituitary tumors in sporadic compared to familial MEN1 patients. No significant correlation was found between the type and location of MEN1 mutations and the clinical phenotype. Since all MEN1 mutation-positive sporadic patients had a phenotype resembling that of familial MEN1 (multiglandular parathyroid hyperplasia, a prevalence of gastro-entero-pancreatic tumors and/or the classic triad) we might hypothesize that a subset of the sporadic MEN1 mutation-negative patients could represent an incidental coexistence of sporadic primary hyperparathyroidism and pituitary tumors or a MEN1 phenocopy, in our cohort, as in most cases described in the literature.
Collapse
Affiliation(s)
- Elena Pardi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Simona Borsari
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Federica Saponaro
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Fausto Bogazzi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Claudio Urbani
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Stefano Mariotti
- Endocrinology Unit, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Francesca Pigliaru
- Endocrinology Unit, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Chiara Satta
- Endocrinology Unit, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Fabiana Pani
- Endocrinology Unit, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Gabriele Materazzi
- Department of Surgical, Medical and Molecular Pathology and Critical Area, University of Pisa, Pisa, Italy
| | - Paolo Miccoli
- Department of Surgical, Medical and Molecular Pathology and Critical Area, University of Pisa, Pisa, Italy
| | - Lorena Grantaliano
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
- Department of Medical Sciences, Hospital Villa Albani, Anzio (RM), Italy
| | - Claudio Marcocci
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
- University Hospital of Pisa, Endocrine Unit 2, Pisa, Italy
| | - Filomena Cetani
- University Hospital of Pisa, Endocrine Unit 2, Pisa, Italy
- * E-mail:
| |
Collapse
|
25
|
Coutant R, Donzeau A, Decrequy A, Louvigné M, Bouhours-Nouet N. How to investigate a child with excessive growth? ANNALES D'ENDOCRINOLOGIE 2017; 78:98-103. [DOI: 10.1016/j.ando.2017.04.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
26
|
Abstract
Although most of pituitary adenomas are benign, they may cause significant burden to patients. Sporadic adenomas represent the vast majority of the cases, where recognized somatic mutations (eg, GNAS or USP8), as well as altered gene-expression profile often affecting cell cycle proteins have been identified. More rarely, germline mutations predisposing to pituitary adenomas -as part of a syndrome (eg, MEN1 or Carney complex), or isolated to the pituitary (AIP or GPR101) can be identified. These alterations influence the biological behavior, clinical presentations and therapeutic responses, and their full understanding helps to provide appropriate care for these patients.
Collapse
Affiliation(s)
- Pedro Marques
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Márta Korbonits
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK.
| |
Collapse
|
27
|
Abstract
Acromegaly is caused by a somatotropinoma in the vast majority of the cases. These are monoclonal tumors that can occur sporadically or rarely in a familial setting. In the last few years, novel familial syndromes have been described and recent studies explored the landscape of somatic mutations in sporadic somatotropinomas. This short review concentrates on the current knowledge of the genetic basis of both familial and sporadic acromegaly.
Collapse
Affiliation(s)
- Mônica R Gadelha
- Neuroendocrinology Research Center/Endocrine Section and Medical School - Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Neuroendocrine Section - Instituto Estadual do Cérebro Paulo Niemeyer, Secretaria Estadual de Saúde do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Leandro Kasuki
- Neuroendocrinology Research Center/Endocrine Section and Medical School - Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Neuroendocrine Section - Instituto Estadual do Cérebro Paulo Niemeyer, Secretaria Estadual de Saúde do Rio de Janeiro, Rio de Janeiro, Brazil
- Endocrine Unit, Hospital Federal de Bonsucesso, Rio de Janeiro, Brazil
| | - Márta Korbonits
- Centre for Endocrinology, Barts and the London School of Medicine, Queen Mary University of London, Charterhouse Square, London, EC1A 6BQ, UK.
| |
Collapse
|
28
|
Caimari F, Korbonits M. Novel Genetic Causes of Pituitary Adenomas. Clin Cancer Res 2016; 22:5030-5042. [DOI: 10.1158/1078-0432.ccr-16-0452] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 08/24/2016] [Indexed: 11/16/2022]
|
29
|
Radian S, Diekmann Y, Gabrovska P, Holland B, Bradley L, Wallace H, Stals K, Bussell AM, McGurren K, Cuesta M, Ryan AW, Herincs M, Hernández-Ramírez LC, Holland A, Samuels J, Aflorei ED, Barry S, Dénes J, Pernicova I, Stiles CE, Trivellin G, McCloskey R, Ajzensztejn M, Abid N, Akker SA, Mercado M, Cohen M, Thakker RV, Baldeweg S, Barkan A, Musat M, Levy M, Orme SM, Unterländer M, Burger J, Kumar AV, Ellard S, McPartlin J, McManus R, Linden GJ, Atkinson B, Balding DJ, Agha A, Thompson CJ, Hunter SJ, Thomas MG, Morrison PJ, Korbonits M. Increased Population Risk of AIP-Related Acromegaly and Gigantism in Ireland. Hum Mutat 2016; 38:78-85. [PMID: 27650164 PMCID: PMC5215436 DOI: 10.1002/humu.23121] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 09/13/2016] [Indexed: 01/06/2023]
Abstract
The aryl hydrocarbon receptor interacting protein (AIP) founder mutation R304* (or p.R304*; NM_003977.3:c.910C>T, p.Arg304Ter) identified in Northern Ireland (NI) predisposes to acromegaly/gigantism; its population health impact remains unexplored. We measured R304* carrier frequency in 936 Mid Ulster, 1,000 Greater Belfast (both in NI) and 2,094 Republic of Ireland (ROI) volunteers and in 116 NI or ROI acromegaly/gigantism patients. Carrier frequencies were 0.0064 in Mid Ulster (95%CI = 0.0027–0.013; P = 0.0005 vs. ROI), 0.001 in Greater Belfast (0.00011–0.0047) and zero in ROI (0–0.0014). R304* prevalence was elevated in acromegaly/gigantism patients in NI (11/87, 12.6%, P < 0.05), but not in ROI (2/29, 6.8%) versus non‐Irish patients (0–2.41%). Haploblock conservation supported a common ancestor for all the 18 identified Irish pedigrees (81 carriers, 30 affected). Time to most recent common ancestor (tMRCA) was 2550 (1,275–5,000) years. tMRCA‐based simulations predicted 432 (90–5,175) current carriers, including 86 affected (18–1,035) for 20% penetrance. In conclusion, R304* is frequent in Mid Ulster, resulting in numerous acromegaly/gigantism cases. tMRCA is consistent with historical/folklore accounts of Irish giants. Forward simulations predict many undetected carriers; geographically targeted population screening improves asymptomatic carrier identification, complementing clinical testing of patients/relatives. We generated disease awareness locally, necessary for early diagnosis and improved outcomes of AIP‐related disease.
Collapse
Affiliation(s)
- Serban Radian
- Centre of Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK.,Department of Endocrinology, Carol Davila University of Medicine and Pharmacy, C.I. Parhon National Institute of Endocrinology, Bucharest, Romania
| | - Yoan Diekmann
- Research Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Plamena Gabrovska
- Centre of Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Brendan Holland
- Centre of Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Lisa Bradley
- Department of Medical Genetics, Belfast HSC Trust, Belfast, UK
| | - Helen Wallace
- Regional Centre for Endocrinology and Diabetes, Royal Victoria Hospital, Belfast, UK
| | - Karen Stals
- Department of Molecular Genetics, Royal Devon and Exeter NHS Foundation Trust/ Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Anna-Marie Bussell
- Department of Molecular Genetics, Royal Devon and Exeter NHS Foundation Trust/ Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Karen McGurren
- Department of Endocrinology and Diabetes, Beaumont Hospital/RCSI Medical School, Dublin, Ireland
| | - Martin Cuesta
- Department of Endocrinology and Diabetes, Beaumont Hospital/RCSI Medical School, Dublin, Ireland
| | - Anthony W Ryan
- Department of Clinical Medicine and Institute of Molecular Medicine, Trinity College Dublin, Trinity Centre for Health Sciences, St James's Hospital, Dublin, Ireland
| | - Maria Herincs
- Centre of Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Laura C Hernández-Ramírez
- Centre of Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Aidan Holland
- Centre of Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Jade Samuels
- Centre of Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Elena Daniela Aflorei
- Centre of Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Sayka Barry
- Centre of Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Judit Dénes
- Centre of Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Ida Pernicova
- Centre of Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Craig E Stiles
- Centre of Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Giampaolo Trivellin
- Centre of Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Ronan McCloskey
- Centre of Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | | | - Noina Abid
- Royal Belfast Hospital for Sick Children, Belfast, UK
| | - Scott A Akker
- Centre of Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Moises Mercado
- Endocrinology Service/Experimental Endocrinology Unit, Hospital de Especialidades, Centro Medico Nacional Siglo XXI, IMSS, Mexico City, Mexico
| | - Mark Cohen
- Department of Endocrinology and Diabetes, Barnet General Hospital, London, UK
| | - Rajesh V Thakker
- Academic Endocrine Unit, OCDEM, University of Oxford, Oxford, UK
| | - Stephanie Baldeweg
- Department of Endocrinology and Diabetes, University College London Hospitals, London, UK
| | - Ariel Barkan
- Department of Neurosurgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Madalina Musat
- Department of Endocrinology, Carol Davila University of Medicine and Pharmacy, C.I. Parhon National Institute of Endocrinology, Bucharest, Romania
| | - Miles Levy
- Department of Endocrinology, University Hospitals of Leicester, Leicester, UK
| | - Stephen M Orme
- Department of Endocrinology, St James's University Hospital, Leeds, UK
| | | | - Joachim Burger
- Institute of Anthropology, Johannes Gutenberg University, Mainz, Germany
| | - Ajith V Kumar
- North East Thames Regional Genetics Service, Great Ormond Street Hospital, London, UK
| | - Sian Ellard
- Department of Molecular Genetics, Royal Devon and Exeter NHS Foundation Trust/ Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Joseph McPartlin
- Trinity Biobank, Institute of Molecular Medicine, Trinity College Dublin, Trinity Centre for Health Sciences, St James's Hospital, Dublin, Ireland
| | - Ross McManus
- Department of Clinical Medicine and Institute of Molecular Medicine, Trinity College Dublin, Trinity Centre for Health Sciences, St James's Hospital, Dublin, Ireland
| | - Gerard J Linden
- Centre for Public Health, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Brew Atkinson
- Regional Centre for Endocrinology and Diabetes, Royal Victoria Hospital, Belfast, UK
| | - David J Balding
- Research Department of Genetics, Evolution and Environment, University College London, London, UK.,School of Biosciences, University of Melbourne, Parkville, Victoria, Australia.,Schools of Mathematics and Statistics, University of Melbourne, Parkville, Victoria, Australia
| | - Amar Agha
- Department of Endocrinology and Diabetes, Beaumont Hospital/RCSI Medical School, Dublin, Ireland
| | - Chris J Thompson
- Department of Endocrinology and Diabetes, Beaumont Hospital/RCSI Medical School, Dublin, Ireland
| | - Steven J Hunter
- Regional Centre for Endocrinology and Diabetes, Royal Victoria Hospital, Belfast, UK
| | - Mark G Thomas
- Research Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Patrick J Morrison
- Department of Medical Genetics, Belfast HSC Trust, Belfast, UK.,Centre for Cancer Research and Cell Biology, Queens University Belfast, Belfast, UK
| | - Márta Korbonits
- Centre of Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
30
|
Saeger W, Petersenn S, Schöfl C, Knappe UJ, Theodoropoulou M, Buslei R, Honegger J. Emerging Histopathological and Genetic Parameters of Pituitary Adenomas: Clinical Impact and Recommendation for Future WHO Classification. Endocr Pathol 2016; 27:115-22. [PMID: 26874696 DOI: 10.1007/s12022-016-9419-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The review assesses immunohistochemical findings of somatostatin receptors and of metalloproteinases in different pituitary adenoma types and the significance of molecular genetic data. Current evidence does not support routine immunohistochemical assessment of somatostatin or dopamine receptor subtype expression on hormone-secreting or nonfunctioning pituitary adenomas. Further prospective studies are needed to define its role for clinical decision making. Until then we suggest to restrict membrane receptor profiling to individual cases or for study purposes. The problems of adenoma expansion and invasion are discussed. Despite partially contradictory publications, proteases clearly play a major role in permission of infiltrative growth of pituitary adenomas. Therefore, detection of at least MMP-2, MMP-9, TIMP-2, and uPA seems to be justified. Molecular characterization is important for familial adenomas, adenomas in MEN, Carney complex, and McCune-Albright syndrome and can gain insight into pathogenesis of sporadic adenomas.
Collapse
Affiliation(s)
- W Saeger
- Institutes of Pathology and Neuropathology, University of Hamburg, UKE, Martinistraße 52, 20246, Hamburg, Germany.
| | - S Petersenn
- ENDOC Center for Endocrinology, 22587 Hamburg, Germany
| | - C Schöfl
- Division of Endocrinology and Diabetes, Department of Medicine I, Universitätsklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - U J Knappe
- Department of Neurosurgery, Johannes-Wesling-Klinikum Minden, 32429, Minden, Germany
| | - M Theodoropoulou
- Department of Endocrinology, Max Planck Institute of Psychiatry, 80804, Munich, Germany
| | - R Buslei
- Department of Neuropathology, Friedrich-Alexander University Erlangen-Nürnberg (FAU), 91054, Erlangen, Germany
| | - J Honegger
- Clinic of Neurosurgery, University of Tübingen, 72076, Tübingen, Germany
| |
Collapse
|
31
|
Abstract
INTRODUCTION Cushing's disease (CD) results from uncontrolled hypercortisolism induced by ACTH-secreting corticotroph adenomas; accordingly, patients diagnosed with CD usually present several comorbidities and an increased risk of mortality. Hypothesis-driven screenings have led to identification of rare alterations in a low number of patients, although the genetic basis underlying CD has remained unclear until recently. Using whole-exome sequencing, recurrent mutations have been reported in the gene coding for the ubiquitin-specific protease 8 (USP8), a protein with deubiquitinase (DUB) activity that modulates the lysosomal turnover of the EGF receptor (EGFR) and other membrane proteins. METHODS In this review, we summarize the recent genetic findings and discuss the clinical and pathological implications of USP8 deregulation in corticotroph adenomas. CONCLUSIONS Mutations in USP8 have been identified in 35-62 % of functional sporadic corticotroph adenomas causing Cushing's disease, but not in any other type of pituitary tumor. These mutations are found mostly in adult female patients and lead to an aberrant DUB activation by impairing the regulation of USP8 by members of the 14-3-3 family of proteins. The consequence of this hyperactivation is a longer retention of EGFR at the plasma membrane which promotes an enhanced production of ACTH.
Collapse
Affiliation(s)
- L G Perez-Rivas
- Medizinische Klinik und Poliklinik IV, Ludwig-Maximilians-Universität München, Ziemssenstrasse 1, 80336, Munich, Germany.
| | - M Reincke
- Medizinische Klinik und Poliklinik IV, Ludwig-Maximilians-Universität München, Ziemssenstrasse 1, 80336, Munich, Germany.
| |
Collapse
|
32
|
Karaca Z, Taheri S, Tanriverdi F, Unluhizarci K, Kelestimur F. Prevalence of AIP mutations in a series of Turkish acromegalic patients: are synonymous AIP mutations relevant? Pituitary 2015; 18:831-7. [PMID: 26021842 DOI: 10.1007/s11102-015-0659-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
CONTEXT In sporadic acromegaly, overall AIP(mut) prevalence is reported as 3, 4.1 and 16 % in studies carried out across Europe. However, it is not known whether the prevalence shows any changes across different ethnicities. The aim of the study was to identify prevalence of AIP(mut) in a series of Turkish acromegalic patients. PATIENTS AND METHODS Direct sequencing of AIP gene was performed in 92 sporadic acromegalic patients. RESULTS One patient was found to have a new mutation in exon 6: g67.258,286 (G/A) heterozygote; (GGC/GAC; gly/asp). Apart from this new mutation, previously defined synonymous mutations in AIP gene were detected in seven patients (Exon 4; rs2276020; (GAC/GAT; asp/asp) and six patients were found to have five different intronic mutations in AIP gene which were not previously defined. The patient with pathogenic AIP(mut) presented at a young age and had an aggressive and treatment resistant tumour. The prevalence of AIP(mut) in Turkish patients was found to be 1 % in sporadic acromegaly in the present study. In addition, one synonymous mutation which was previously defined and six new intronic mutations have been described in Turkish acromegalic patients. All acromegalic patients with synonymous AIP(mut) presented with macroadenoma and majority of them had invasive tumour. CONCLUSION The prevalence of AIP(mut) in Turkish patients was found to be 1 % in sporadic acromegaly in the present study. This ratio increases when younger age groups are taken into account 6 % among patients <30 years of age at the time of diagnosis of acromegaly. The clinical features of acromegaly, such as having large and invasive tumours, may be affected by the presence of synonymous AIP(mut).
Collapse
Affiliation(s)
- Z Karaca
- Department of Endocrinology, Erciyes University Medical School, 38039, Kayseri, Turkey
| | - S Taheri
- Department of Medical Biology, Erciyes University Medical School, Kayseri, Turkey
| | - F Tanriverdi
- Department of Endocrinology, Erciyes University Medical School, 38039, Kayseri, Turkey
| | - K Unluhizarci
- Department of Endocrinology, Erciyes University Medical School, 38039, Kayseri, Turkey
| | - F Kelestimur
- Department of Endocrinology, Erciyes University Medical School, 38039, Kayseri, Turkey.
| |
Collapse
|
33
|
Hernández-Ramírez LC, Gabrovska P, Dénes J, Stals K, Trivellin G, Tilley D, Ferrau F, Evanson J, Ellard S, Grossman AB, Roncaroli F, Gadelha MR, Korbonits M. Landscape of Familial Isolated and Young-Onset Pituitary Adenomas: Prospective Diagnosis in AIP Mutation Carriers. J Clin Endocrinol Metab 2015; 100:E1242-54. [PMID: 26186299 PMCID: PMC4570169 DOI: 10.1210/jc.2015-1869] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
CONTEXT Familial isolated pituitary adenoma (FIPA) due to aryl hydrocarbon receptor interacting protein (AIP) gene mutations is an autosomal dominant disease with incomplete penetrance. Clinical screening of apparently unaffected AIP mutation (AIPmut) carriers could identify previously unrecognized disease. OBJECTIVE To determine the AIP mutational status of FIPA and young pituitary adenoma patients, analyzing their clinical characteristics, and to perform clinical screening of apparently unaffected AIPmut carrier family members. DESIGN This was an observational, longitudinal study conducted over 7 years. SETTING International collaborative study conducted at referral centers for pituitary diseases. PARTICIPANTS FIPA families (n 216) and sporadic young-onset (30 y) pituitary adenoma patients (n 404) participated in the study. INTERVENTIONS We performed genetic screening of patients for AIPmuts, clinical assessment of their family members, and genetic screening for somatic GNAS1 mutations and the germline FGFR4 p.G388R variant. MAIN OUTCOME MEASURE(S) We assessed clinical disease in mutation carriers, comparison of characteristics of AIPmut positive and negative patients, results of GNAS1, and FGFR4 analysis. RESULTS Thirty-seven FIPA families and 34 sporadic patients had AIPmuts. Patients with truncating AIPmuts had a younger age at disease onset and diagnosis, compared with patients with nontruncating AIPmuts. Somatic GNAS1 mutations were absent in tumors from AIPmut-positive patients, and the studied FGFR4 variant did not modify the disease behavior or penetrance in AIPmut-positive individuals. A total of 164 AIPmut-positive unaffected family members were identified; pituitary disease was detected in 18 of those who underwent clinical screening. CONCLUSIONS A quarter of the AIPmut carriers screened were diagnosed with pituitary disease, justifying this screening and suggesting a variable clinical course for AIPmut-positive pituitary adenomas.
Collapse
|
34
|
Gan HW, Bulwer C, Jeelani O, Levine MA, Korbonits M, Spoudeas HA. Treatment-resistant pediatric giant prolactinoma and multiple endocrine neoplasia type 1. INTERNATIONAL JOURNAL OF PEDIATRIC ENDOCRINOLOGY 2015; 2015:15. [PMID: 26180530 PMCID: PMC4503293 DOI: 10.1186/s13633-015-0011-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Accepted: 06/30/2015] [Indexed: 11/28/2022]
Abstract
Background Pediatric pituitary adenomas are rare, accounting for <3 % of all childhood intracranial tumors, the majority of which are prolactinomas. Consequently, they are often misdiagnosed as other suprasellar masses such as craniopharyngiomas in this age group. Whilst guidelines exist for the treatment of adult prolactinomas, the management of childhood presentations of these benign tumors is less clear, particularly when dopamine agonist therapy fails. Given their rarity, childhood-onset pituitary adenomas are more likely to be associated with a variety of genetic syndromes, the commonest being multiple endocrine neoplasia type 1 (MEN-1). Case description We present a case of an early-onset, treatment-resistant giant prolactinoma occurring in an 11-year-old peripubertal boy that was initially sensitive, but subsequently highly resistant to dopamine agonist therapy, ultimately requiring multiple surgical debulking procedures and proton beam irradiation. Our patient is now left with long-term tumor- and treatment-related neuroendocrine morbidities including blindness and panhypopituitarism. Only after multiple consultations and clinical data gained from 20-year-old medical records was a complex, intergenerationally consanguineous family history revealed, compatible with MEN-1, with a splice site mutation (c.784-9G > A) being eventually identified in intron 4 of the MEN1 gene, potentially explaining the difficulties in management of this tumor. Genetic counseling and screening has now been offered to the wider family. Conclusions This case emphasizes the need to consider pituitary adenomas in the differential diagnosis of all pediatric suprasellar tumors by careful endocrine assessment and measurement of at least a serum prolactin concentration. It also highlights the lack of evidence for the optimal management of pediatric drug-resistant prolactinomas. Finally, the case we describe demonstrates the importance of a detailed family history and the role of genetic testing for MEN1 and AIP mutations in all cases of pediatric pituitary adenoma.
Collapse
Affiliation(s)
- Hoong-Wei Gan
- Section for Genetics and Epigenetics in Health and Disease, Genetics and Genomic Medicine Programme, University College London Institute of Child Health, 30 Guilford Street, London, WC1N 1EH UK ; The London Centre for Pediatric Endocrinology & Diabetes, Neuroendocrine Division, Great Ormond Street Hospital for Children NHS Foundation Trust, Great Ormond Street, London, WC1N 3JH UK
| | - Chloe Bulwer
- Section for Experimental & Personalized Medicine, Genetics & Genomic Medicine Programme, University College London Institute of Child Health, 30 Guilford Street, London, WC1N 1EH UK
| | - Owase Jeelani
- Department of Neurosurgery, Great Ormond Street Hospital for Children NHS Foundation Trust, Great Ormond Street, London, WC1N 3JH UK
| | - Michael Alan Levine
- Division of Endocrinology and Diabetes, The Children's Hospital of Philadelphia, 34th and Civic Center Boulevard, Philadelphia, PA 19104 USA ; Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, 34th and Civic Center Boulevard, Philadelphia, PA 19104 USA
| | - Márta Korbonits
- Centre for Endocrinology, Barts and the London School of Medicine & Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ UK
| | - Helen Alexandra Spoudeas
- The London Centre for Pediatric Endocrinology & Diabetes, Neuroendocrine Division, Great Ormond Street Hospital for Children NHS Foundation Trust, Great Ormond Street, London, WC1N 3JH UK
| |
Collapse
|
35
|
Dénes J, Swords F, Rattenberry E, Stals K, Owens M, Cranston T, Xekouki P, Moran L, Kumar A, Wassif C, Fersht N, Baldeweg SE, Morris D, Lightman S, Agha A, Rees A, Grieve J, Powell M, Boguszewski CL, Dutta P, Thakker RV, Srirangalingam U, Thompson CJ, Druce M, Higham C, Davis J, Eeles R, Stevenson M, O'Sullivan B, Taniere P, Skordilis K, Gabrovska P, Barlier A, Webb SM, Aulinas A, Drake WM, Bevan JS, Preda C, Dalantaeva N, Ribeiro-Oliveira A, Garcia IT, Yordanova G, Iotova V, Evanson J, Grossman AB, Trouillas J, Ellard S, Stratakis CA, Maher ER, Roncaroli F, Korbonits M. Heterogeneous genetic background of the association of pheochromocytoma/paraganglioma and pituitary adenoma: results from a large patient cohort. J Clin Endocrinol Metab 2015; 100:E531-41. [PMID: 25494863 PMCID: PMC4333031 DOI: 10.1210/jc.2014-3399] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
CONTEXT Pituitary adenomas and pheochromocytomas/paragangliomas (pheo/PGL) can occur in the same patient or in the same family. Coexistence of the two diseases could be due to either a common pathogenic mechanism or a coincidence. OBJECTIVE The objective of the investigation was to study the possible coexistence of pituitary adenoma and pheo/PGL. DESIGN Thirty-nine cases of sporadic or familial pheo/PGL and pituitary adenomas were investigated. Known pheo/PGL genes (SDHA-D, SDHAF2, RET, VHL, TMEM127, MAX, FH) and pituitary adenoma genes (MEN1, AIP, CDKN1B) were sequenced using next generation or Sanger sequencing. Loss of heterozygosity study and pathological studies were performed on the available tumor samples. SETTING The study was conducted at university hospitals. PATIENTS Thirty-nine patients with sporadic of familial pituitary adenoma and pheo/PGL participated in the study. OUTCOME Outcomes included genetic screening and clinical characteristics. RESULTS Eleven germline mutations (five SDHB, one SDHC, one SDHD, two VHL, and two MEN1) and four variants of unknown significance (two SDHA, one SDHB, and one SDHAF2) were identified in the studied genes in our patient cohort. Tumor tissue analysis identified LOH at the SDHB locus in three pituitary adenomas and loss of heterozygosity at the MEN1 locus in two pheochromocytomas. All the pituitary adenomas of patients affected by SDHX alterations have a unique histological feature not previously described in this context. CONCLUSIONS Mutations in the genes known to cause pheo/PGL can rarely be associated with pituitary adenomas, whereas mutation in a gene predisposing to pituitary adenomas (MEN1) can be associated with pheo/PGL. Our findings suggest that genetic testing should be considered in all patients or families with the constellation of pheo/PGL and a pituitary adenoma.
Collapse
Affiliation(s)
- Judit Dénes
- Department of Endocrinology (J.D., U.S., M.D., P.G., W.M.D., M.K.), Barts and the London School of Medicine, Queen Mary University of London, London EC1M 6BQ, United Kingdom; Semmelweis University, School of PhD studies, Doctoral School of Clinical Medicine, Budapest, Hungary (J.D.), Endocrinology Directorate (F.S.), Norfolk and Norwich University Hospital, Norwich NR4 7UZ, United Kingdom; Department of Medical and Molecular Genetics (E.R., E.R.M.), University of Birmingham, Birmingham B15 2TT, United Kingdom; Department of Molecular Genetics (K.S., M.O., S.E.), Royal Devon and Exeter National Health Service Foundation Trust, Exeter EX2 5DW, United Kingdom; University of Exeter Medical School (S.E.), Exeter EX4 4PY, United Kingdom; Oxford Medical Genetics Laboratories (T.C.), Oxford University Hospitals National Health Service Trust, The Churchill Hospital, Oxford OX3 7LJ, United Kingdom; Section on Endocrinology and Genetics (P.X., C.A.S.) and Section on Molecular Dysmorphology (C.W.), Eunice Kennedy Shriver Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892; Electron Microscopy Unit (L.M.), Department Histopathology, Charing Cross Hospital, Imperial College Healthcare National Health Service Trust, London W6 8RF, United Kingdom; Department of Clinical Genetics (A.K.), Great Ormond Street Hospital, London WC1N 1LE, United Kingdom; Departments of Oncology (N.F.) and Endocrinology (S.E.B.), University College London Hospitals, London WC1E 6BT, United Kingdom; Department of Diabetes and Endocrinology (D.M.), The Ipswich Hospital National Health Service Trust, Ipswich IP4 5PD, United Kingdom; Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology (S.L.), University of Bristol, Bristol BS1 3NY, United Kingdom; Department of Endocrinology (A.Ag., C.J.T.), Beaumont Hospital, Dublin 9, Ireland; Institute of Molecular and Experimental Medicine (A.R.), Cardiff University, Cardiff CF10 3US, United Kingd
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Schöfl C, Honegger J, Droste M, Grussendorf M, Finke R, Plöckinger U, Berg C, Willenberg HS, Lammert A, Klingmüller D, Jaursch-Hancke C, Tönjes A, Schneidewind S, Flitsch J, Bullmann C, Dimopoulou C, Stalla G, Mayr B, Hoeppner W, Schopohl J. Frequency of AIP gene mutations in young patients with acromegaly: a registry-based study. J Clin Endocrinol Metab 2014; 99:E2789-93. [PMID: 25093619 DOI: 10.1210/jc.2014-2094] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
CONTEXT Familial and sporadic GH-secreting pituitary adenomas are associated with mutations in the aryl hydrocarbon receptor-interacting protein (AIP) gene. Patients with an AIP mutation (AIPmut) tend to have more aggressive tumors occurring at a younger age. OBJECTIVE The objective of the study was to investigate the frequency of AIPmut in patients diagnosed at 30 years of age or younger. DESIGN The German Acromegaly Registry database (1795 patients in 58 centers) was screened for patients diagnosed with acromegaly at 30 years of age or younger (329 patients). Sixteen centers participated and 91 patients consented to AIPmut analysis. INTERVENTION DNA was analyzed by direct sequencing and multiplex ligation dependent probe amplification Main outcome Measures: The number of patients with AIPmut was measured. RESULTS Five patients had either a mutation (c.490C>T, c.844C>T, and c.911G>A, three males) or gross deletions of exons 1 and 2 of the AIP gene (n = 2, one female). The overall frequency of an AIPmut was 5.5%, and 2.3% or 2.4% in patients with an apparently sporadic adenoma or macroadenoma, respectively. By contrast, three of four patients (75%) with a positive family history were tested positive for an AIPmut. Except for a positive family history, there were no significant differences between patients with and without an AIPmut. CONCLUSIONS The frequency of AIPmut in this registry-based cohort of young patients with acromegaly is lower than previously reported. Patients with a positive family history should be tested for an AIPmut, whereas young patients without an apparent family history should be screened, depending on the individual cost to benefit ratio.
Collapse
Affiliation(s)
- Christof Schöfl
- Division of Endocrinology and Diabetes (C.S., B.M.), Department of Medicine I, Friedrich-Alexander-University Erlangen-Nuremberg, 91054 Erlangen, Germany; Department of Neurosurgery (J.H.), Eberhard Karls University Tuebingen, 72076 Tuebingen, Germany; Endocrine Practice (M.D.), 26122 Oldenburg, Germany; Center of Endocrinology and Diabetes (M.G.), 70178 Stuttgart, Germany; Endocrine Practice Kaisereiche (R.F.), 12159 Berlin, Germany; Interdisciplinary Center of Metabolism: Endocrinology, Diabetes, and Metabolism (U.P.), Charite-University-Medicine Berlin, 13352 Berlin, Germany; Department of Endocrinology (C.Be.), University Hospital of Essen, 45147 Essen, Germany; Division of Special Endocrinology (H.S.W.), Department of Endocrinology and Diabetes, Medical Faculty, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany; Fifth Medical Clinic (A.L.), University Medical Center Mannheim, University of Heidelberg, 68167 Heidelberg, Germany; Division of Endocrinology and Diabetes (D.K.), Department of Medicine I, Rheinische Friedrich-Wilhelms-University Bonn, 53127 Bonn, Germany; Department of Endocrinology (C.J.-H.), German Clinic of Diagnostics, Wiesbaden, 65191 Wiesbaden, Germany; Medical Department III (A.T.), University of Leipzig, 04103 Leipzig, Germany; Department of Gastroenterology, Hepatology, and Endocrinology (S.S.), Hannover Medical School, 30625 Hannover, Germany; Pituitary Surgery/Interdisciplinary Endocrinology (J.F.), UKE Hamburg, 20246 Hamburg, Germany; Endocrine Practice (C.Bu.), 20095 Hamburg, Germany; Max Planck Institute of Psychiatry (C.D., G.S.), 80804 Munich, Germany; Bioglobe GmbH (W.H.), 22529 Hamburg, Germany; and Medizinische Klinik IV (J.S.), Ludwig-Maximilians-University 80336 Munich, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Preda V, Korbonits M, Cudlip S, Karavitaki N, Grossman AB. Low rate of germline AIP mutations in patients with apparently sporadic pituitary adenomas before the age of 40: a single-centre adult cohort. Eur J Endocrinol 2014; 171:659-66. [PMID: 25184284 DOI: 10.1530/eje-14-0426] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
AIM To study the prevalence of germline mutations of the aryl-hydrocarbon receptor interacting protein (AIP) gene in a large cohort of patients seen in the Oxford Centre for Diabetes Endocrinology and Metabolism (OCDEM), UK, with apparently sporadic pituitary adenomas, who were either diagnosed or had relevant clinical manifestations by the age of 40 years. PATIENTS We prospectively investigated all patients who were seen at Oxford University Hospital, OCDEM, and a tertiary referral centre, between 2012 and 2013, and presented with pituitary tumours under the age of 40 years and with no family history: a total of 127 patients were enrolled in the study. METHODS Leukocyte-origin genomic DNA underwent sequence analysis of exons 1-6 and the flanking intronic regions of the AIP gene (NM_003977.2), with dosage analysis by multiplex ligation-dependent probe amplification. RESULTS AIP variants were detected in 3% of the 127 patients, comprising four of 48 patients with acromegaly (8%), 0 of 43 with prolactinomas, 0 of the 20 patients with non-functioning adenomas, 0 of 15 with corticotroph adenomas and 0 of one with a thyrotroph adenomas. Definite pathogenetic mutations were seen in 2/4 variants, comprising 4.2% of patients with acromegaly. CONCLUSIONS This prospective cohort study suggests a relatively low prevalence of AIP gene mutations in young patients with apparently sporadic pituitary adenomas presenting to a tertiary pituitary UK centre. Those with somatotroph macroadenomas have a higher rate of AIP mutation. These findings should inform discussion of genetic testing guidelines.
Collapse
Affiliation(s)
- Veronica Preda
- Oxford Centre for Diabetes Endocrinology and MetabolismOxford OX3 7LE, UKDepartment of EndocrinologyBarts and the London School of Medicine, Queen Mary University of London, London, UKKolling InstituteRoyal North Shore Hospital, University of Sydney, St Leonards, New South Wales 2065, AustraliaDepartment of NeurosurgeryJohn Radcliffe Hospital, Oxford, UK Oxford Centre for Diabetes Endocrinology and MetabolismOxford OX3 7LE, UKDepartment of EndocrinologyBarts and the London School of Medicine, Queen Mary University of London, London, UKKolling InstituteRoyal North Shore Hospital, University of Sydney, St Leonards, New South Wales 2065, AustraliaDepartment of NeurosurgeryJohn Radcliffe Hospital, Oxford, UK
| | - Márta Korbonits
- Oxford Centre for Diabetes Endocrinology and MetabolismOxford OX3 7LE, UKDepartment of EndocrinologyBarts and the London School of Medicine, Queen Mary University of London, London, UKKolling InstituteRoyal North Shore Hospital, University of Sydney, St Leonards, New South Wales 2065, AustraliaDepartment of NeurosurgeryJohn Radcliffe Hospital, Oxford, UK
| | - Simon Cudlip
- Oxford Centre for Diabetes Endocrinology and MetabolismOxford OX3 7LE, UKDepartment of EndocrinologyBarts and the London School of Medicine, Queen Mary University of London, London, UKKolling InstituteRoyal North Shore Hospital, University of Sydney, St Leonards, New South Wales 2065, AustraliaDepartment of NeurosurgeryJohn Radcliffe Hospital, Oxford, UK
| | - Niki Karavitaki
- Oxford Centre for Diabetes Endocrinology and MetabolismOxford OX3 7LE, UKDepartment of EndocrinologyBarts and the London School of Medicine, Queen Mary University of London, London, UKKolling InstituteRoyal North Shore Hospital, University of Sydney, St Leonards, New South Wales 2065, AustraliaDepartment of NeurosurgeryJohn Radcliffe Hospital, Oxford, UK
| | - Ashley B Grossman
- Oxford Centre for Diabetes Endocrinology and MetabolismOxford OX3 7LE, UKDepartment of EndocrinologyBarts and the London School of Medicine, Queen Mary University of London, London, UKKolling InstituteRoyal North Shore Hospital, University of Sydney, St Leonards, New South Wales 2065, AustraliaDepartment of NeurosurgeryJohn Radcliffe Hospital, Oxford, UK
| |
Collapse
|
38
|
Urbani C, Russo D, Raggi F, Lombardi M, Sardella C, Scattina I, Lupi I, Manetti L, Tomisti L, Marcocci C, Martino E, Bogazzi F. A novel germline mutation in the aryl hydrocarbon receptor-interacting protein (AIP) gene in an Italian family with gigantism. J Endocrinol Invest 2014; 37:949-55. [PMID: 24996936 DOI: 10.1007/s40618-014-0123-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 06/16/2014] [Indexed: 10/25/2022]
Abstract
PURPOSE Acromegaly usually occurs as a sporadic disease, but it may be a part of familial pituitary tumor syndromes in rare cases. Germline mutations in the aryl hydrocarbon receptor-interacting protein (AIP) gene have been associated with a predisposition to familial isolated pituitary adenoma. The aim of the present study was to evaluate the AIP gene in a patient with gigantism and in her relatives. METHODS Direct sequencing of AIP gene was performed in fourteen members of the family, spanning among three generations. RESULTS The index case was an 18-year-old woman with gigantism due to an invasive GH-secreting pituitary adenoma and a concomitant tall-cell variant of papillary thyroid carcinoma. A novel germline mutation in the AIP gene (c.685C>T, p.Q229X) was identified in the proband and in two members of her family, who did not present clinical features of acromegaly or other pituitary disorders. Eleven subjects had no mutation in the AIP gene. Two members of the family with clinical features of acromegaly refused either the genetic or the biochemical evaluation. The Q229X mutation was predicted to generate a truncated AIP protein, lacking the last two tetratricopeptide repeat domains and the final C-terminal α-7 helix. CONCLUSIONS We identified a new AIP germline mutation predicted to produce a truncated AIP protein, lacking its biological properties due to the disruption of the C-terminus binding sites for both the chaperones and the client proteins of AIP.
Collapse
Affiliation(s)
- C Urbani
- Section of Endocrinology, Department of Clinical and Experimental Medicine, University of Pisa, Ospedale Cisanello, Via Paradisa 2, 56124, Pisa, Italy,
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Salvatori R, Daly AF, Quinones-Hinojosa A, Thiry A, Beckers A. A clinically novel AIP mutation in a patient with a very large, apparently sporadic somatotrope adenoma. Endocrinol Diabetes Metab Case Rep 2014; 2014:140048. [PMID: 25136448 PMCID: PMC4120360 DOI: 10.1530/edm-14-0048] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 07/18/2014] [Indexed: 01/12/2023] Open
Abstract
Heterozygous germline inactivating mutations in the aryl hydrocarbon receptor-interacting protein (AIP) gene lead to pituitary adenomas that most frequently present in the setting of familial isolated pituitary adenoma syndrome, usually as somatotropinomas and prolactinomas. More recently, they have been found in a significant percentage of young patients presenting with pituitary macroadenoma without any apparent family history. We describe the case of a 19-year-old man who presented with a gigantic somatotropinoma. His family history was negative. His peripheral DNA showed a heterozygous AIP mutation (p.I13N), while tumor tissue only had the mutated allele, showing loss of heterozygosity (LOH) and suggesting that the mutation caused the disease.
Collapse
Affiliation(s)
- Roberto Salvatori
- Division of Endocrinology, Diabetes and Metabolism, Johns Hopkins University School of Medicine , Baltimore, Maryland , USA
| | - Adrian F Daly
- Department of Endocrinology, Centre Hospitalier Universitaire de Liège, University of Liège , Liège , Belgium
| | | | - Albert Thiry
- Department of Pathology, Centre Hospitalier Universitaire de Liège, University of Liège , Liège , Belgium
| | - Albert Beckers
- Department of Endocrinology, Centre Hospitalier Universitaire de Liège, University of Liège , Liège , Belgium
| |
Collapse
|
40
|
Syro LV, Builes CE, Di Ieva A, Sav A, Rotondo F, Kovacs K. Improving differential diagnosis of pituitary adenomas. Expert Rev Endocrinol Metab 2014; 9:377-386. [PMID: 30763997 DOI: 10.1586/17446651.2014.922412] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Pituitary adenomas are common tumors arising in adenohypophysial cells or their precursors. For improving control of the disease an early diagnosis is important. Initially considered sporadic tumors, some of them are associated with familial syndromes and their recognition and classification is also required. Morphologically, pituitary adenomas represent a heterogeneous group of tumors with several subtypes and different clinical behavior thus a precise pathological diagnosis is crucial. The simple diagnosis of pituitary adenoma is not satisfactory and the correct classification of histological subtypes may predict aggressiveness in the majority of cases. Although considered not malignant, some of them are clinically aggressive and their recognition remains a challenge. In this paper we present the recent advances in the event of improving early recognition and differential diagnosis of pituitary tumors.
Collapse
Affiliation(s)
- Luis V Syro
- a Department of Neurosurgery, Hospital Pablo Tobon Uribe and Clinica Medellin, Calle 54 # 46-27, Cons 501, Medellin, Colombia
| | - Carlos E Builes
- b Department of Endocrinology, Hospital Pablo Tobon Uribe, Medellin, Colombia
| | - Antonio Di Ieva
- c Department of Surgery, Division of Neurosurgery, St. Michael's Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Aydin Sav
- d Department of Pathology, Acibadem University, School of Medicine, Atasehir, Istanbul, Turkey
| | - Fabio Rotondo
- e Laboratory Medicine, St. Michael's Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Kalman Kovacs
- e Laboratory Medicine, St. Michael's Hospital, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
41
|
Williams F, Hunter S, Bradley L, Chahal HS, Storr HL, Akker SA, Kumar AV, Orme SM, Evanson J, Abid N, Morrison PJ, Korbonits M, Atkinson AB. Clinical experience in the screening and management of a large kindred with familial isolated pituitary adenoma due to an aryl hydrocarbon receptor interacting protein (AIP) mutation. J Clin Endocrinol Metab 2014; 99:1122-31. [PMID: 24423289 DOI: 10.1210/jc.2013-2868] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
CONTEXT Germline AIP mutations usually cause young-onset acromegaly with low penetrance in a subset of familial isolated pituitary adenoma families. We describe our experience with a large family with R304* AIP mutation and discuss some of the diagnostic dilemmas and management issues. OBJECTIVE The aim of the study was to identify and screen mutation carriers in the family. PATIENTS Forty-three family members participated in the study. SETTING The study was performed in university hospitals. OUTCOME We conducted genetic and endocrine screening of family members. RESULTS We identified 18 carriers of the R304* mutation, three family members with an AIP-variant A299V, and two family members who harbored both changes. One of the two index cases presented with gigantism and pituitary apoplexy, the other presented with young-onset acromegaly, and both had surgery and radiotherapy. After genetic and clinical screening of the family, two R304* carriers were diagnosed with acromegaly. They underwent transsphenoidal surgery after a short period of somatostatin analog treatment. One of these two patients is in remission; the other achieved successful pregnancy despite suboptimal control of acromegaly. One of the A299V carrier family members was previously diagnosed with a microprolactinoma; we consider this case to be a phenocopy. Height of the unaffected R304* carrier family members is not different compared to noncarrier relatives. CONCLUSIONS Families with AIP mutations present particular problems such as the occurrence of large invasive tumors, poor response to medical treatment, difficulties with fertility and management of pregnancy, and the finding of AIP sequence variants of unknown significance. Because disease mostly develops at a younger age and penetrance is low, the timing and duration of the follow-up of carriers without overt disease requires further study. The psychological and financial impact of prolonged clinical screening must be considered. Excellent relationships between the family, endocrinologists, and geneticists are essential, and ideally these families should be managed in centers with specialist expertise.
Collapse
Affiliation(s)
- Fred Williams
- Regional Center for Endocrinology and Diabetes (F.W., S.H., A.B.A.), Royal Victoria Hospital, Belfast BT12 6BA, Northern Ireland, United Kingdom; Department of Medical Genetics (L.B., P.J.M.), Belfast Health and Social Care Trust, Belfast BT9 7AB, Northern Ireland, United Kingdom; Department of Endocrinology (H.S.C., H.L.S., S.A.A., M.K.), Barts and London School of Medicine, Queen Mary University of London, London EC1A 6BQ, United Kingdom; North East Thames Regional Genetics Service (A.V.K.), Great Ormond Street Hospital, London WC1N 3JH, United Kingdom; Department of Endocrinology (S.M.O.), St James University Hospital, Leeds LS9 7TF, United Kingdom; Department of Radiology (J.E.), St Bartholomew Hospital, London EC1A 7BE, United Kingdom; and Department of Endocrinology (N.A.), Royal Belfast Hospital for Sick Children, Belfast, BT12 6BA, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Management of aggressive pituitary adenomas and pituitary carcinomas. J Neurooncol 2014; 117:459-68. [DOI: 10.1007/s11060-014-1413-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 02/21/2014] [Indexed: 10/25/2022]
|
43
|
Epidemiology and etiopathogenesis of pituitary adenomas. J Neurooncol 2014; 117:379-94. [PMID: 24481996 DOI: 10.1007/s11060-013-1354-5] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2013] [Accepted: 12/29/2013] [Indexed: 10/25/2022]
Abstract
Pituitary adenomas are usually benign monoclonal tumours presenting either due to hypersecretion of pituitary hormones, and/or due to local space occupying effects and hyposecretion of some or all of the pituitary hormones. Some pituitary adenomas cause prominent symptoms, while others may result in slowly developing, insidious, non-specific complains delaying accurate diagnosis, with a third group remaining symptomless and recognised only incidentally. Therefore, it is a challenge to accurately determine the prevalence and incidence of pituitary adenomas in the general population. The vast majority of pituitary adenomas occur sporadically, but familial cases are now increasingly recognised. Hereditary predisposition, somatic mutations and endocrine factors were shown to have a pathophysiologic role in the initiation and progression of pituitary adenomas, which interestingly almost always remain benign. Here, we summarize the available epidemiological data and the known pathogenesis of the pituitary adenomas.
Collapse
|
44
|
García-Arnés JA, González-Molero I, Oriola J, Mazuecos N, Luque R, Castaño J, Arraez MA. Familial isolated pituitary adenoma caused by a Aip gene mutation not described before in a family context. Endocr Pathol 2013; 24:234-8. [PMID: 24078436 DOI: 10.1007/s12022-013-9268-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The cause of familial isolated pituitary adenomas (FIPA) remains unknown in a high percentage of cases, but the AIP gene plays an important role in the etiology. The aim of the study is to describe a family with FIPA syndrome and the results of genomic studies. A 16-year-old man had a giant prolactinoma resistant tomedical treatment with delayed growth and pubertal development. His mother had been previously diagnosed with a nonfunctioning pituitary macroadenoma. Transsphenoidal endoscopic resection was performed and a genetic study revealed a heterozygous mutation in exon 6: 974G>A (p.Arg325Gln). Because the AIP gene is a tumor suppressor gene, we searched for loss of heterozygosity within the AIP gene by amplifying exon 6 from tumor tissue of the patient. In the electropherogram, only the A allele was amplified (hemizygous state), indicating loss of the normal allele. We report a Spanish family with FIPA in whom a mutation in the AIP gene previously unreported in a familiar context was identified.
Collapse
|
45
|
Cai F, Zhang YD, Zhao X, Yang YK, Ma SH, Dai CX, Liu XH, Yao Y, Feng M, Wei JJ, Xing B, Jiao YH, Wei ZQ, Yin ZM, Zhang B, Gu F, Wang RZ. Screening for AIP gene mutations in a Han Chinese pituitary adenoma cohort followed by LOH analysis. Eur J Endocrinol 2013; 169:867-84. [PMID: 24050928 DOI: 10.1530/eje-13-0442] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
OBJECTIVE The aryl hydrocarbon receptor interacting protein gene (AIP) is associated with pituitary adenoma (PA). AIP has not been sequenced in East Asian PA populations, so we performed this study in a Han Chinese cohort. DESIGN Our study included six familial PA pedigrees comprising 16 patients and 27 unaffected relatives, as well as 216 sporadic PA (SPA) patients and 100 unrelated healthy controls. METHODS AIP sequencing was carried out on genomic DNA isolated from blood samples. Multiplex ligation-dependent probe amplification and microsatellite marker analyses on DNA from the paired tumor tissues were performed for loss of heterozygosity analysis. RESULTS We identified three common and four rare single nucleotide polymorphisms (SNPs), one intron insertion, one novel synonymous variant, four novel missense variants, and a reported nonsense mutation in three familial isolated PA (FIPA) cases from the same family. Large genetic deletions were not observed in the germline but were seen in the sporadic tumor DNA from three missense variant carriers. The prevalence of AIP pathogenic variants in PA patients here was low (3.88%), but was higher in somatotropinoma patients (9.30%), especially in young adults (≤30 years) and pediatric (≥18 years) paients (17.24% and 25.00% respectively). All AIP variant patients suffered from macroadenomas. However, the AIP mutation rate in FIPA families was low in this cohort (16.67%, 1/6 families). CONCLUSION AIP gene mutation may not be frequent in FIPA or SPA from the Han Chinese population. AIP sequencing and long-term follow-up investigations should be performed for young patients with large PAs and their families with PA predisposition.
Collapse
Affiliation(s)
- Feng Cai
- Department of Neurosurgery, Peking Union Medical College, Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, Beijing 100730, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Cuny T, Pertuit M, Sahnoun-Fathallah M, Daly A, Occhi G, Odou MF, Tabarin A, Nunes ML, Delemer B, Rohmer V, Desailloud R, Kerlan V, Chabre O, Sadoul JL, Cogne M, Caron P, Cortet-Rudelli C, Lienhardt A, Raingeard I, Guedj AM, Brue T, Beckers A, Weryha G, Enjalbert A, Barlier A. Genetic analysis in young patients with sporadic pituitary macroadenomas: besides AIP don't forget MEN1 genetic analysis. Eur J Endocrinol 2013; 168:533-41. [PMID: 23321498 DOI: 10.1530/eje-12-0763] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
CONTEXT Germline mutations in the aryl hydrocarbon receptor interacting protein gene (AIP) have been identified in young patients (age ≤30 years old) with sporadic pituitary macroadenomas. Otherwise, there are few data concerning the prevalence of multiple endocrine neoplasia type 1 (MEN1) mutations in such a population. OBJECTIVE We assessed the prevalence of both AIP and MEN1 genetic abnormalities (mutations and large gene deletions) in young patients (age ≤30 years old) diagnosed with sporadic and isolated macroadenoma, without hypercalcemia and/or MEN1-associated lesions. DESIGN The entire coding sequences of AIP and MEN1 were screened for mutations. In cases of negative sequencing screening, multiplex ligation-dependent probe amplification was performed for the detection of large genetic deletions. PATIENTS AND SETTINGS One hundred and seventy-four patients from endocrinology departments of 15 French University Hospital Centers were eligible for this study. RESULTS Twenty-one out of 174 (12%) patients had AIP (n=15, 8.6%) or MEN1 (n=6, 3.4%) mutations. In pediatric patients (age ≤18 years old), AIP/MEN1 mutation frequency reached nearly 22% (n=10/46). AIPmut and MEN1mut were identified in 8/79 (10.1%) and 1/79 (1.2%) somatotropinoma patients respectively; they each accounted for 4/74 (5.4%) prolactinoma (PRL) patients with mutations. Half of those patients (n=3/6) with gigantism displayed mutations in AIP. Interestingly, 4/12 (33%) patients with non-secreting adenomas bore either AIP or MEN1 mutations, whereas none of the eight corticotroph adenomas or the single thyrotropinoma case had mutations. No large gene deletions were observed in sequencing-negative patients. CONCLUSION Mutations in MEN1 can be of significance in young patients with sporadic isolated pituitary macroadenomas, particularly PRL, and together with AIP, we suggest genetic analysis of MEN1 in such a population.
Collapse
Affiliation(s)
- Thomas Cuny
- Department of Endocrinology, University Hospital of Nancy-Brabois, 54500 Vandoeuvre-les-Nancy, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Beckers A, Aaltonen LA, Daly AF, Karhu A. Familial isolated pituitary adenomas (FIPA) and the pituitary adenoma predisposition due to mutations in the aryl hydrocarbon receptor interacting protein (AIP) gene. Endocr Rev 2013; 34:239-77. [PMID: 23371967 PMCID: PMC3610678 DOI: 10.1210/er.2012-1013] [Citation(s) in RCA: 208] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Pituitary adenomas are one of the most frequent intracranial tumors and occur with a prevalence of approximately 1:1000 in the developed world. Pituitary adenomas have a serious disease burden, and their management involves neurosurgery, biological therapies, and radiotherapy. Early diagnosis of pituitary tumors while they are smaller may help increase cure rates. Few genetic predictors of pituitary adenoma development exist. Recent years have seen two separate, complimentary advances in inherited pituitary tumor research. The clinical condition of familial isolated pituitary adenomas (FIPA) has been described, which encompasses the familial occurrence of isolated pituitary adenomas outside of the setting of syndromic conditions like multiple endocrine neoplasia type 1 and Carney complex. FIPA families comprise approximately 2% of pituitary adenomas and represent a clinical entity with homogeneous or heterogeneous pituitary adenoma types occurring within the same kindred. The aryl hydrocarbon receptor interacting protein (AIP) gene has been identified as causing a pituitary adenoma predisposition of variable penetrance that accounts for 20% of FIPA families. Germline AIP mutations have been shown to associate with the occurrence of large pituitary adenomas that occur at a young age, predominantly in children/adolescents and young adults. AIP mutations are usually associated with somatotropinomas, but prolactinomas, nonfunctioning pituitary adenomas, Cushing disease, and other infrequent clinical adenoma types can also occur. Gigantism is a particular feature of AIP mutations and occurs in more than one third of affected somatotropinoma patients. Study of pituitary adenoma patients with AIP mutations has demonstrated that these cases raise clinical challenges to successful treatment. Extensive research on the biology of AIP and new advances in mouse Aip knockout models demonstrate multiple pathways by which AIP may contribute to tumorigenesis. This review assesses the current clinical and therapeutic characteristics of more than 200 FIPA families and addresses research findings among AIP mutation-bearing patients in different populations with pituitary adenomas.
Collapse
Affiliation(s)
- Albert Beckers
- Department of Endocrinology, Centre Hospitalier Universitaire de Liège, University of Liège, Domaine Universitaire du Sart-Tilman, 4000 Liège, Belgium.
| | | | | | | |
Collapse
|