1
|
Development of one-tube real-time RT-qPCR for the universal detection and quantification of Plum pox virus (PPV). J Virol Methods 2019; 263:10-13. [DOI: 10.1016/j.jviromet.2018.10.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 08/30/2018] [Accepted: 10/12/2018] [Indexed: 12/22/2022]
|
2
|
Zuriaga E, Soriano JM, Zhebentyayeva T, Romero C, Dardick C, Cañizares J, Badenes ML. Genomic analysis reveals MATH gene(s) as candidate(s) for Plum pox virus (PPV) resistance in apricot (Prunus armeniaca L.). MOLECULAR PLANT PATHOLOGY 2013; 14:663-77. [PMID: 23672686 PMCID: PMC6638718 DOI: 10.1111/mpp.12037] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Sharka disease, caused by Plum pox virus (PPV), is the most important viral disease affecting Prunus species. A major PPV resistance locus (PPVres) has been mapped to the upper part of apricot (Prunus armeniaca) linkage group 1. In this study, a physical map of the PPVres locus in the PPV-resistant cultivar 'Goldrich' was constructed. Bacterial artificial chromosome (BAC) clones belonging to the resistant haplotype contig were sequenced using 454/GS-FLX Titanium technology. Concurrently, the whole genome of seven apricot varieties (three PPV-resistant and four PPV-susceptible) and two PPV-susceptible apricot relatives (P. sibirica var. davidiana and P. mume) were obtained using the Illumina-HiSeq2000 platform. Single nucleotide polymorphisms (SNPs) within the mapped interval, recorded from alignments against the peach genome, allowed us to narrow down the PPVres locus to a region of ∼196 kb. Searches for polymorphisms linked in coupling with the resistance led to the identification of 68 variants within 23 predicted transcripts according to peach genome annotation. Candidate resistance genes were ranked combining data from variant calling and predicted functions inferred from sequence homology. Together, the results suggest that members of a cluster of meprin and TRAF-C homology domain (MATHd)-containing proteins are the most likely candidate genes for PPV resistance in apricot. Interestingly, MATHd proteins are hypothesized to control long-distance movement (LDM) of potyviruses in Arabidopsis, and restriction for LDM is also a major component of PPV resistance in apricot. Although the PPV resistance gene(s) remains to be unambiguously identified, these results pave the way to the determination of the underlying mechanism and to the development of more accurate breeding strategies.
Collapse
Affiliation(s)
- Elena Zuriaga
- Instituto Valenciano de Investigaciones Agrarias (IVIA), Apartado Oficial, 46113 Moncada, Valencia, Spain
| | | | | | | | | | | | | |
Collapse
|
3
|
Chirkov S, Ivanov P, Sheveleva A. Detection and partial molecular characterization of atypical plum pox virus isolates from naturally infected sour cherry. Arch Virol 2013; 158:1383-7. [PMID: 23404462 DOI: 10.1007/s00705-013-1630-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 12/24/2012] [Indexed: 10/27/2022]
Abstract
Atypical isolates of plum pox virus (PPV) were discovered in naturally infected sour cherry in urban ornamental plantings in Moscow, Russia. The isolates were detected by polyclonal double antibody sandwich ELISA and RT-PCR using universal primers specific for the 3'-non-coding and coat protein (CP) regions of the genome but failed to be recognized by triple antibody sandwich ELISA with the universal monoclonal antibody 5B and by RT-PCR using primers specific to for PPV strains D, M, C and W. Sequence analysis of the CP genes of nine isolates revealed 99.2-100 % within-group identity and 62-85 % identity to conventional PPV strains. Phylogenetic analysis showed that the atypical isolates represent a group that is distinct from the known PPV strains. Alignment of the N-terminal amino acid sequences of CP demonstrated their close similarity to those of a new tentative PPV strain, CR.
Collapse
Affiliation(s)
- Sergei Chirkov
- Department of Virology, Biological Faculty, Lomonosov Moscow State University, Leninskie Gory 1/12, Moscow 119991, Russia.
| | | | | |
Collapse
|
4
|
Sheveleva A, Ivanov P, Prihodko Y, James D, Chirkov S. Occurrence and Genetic Diversity of Winona-Like Plum pox virus Isolates in Russia. PLANT DISEASE 2012; 96:1135-1142. [PMID: 30727054 DOI: 10.1094/pdis-12-11-1045-re] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In studying the distribution and genetic diversity of Plum pox virus (PPV) in Russia, over a dozen new PPV isolates belonging to the strain Winona (PPV-W) were identified by immunocapture reverse-transcription polymerase chain reaction with the PPV-W-specific primers 3174-SP-F3/3174-SP-R1. Isolates were detected in two geographically distant regions of European Russia (Northern Caucasus and Moscow regions) in naturally infected plum (Prunus domestica), blackthorn (P. spinosa), Canadian plum (P. nigra), and downy cherry (P. tomentosa). The new PPV-W isolates were shown to be serologically related but not identical by triple-antibody sandwich enzyme-linked immunosorbent assay and Western blotting analysis using the monoclonal antibody (MAb) 5B-IVIA and MAbs specific to the N-terminal epitopes of PPV-W isolate 3174. Analysis of nucleotide and deduced amino acid sequences of the (C-ter)NIb-(N-ter)CP genome region indicate great genetic diversity among isolates, with phylogenetic analysis revealing seven clades. Isolates P1 and P3 found in plum in the south of Russia clustered closely with the putative ancestral PPV-W isolate LV-145bt from Latvia, while isolate 1410-7 found in P. nigra in Moscow appears to be closely related to the Canadian isolate W3174. The data obtained indicate wide dissemination of PPV-W isolate in stone fruit in the European part of the former USSR.
Collapse
Affiliation(s)
- Anna Sheveleva
- Department of Virology, Biological Faculty, Lomonosov Moscow State University, Moscow
| | - Peter Ivanov
- Department of Virology, Biological Faculty, Lomonosov Moscow State University, Moscow
| | - Yuri Prihodko
- All-Russian Plant Quarantine Center, Moscow region, Russia
| | - Delano James
- Sidney Laboratory-Centre for Plant Health, Canadian Food Inspection Agency, 8801 East Saanich Road, Sidney, BC, V8L 1H3, Canada
| | - Sergei Chirkov
- Department of Virology, Biological Faculty, Lomonosov Moscow State University
| |
Collapse
|
5
|
Vera Ruiz EM, Soriano JM, Romero C, Zhebentyayeva T, Terol J, Zuriaga E, Llácer G, Abbott AG, Badenes ML. Narrowing down the apricot Plum pox virus resistance locus and comparative analysis with the peach genome syntenic region. MOLECULAR PLANT PATHOLOGY 2011; 12:535-47. [PMID: 21722293 PMCID: PMC6640391 DOI: 10.1111/j.1364-3703.2010.00691.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Sharka disease, caused by the Plum pox virus (PPV), is one of the main limiting factors for stone fruit crops worldwide. Only a few resistance sources have been found in apricot (Prunus armeniaca L.), and most studies have located a major PPV resistance locus (PPVres) on linkage group 1 (LG1). However, the mapping accuracy was not sufficiently reliable and PPVres was predicted within a low confidence interval. In this study, we have constructed two high-density simple sequence repeat (SSR) improved maps with 0.70 and 0.68 markers/cm, corresponding to LG1 of 'Lito' and 'Goldrich' PPV-resistant cultivars, respectively. Using these maps, and excluding genotype-phenotype incongruent individuals, a new binary trait locus (BTL) analysis for PPV resistance was performed, narrowing down the PPVres support intervals to 7.3 and 5.9 cm in 'Lito' and 'Goldrich', respectively. Subsequently, 71 overlapping oligonucleotides (overgo) probes were hybridized against an apricot bacterial artificial chromosome (BAC) library, identifying 870 single BACs from which 340 were anchored onto a map region of approximately 30-40 cm encompassing PPVres. Partial BAC contigs assigned to the two allelic haplotypes (resistant/susceptible) of the PPVres locus were built by high-information content fingerprinting (HICF). In addition, a total of 300 BAC-derived sequences were obtained, and 257 showed significant homology with the peach genome scaffold_1 corresponding to LG1. According to the peach syntenic genome sequence, PPVres was predicted within a region of 2.16 Mb in which a few candidate resistance genes were identified.
Collapse
Affiliation(s)
- Elsa María Vera Ruiz
- Instituto Valenciano de Investigaciones Agrarias (IVIA), Apartado Oficial, Moncada, Valencia, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Byzova NA, Safenkova IV, Chirkov SN, Avdienko VG, Guseva AN, Mitrofanova IV, Zherdev AV, Dzantiev BB, Atabekov JG. Interaction of Plum Pox Virus with Specific Colloidal Gold-Labeled Antibodies and Development of Immunochromatographic Assay of the Virus. BIOCHEMISTRY (MOSCOW) 2010; 75:1393-403. [DOI: 10.1134/s000629791011012x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Barba M, Van den Bergh I, Belisario A, Beed F. The need for culture collections to support plant pathogen diagnostic networks. Res Microbiol 2010; 161:472-9. [DOI: 10.1016/j.resmic.2010.04.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2009] [Revised: 04/12/2010] [Accepted: 04/12/2010] [Indexed: 11/26/2022]
|
8
|
Olmos A, Bertolini E, Capote N, Cambra M. An Evidence-Based Approach to Plum Pox Virus Detection by DASI-ELISA and RT-PCR in Dormant Period. Virology (Auckl) 2008. [DOI: 10.4137/vrt.s495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
An evidence-based approach, such as those developed in clinical and veterinary medicine, was applied to the detection of Plum pox virus (PPV) during the dormant period. A standardized methodology was used for the calculation of parameters of the operational capacity of DASI-ELISA and RT-PCR in wintertime. These methods are routinely handled to test the sanitary status of plants in national or international trading and in those cases concerning export-import of plant materials. Diagnosis often has to be performed during the dormant period, when plant material is commercialized. Some guidelines to interpret diagnostic results of wintertime are provided in an attempt to minimize risks associated with the methods and over-reliance on the binary outcome of a single assay. In order to evaluate if a complementary test increased the confidence of PPV diagnosis when discordant results between DASI-ELISA and RT-PCR are obtained, NASBA-FH also was included. Likelihood ratios of each method were estimated based on the sensitivity and specificity obtained in wintertime. Subsequently, a Bayesian approach was performed to calculate post-test probability of PPV infection in spring. Results of evidence-based approach show that different PPV prevalences require different screening tests. Thus, at very low PPV prevalence levels DASI-ELISA should be used as the election method, whilst at the highest PPV prevalence levels RT-PCR should be performed. NASBA-FH could be used at medium prevalences to clarify discordances between DASI-ELISA and RT-PCR.
Collapse
Affiliation(s)
- Antonio Olmos
- Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias (IVIA), Carretera Moncada a Náquera km 5, 46113 Moncada, Valencia, Spain
| | - Edson Bertolini
- Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias (IVIA), Carretera Moncada a Náquera km 5, 46113 Moncada, Valencia, Spain
| | - Nieves Capote
- Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias (IVIA), Carretera Moncada a Náquera km 5, 46113 Moncada, Valencia, Spain
| | - Mariano Cambra
- Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias (IVIA), Carretera Moncada a Náquera km 5, 46113 Moncada, Valencia, Spain
| |
Collapse
|
9
|
Pasquini G, Barba M, Hadidi A, Faggioli F, Negri R, Sobol I, Tiberini A, Caglayan K, Mazyad H, Anfoka G, Ghanim M, Zeidan M, Czosnek H. Oligonucleotide microarray-based detection and genotyping of Plum pox virus. J Virol Methods 2008; 147:118-26. [DOI: 10.1016/j.jviromet.2007.08.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2007] [Revised: 08/03/2007] [Accepted: 08/22/2007] [Indexed: 10/22/2022]
|
10
|
Candresse T, Cambra M. Causal agent of sharka disease: historical perspective and current status of Plum pox virus strains. ACTA ACUST UNITED AC 2006. [DOI: 10.1111/j.1365-2338.2006.00980.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
11
|
Cambra M, Capote N, Myrta A, Llácer G. Plum pox virus and the estimated costs associated with sharka disease. ACTA ACUST UNITED AC 2006. [DOI: 10.1111/j.1365-2338.2006.01027.x] [Citation(s) in RCA: 171] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|