1
|
Vitti A, Pagán I, Bochicchio B, De Stradis A, Piazzolla P, Scopa A, Nuzzaci M. Cucumber mosaic virus Is Unable to Self-Assemble in Tobacco Plants When Transmitted by Seed. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11233217. [PMID: 36501256 PMCID: PMC9736744 DOI: 10.3390/plants11233217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/10/2022] [Accepted: 11/21/2022] [Indexed: 05/14/2023]
Abstract
Cucumber mosaic virus (CMV), which has great impact on agronomic production worldwide, is both aphid and seed transmitted. Although the mechanisms of aphid transmission have been widely studied, those underlying the ability of CMV to survive and remain infectious during the passage from one generation to the next through the seeds are still to be clarified. Moreover, the viral determinants of seed transmission rate are poorly understood. Three viral genotypes produced from same RNA 1 and 2 components of CMV-Fny but differing in RNA 3 (the wild type CMV-Fny, a pseudorecombinant CMV-Fny/CMV-S and a chimeric CMV previously obtained by our group, named F, FS and CS, respectively) were propagated in Nicotiana tabacum cv Xanthi plants in order to assess differences in tobacco seed transmission rate and persistence through plant generations in the absence of aphid transmission. Seed-growth tests revealed CMV infection in the embryos, but not in the integuments. Seedlings from seed-growth tests showed the presence of all considered viruses but at different rates: from 4% (F, FS) to 16% (CS). Electron microscopy revealed absence (CS) of viral particles or virions without the typical central hole (F and FS). In agreement, structural characteristics of purified CMV particles, assessed by circular dichroism spectroscopy, showed anomalous spectra of nucleic acids rather than the expected nucleoproteins. These alterations resulted in no seed transmission beyond the first plant generation. Altogether, the results show for the first time that correct virion assembly is needed for seed infection from the mother plant but not to seedling invasion from the seed. We propose that incorrect virion formation, self-assembly and architecture stability might be explained if during the first stages of germination and seedling development some tobacco seed factors target viral regions responsible for protein-RNA interactions.
Collapse
Affiliation(s)
- Antonella Vitti
- School of Agricultural, Forestry, Food and Environmental Sciences, University of Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, Fisciano, 84084 Salerno, Italy
- Correspondence:
| | - Israel Pagán
- Centre for Plant Biotechnology and Genomics UPM-INIA/CSIC, Polytechnic University of Madrid, Campus Montegancedo, M40 Highway km.38, Pozuelo de Alarcón, 28223 Madrid, Spain
| | - Brigida Bochicchio
- Laboratory of Protein Chemistry, Laboratory of Bioinspired Materials (LaBIM), Department of Science, University of Basilicata, Viale dell’Ateneo Lucano, 10, 85100 Potenza, Italy
| | - Angelo De Stradis
- Institute for Sustainable Plant Protection, CNR, Via Amendola 122/D, 70126 Bari, Italy
| | - Pasquale Piazzolla
- School of Agricultural, Forestry, Food and Environmental Sciences, University of Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy
| | - Antonio Scopa
- School of Agricultural, Forestry, Food and Environmental Sciences, University of Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy
| | - Maria Nuzzaci
- School of Agricultural, Forestry, Food and Environmental Sciences, University of Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy
| |
Collapse
|
2
|
Elbeaino T, Marais A, Faure C, Trioano E, Candresse T, Parrella G. High-Throughput Sequencing Reveals Cyclamen persicum Mill. as a Natural Host for Fig Mosaic Virus. Viruses 2018; 10:E684. [PMID: 30513865 PMCID: PMC6316199 DOI: 10.3390/v10120684] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 11/28/2018] [Accepted: 11/29/2018] [Indexed: 11/16/2022] Open
Abstract
In a search for viral infections, double-stranded RNA (dsRNA) were recovered from a diseased cyclamen (Cyclamen persicum Mill.) accession (Cic) and analyzed by high-throughput sequencing (HTS) technology. Analysis of the HTS data showed the presence of Fig mosaic emaravirus (FMV) in this accession. The complete sequences of six FMV-Cic RNA genomic segments were determined from the HTS data and using Sanger sequencing. All FMV-Cic RNA segments are similar in size to those of FMV from fig (FMV-Gr10), with the exception of RNA-6 that is one nucleotide longer. The occurrence of FMV in cyclamen was investigated through a small-scale survey, from which four plants (out of 18 tested) were found RT-PCR positive. To study sequence variations of cyclamen isolates of FMV, RT-PCR products generated through the amplification of the partially RNA-dependent RNA polymerase (RdRp, RNA-1), glycoprotein (GP, RNA-2), and nucleocapsid (NCP, RNA-3) genes were explored. The nucleotide sequence identities for cyclamen isolates ranged between 86% and 99% in RNA-1, 93% and 99% in RNA-2, and 98% and 99% in RNA-3, while lower identity levels were observed with the sequences of fig isolates. Based on the phylogenetic tree obtained with a 304-nt fragment of RNA3, all FMV isolates from cyclamens were assigned to a single cluster close to fig isolates from the Mediterranean. FMV was graft-transmitted to healthy cyclamens eliciting symptoms similar to those observed in the Cic accession, thus suggesting a causal role of FMV in the symptoms that prompted the investigation. This is the first report of FMV in a non-fig host, Cyclamen persicum, a finding that may help in the control of the mosaic and mosaic-like diseases of fig and cyclamen, respectively.
Collapse
Affiliation(s)
- Toufic Elbeaino
- Mediterranean Agronomic Institute of Bari (CIHEAM-IAMB), Via Ceglie 9, 70010 Valenzano, Italy.
| | - Armelle Marais
- UMR 1332 Biologie du Fruit et Pathologie, INRA, Université Bordeaux, CS 20032, 33882 Villenave d'Ornon CEDEX, France.
| | - Chantal Faure
- UMR 1332 Biologie du Fruit et Pathologie, INRA, Université Bordeaux, CS 20032, 33882 Villenave d'Ornon CEDEX, France.
| | - Elisa Trioano
- Institute for Sustainable Plant Protection, National Research Council (CNR), Via Università 133, 80055 Portici, Italy.
| | - Thierry Candresse
- UMR 1332 Biologie du Fruit et Pathologie, INRA, Université Bordeaux, CS 20032, 33882 Villenave d'Ornon CEDEX, France.
| | - Giuseppe Parrella
- Institute for Sustainable Plant Protection, National Research Council (CNR), Via Università 133, 80055 Portici, Italy.
| |
Collapse
|
3
|
Al-Zahrani HSM, Elbeshehy EKF, Aldhebiani AY, Elbeaino T. Effect of Cucumber mosaic virus (CMV) infection on antineoplastic alkaloids from periwinkle (Catharanthus roseus L.) cultured in the Mecca region and resistance induction by plant-growth-promoting rhizobacteria (PGPR). BIOTECHNOL BIOTEC EQ 2017. [DOI: 10.1080/13102818.2017.1395298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
| | - Esam Kamal Fahmi Elbeshehy
- Department of Biological Sciences, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia
- Agriculture Botany Department, Faculty of Agriculture, Suez Canal University, Ismailia, Egypt
| | - Amal Yahya Aldhebiani
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia,
| | | |
Collapse
|
4
|
Auxin and cytokinin metabolism and root morphological modifications in Arabidopsis thaliana seedlings infected with Cucumber mosaic virus (CMV) or exposed to cadmium. Int J Mol Sci 2013; 14:6889-902. [PMID: 23531542 PMCID: PMC3645669 DOI: 10.3390/ijms14046889] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 03/15/2013] [Accepted: 03/20/2013] [Indexed: 12/30/2022] Open
Abstract
Arabidopsis thaliana L. is a model plant but little information is available about morphological root changes as part of a phytohormonal common response against both biotic and abiotic stressors. For this purpose, two-week-old Arabidopsis seedlings were treated with 10 μM CdSO4 or infected with CMV. After 12 days the entire aerial parts and the root system were analyzed, and the presence of CMV or the accumulation of Cd were detected. Microscopic analysis revealed that both CMV and Cd influenced root morphology by a marked development in the length of root hairs and an intense root branching if compared to controls. Among the three treatments, Cd-treated seedlings showed a shorter root axis length and doubled their lateral root diameter, while the lateral roots of CMV-infected seedlings were the longest. The root growth patterns were accompanied by significant changes in the levels of indole-3-acetic acid, trans-zeatin riboside, dihydrozeatin riboside, as a probable consequence of the regulation of some genes involved in their biosynthesis/degradation. The opposite role on root development played by the phythormones studied is discussed in detail. The results obtained could provide insights into novel strategies for plant defense against pathogens and plant protection against pollutants.
Collapse
|
5
|
Vitti A, Piazzolla G, Condelli V, Nuzzaci M, Lanorte MT, Boscia D, De Stradis A, Antonaci S, Piazzolla P, Tortorella C. Cucumber mosaic virus as the expression system for a potential vaccine against Alzheimer's disease. J Virol Methods 2010; 169:332-40. [PMID: 20691733 DOI: 10.1016/j.jviromet.2010.07.039] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Revised: 07/28/2010] [Accepted: 07/29/2010] [Indexed: 10/19/2022]
Abstract
A primary therapeutic goal in Alzheimer's disease (AD) is to reduce the quantity of amyloid β protein (Aβ) present in the brain. To develop an effective, safe system for vaccination against Alzheimer's disease, the plant virus Cucumber mosaic virus (CMV) was engineered genetically to express Aβ-derived fragments that stimulate mainly humoral immune responses. Six chimeric constructs, bearing the Aβ1-15 or the Aβ4-15 sequence in positions 248, 392 or 529 of the CMV coat protein (CP) gene, were created. Viral products proved to be able to replicate in their natural host. However, only chimeric Aβ1-15-CMVs were detected by Aβ1-42 antiserum in Western blot analysis. Experimental evidence of Immunoelectron microscopy revealed a complete decoration of Aβ1-15-CMV(248) and Aβ1-15-CMV(392) following incubation with either anti-Aβ1-15 or anti-Aβ1-42 polyclonal antibodies. These two chimeric CMVs appear to be endowed with features making them possible candidates for vaccination against Alzheimer's disease.
Collapse
Affiliation(s)
- A Vitti
- Department of Biology, Plant Protection and Agrobiotechnology, University of Basilicata, Viale dell'Ateneo Lucano, 10, 85100 Potenza, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Al Abdullah A, El Beaino T, Saponari M, Hallak H, Digiaro M. Preliminary evaluation of the status of olive-infecting viruses in Syria. ACTA ACUST UNITED AC 2005. [DOI: 10.1111/j.1365-2338.2005.00818.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
7
|
Bertolini E, Olmos A, López MM, Cambra M. Multiplex Nested Reverse Transcription-Polymerase Chain Reaction in a Single Tube for Sensitive and Simultaneous Detection of Four RNA Viruses and Pseudomonas savastanoi pv. savastanoi in Olive Trees. PHYTOPATHOLOGY 2003; 93:286-292. [PMID: 18944338 DOI: 10.1094/phyto.2003.93.3.286] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
ABSTRACT A multiplex nested reverse transcription-polymerase chain reaction (RT-PCR) in a single closed tube was developed for the simultaneous detection of four RNA viruses: Cucumber mosaic virus, Cherry leaf roll virus, Strawberry latent ringspot virus, and Arabis mosaic virus, and the bacterium Pseudomonas savastanoi pv. savastanoi. The method enabled, for the first time, the sensitive and simultaneous detection of RNA and DNA targets from plant viruses and a bacterium, saving time, decreasing risks of contamination, and reducing costs compared with conventional monospecific nested amplifications. The method was successfully coupled with colorimetric detection of amplicons using specific oligoprobes to simplify routine detection. Two hundred forty-five olive trees from 15 different cultivars were analyzed by multiplex RT-nested PCR coupled with colorimetric detection. Multiplex nested RT-PCR for viral detection increased the identification of positive trees by 8.1%. An uneven distribution of the viruses was observed in the infected trees. The bacterium was detected in 28.7% of the analyzed trees by the developed multiplex nested method and by a nested PCR previously developed. This powerful methodology could be applied to other models for the detection of several pathogens in a single assay.
Collapse
|