1
|
Yu J, Dong HW, Shi LT, Tang XY, Liu JR, Shi JH. Reproductive toxicity of perchlorate in rats. Food Chem Toxicol 2019; 128:212-222. [PMID: 30991129 DOI: 10.1016/j.fct.2019.04.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 03/31/2019] [Accepted: 04/10/2019] [Indexed: 12/26/2022]
Abstract
Perchlorate, as an oxidizer, has many applications such as explosives and pyrotechnics, especially in rocket propellants and missile motors. Because it was found in water including wells and drinking water in the US, its effect on human health was being noted. However, the reproductive toxic effect on perchlorate is still unclear. In present study, the effects of repeated exposure to perchlorate on reproductive toxicity were evaluated in Wistar rats. The rats were treated orally with perchlorate at doses of 0.05, 1.00 or 10.00 mg/kg body weight (b.w.) daily for 8 weeks. The levels of T3 and T4 hormones in the rat serum were detected by radioimmunoassay kit. The indexes of reproduction, percentage of organ in body weight (%) and frequency of abnormal sperm cells were also analyzed in this study. DNA damage in testicular cells was evaluated by Comet assay. The levels of MDA, GSH and SOD were examined in testicle tissues of rats by ELISA. The expression of c-fos and fas protein was examined in testicle tissues by immunohistochemistry. The results showed that perchlorate did not affect the body weight of rats. Perchlorate also significantly decreased indexes of live birth and weaning in the groups of 1.00 and 10.00 mg/kg, and viability index only in the 10.00 mg/kg group (P < 0.05). Perchlorate also significantly decreased the serum level of T3 in male rats of 1.00 and 10.00 mg/kg groups, increased the rate of sperm abnormality (10.00 mg/kg), potentially caused DNA damage in testicular cells and altered the status of oxidative stress in male rats. In addition, because of the increase in the expression of fas and c-fos protein in testicle tissues, perchlorate could induce apoptosis in spermatogenesis. Thus, these findings indicate that perchlorate could cause DNA damage in testicular tissues and reduce testicular spermatogenic ability, resulting in reproductive toxicity.
Collapse
Affiliation(s)
- Jia Yu
- Department of Environmental Health, Public Health College, Harbin Medical University, 157 Baojian Road, NanGang District, Harbin, 150081, People's Republic of China.
| | - Hong-Wei Dong
- Department of Environmental Health, Public Health College, Harbin Medical University, 157 Baojian Road, NanGang District, Harbin, 150081, People's Republic of China
| | - Li-Tian Shi
- Department of Environmental Health, Public Health College, Harbin Medical University, 157 Baojian Road, NanGang District, Harbin, 150081, People's Republic of China
| | - Xuan-Yue Tang
- Department of Environmental Health, Public Health College, Harbin Medical University, 157 Baojian Road, NanGang District, Harbin, 150081, People's Republic of China.
| | - Jia-Ren Liu
- Department of Environmental Health, Public Health College, Harbin Medical University, 157 Baojian Road, NanGang District, Harbin, 150081, People's Republic of China; The department of Clinical Laboratory, The 4th Affiliated Hospital of Harbin Medical University, 37 YiYuan Street, Harbin, 150001, People's Republic of China.
| | - Ji-Hong Shi
- Harbin Medical University Library, 194 XueFu Road, NanGang District, Harbin, 150081, People's Republic of China.
| |
Collapse
|
2
|
Change of iodine load and thyroid homeostasis induced by ammonium perchlorate in rats. ACTA ACUST UNITED AC 2014; 34:672-678. [DOI: 10.1007/s11596-014-1335-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 07/20/2014] [Indexed: 10/24/2022]
|
3
|
Zewdie T, Smith CM, Hutcheson M, West CR. Basis of the Massachusetts reference dose and drinking water standard for perchlorate. ENVIRONMENTAL HEALTH PERSPECTIVES 2010; 118:42-48. [PMID: 20056583 PMCID: PMC2831965 DOI: 10.1289/ehp.0900635] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2009] [Revised: 01/30/2009] [Accepted: 07/13/2009] [Indexed: 05/28/2023]
Abstract
OBJECTIVE Perchlorate inhibits the uptake of iodide in the thyroid. Iodide is required to synthesize hormones critical to fetal and neonatal development. Many water supplies and foods are contaminated with perchlorate. Exposure standards are needed but controversial. Here we summarize the basis of the Massachusetts (MA) perchlorate reference dose (RfD) and drinking water standard (DWS), which are considerably lower and more health protective than related values derived by several other agencies. We also review information regarding perchlorate risk assessment and policy. DATA SOURCES MA Department of Environmental Protection (DEP) scientists, with input from a science advisory committee, assessed a wide range of perchlorate risk and exposure information. Health outcomes associated with iodine insufficiency were considered, as were data on perchlorate in drinking water disinfectants. DATA SYNTHESIS We used a weight-of-the-evidence approach to evaluate perchlorate risks, paying particular attention to sensitive life stages. A health protective RfD (0.07 microg/kg/day) was derived using an uncertainty factor approach with perchlorate-induced iodide uptake inhibition as the point of departure. The MA DWS (2 microg/L) was based on risk management decisions weighing information on perchlorate health risks and its presence in certain disinfectant solutions used to treat drinking water for pathogens. CONCLUSIONS Current data indicate that perchlorate exposures attributable to drinking water in individuals at sensitive life stages should be minimized and support the MA DEP perchlorate RfD and DWS. Widespread exposure to perchlorate and other thyroid toxicants in drinking water and foods suggests that more comprehensive policies to reduce overall exposures and enhance iodine nutrition are needed.
Collapse
Affiliation(s)
| | - C. Mark Smith
- Address correspondence to C.M. Smith, Massachusetts Department of Environmental Protection, Office of Research and Standards, 1 Winter St., Boston, MA 02108 USA. Telephone: (617) 292-5509. Fax: (617) 556-1006. E-mail:
| | | | | |
Collapse
|
4
|
Martinelango PK, Gümüş G, Dasgupta PK. Matrix interference free determination of perchlorate in urine by ion association–ion chromatography–mass spectrometry. Anal Chim Acta 2006; 567:79-86. [PMID: 17723382 DOI: 10.1016/j.aca.2006.02.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2005] [Revised: 02/05/2006] [Accepted: 02/09/2006] [Indexed: 11/18/2022]
Abstract
Quantitative measurement of perchlorate in biological fluids is of importance to assess its toxicity and to study its effects on the thyroid gland. Whenever possible, urine samples are preferred in toxicologic/epidemiologic studies because sample collection is non-invasive. We present here a pretreatment method for the determination of perchlorate in urine samples that lead to a clean matrix. Urine samples, spiked with isotopically labeled perchlorate, are exposed to UV to destroy/decompose organic molecules and then sequentially treated with an H+-form cation exchange resin to remove protolyzable compounds, with ammonia to raise the pH to 10-11 and finally passed through a mini-column of basic alumina to remove the color and other organic matter. After filtration through a 0.45 microm syringe filter, the sample thus prepared can be directly injected into an ion chromatograph (IC). We use ion association-electrospray ionization-mass spectrometry (ESI-MS) to detect and quantify perchlorate. The proposed sample preparation method leads to excellent limits of detection (LOD's) for perchlorate since there is essentially no dilution of sample and the matrix effects are eliminated. Results of urine samples from both men and women volunteers are reported for perchlorate, as well as for iodide and thiocyanate, which are generally present at much higher concentrations and for which a "dilute and shoot" approach is adequate. The limit of detection (S/N=3) for iodide, thiocyanate and perchlorate by the present method was 0.40, 0.10 and 0.080 microg l(-1), respectively.
Collapse
Affiliation(s)
- P Kalyani Martinelango
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79401-1061, United States
| | | | | |
Collapse
|
5
|
Abstract
Potassium perchlorate has been used at various times during the last 50 years to treat hyperthyroidism. Since World War II ammonium perchlorate has been used as a propellant for rockets. In 1997, the assay sensitivity for perchlorate in water was improved from 0.4 mg/L (ppm) to 4 microg/L (ppb). As a result, public water supplies in Southern California were found to contain perchlorate ions in the range of 5 to 8 ppb, and those in Southern Nevada were found to contain 5 to 24 ppb. Research programs have been developed to assess the safety or risk from these exposures and to assist state and regulatory agencies in setting a reasonable safe level for perchlorate in drinking water. This report reviews the evidence on the human health effects of perchlorate exposure. Perchlorate is a competitive inhibitor of iodine uptake. All of its pharmacologic effects at current therapeutic levels or lower are associated with inhibition of the sodium-iodide symporter (NIS) on the thyroid follicular cell membrane. A review of the medical and occupational studies has been undertaken to identify perchlorate exposure levels at which thyroid hormone levels may be reduced or thyrotropin levels increased. This exposure level may begin in the 35 to 100 mg/d range. Volunteer studies have been designed to determine the exposure levels at which perchlorate begins to affect iodine uptake in humans. Such effects may begin at levels of approximately 1 mg/d. Environmental studies have assessed the thyroidal health of newborns and adults at current environmental exposures to perchlorate and have concluded that the present levels appear to be safe. Whereas additional studies are underway both in laboratory animals and in the field, it appears that a safe level can be established for perchlorate in water and that regulatory agencies and others are now trying to determine that level.
Collapse
Affiliation(s)
- O P Soldin
- Consultants in Epidemiology and Occupational Health, Washington, D.C. 20007, USA.
| | | | | |
Collapse
|
6
|
Lawrence JE, Lamm SH, Pino S, Richman K, Braverman LE. The effect of short-term low-dose perchlorate on various aspects of thyroid function. Thyroid 2000; 10:659-63. [PMID: 11014310 DOI: 10.1089/10507250050137734] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Perchlorate (ClO4) salts are found in rocket fuel, fireworks, and fertilizer. Because of ground water contamination, ClO4 has recently been detected in large public water supplies in several states in the 4-18 microg/L (parts per billion [ppb]) range. The potential adverse effect of chronic low level ClO4 ingestion on thyroid function is of concern to the Environmental Protection Agency (EPA). The daily ingestion of ClO4 at these levels would be magnitudes below the therapeutic effect level of hundreds of milligrams of ClO4 used in treating hyperthyroidism. Studies were carried out in nine healthy male volunteers who had normal thyroid function and negative thyroid antibodies to determine whether the ingestion of 10 mg of ClO4 daily (approximately 300 times the estimated maximum amount of ClO4 consumed from the affected water supplies) would affect any aspect of thyroid function. They ingested 10 mg of ClO4 dissolved in a liter of spring water during waking hours for 14 days. Baseline serum thyrotropin (TSH), free thyroxine index (FTI), total triiodothyronine (TT3), 4-, 8-, and 24-hour thyroid 123I uptakes (RAIU), serum and 24-hour urine ClO4, 24-hour urine iodine, complete blood count (CBC), and chemistry profile were determined. All blood and urine tests were repeated on days 7 and 14 of ClO4 administration and thyroid RAIU on day 14 of ClO4 administration. All tests were repeated 14 days after ClO4 was discontinued. No effect of ClO4 on serum thyroid hormone or TSH concentrations, urinary iodine excretion, CBC, or blood chemistry was observed. Urine and serum ClO4 levels were appropriately elevated during the course of ClO4 ingestion in all subjects, demonstrating compliance. By day 14 of ClO4 administration, the 4-, 8-, and 24-hour thyroid RAIU values decreased in all nine subjects by a mean value of 38% from baseline and rebounded above baseline values by 25% at 14 days after ClO4 withdrawal (p < 0.01 analysis of variance (ANOVA) and Tukey). It is well known that the major effect of ClO4 on the thyroid is a decrease in the thyroid iodide trap by competitive inhibition of the sodium iodide symporter (NIS). The present study demonstrates the sensitivity of the thyroid iodide trap to ClO4 because a low dose of 10 mg daily significantly decreased the thyroid RAIU without affecting circulating thyroid hormone or TSH concentrations. It is possible, however, that the daily consumption of low levels of ClO4 in drinking water over a prolonged period of time could adversely affect thyroid function but no evidence of hypothyroidism was observed at 10 mg of ClO4 daily in this 2-week study. It is now of interest to determine a no effect level for ClO4 on the inhibition of the thyroid RAIU and to carry out a long-term ClO4 exposure study.
Collapse
Affiliation(s)
- J E Lawrence
- Division of Genetics, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | | | | | | | | |
Collapse
|
7
|
Fisher J, Todd P, Mattie D, Godfrey D, Narayanan L, Yu K. Preliminary development of a physiological model for perchlorate in the adult male rat: a framework for further studies. Drug Chem Toxicol 2000; 23:243-58. [PMID: 10711400 DOI: 10.1081/dct-100100113] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- J Fisher
- Operational Toxicology Branch, Human Effectiveness Directorate, WPAFB, OH 45433-7400, USA
| | | | | | | | | | | |
Collapse
|
8
|
Lamm SH, Braverman LE, Li FX, Richman K, Pino S, Howearth G. Thyroid health status of ammonium perchlorate workers: a cross-sectional occupational health study. J Occup Environ Med 1999; 41:248-60. [PMID: 10224590 DOI: 10.1097/00043764-199904000-00006] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Since pharmaceutical exposures to perchlorate are known to suppress thyroid function in patients with hyperthyroidism, a study of employees at a perchlorate manufacturing plant was conducted to assess whether occupational exposure to perchlorate suppresses thyroid function. Exposure to perchlorate was assessed by measurement of ambient air concentrations of total and respirable perchlorate particles, and systemic absorption was assessed by measurement of urinary perchlorate excretion. Airborne exposures ranged from 0.004 to 167 mg total particulate perchlorate per day. Urinary perchlorate measurements demonstrated that exposure to the airborne particulate perchlorate resulted in systemic absorption. Workers were grouped into four exposure categories with mean absorbed perchlorate dosages of 1, 4, 11 and 34 mg perchlorate per day. Thyroid function was assessed by measurement of serum thyroid-stimulating hormone, free thyroxine index, thyroxine, triiodothyronine, thyroid hormone binding ratio, thyroid peroxidase antibodies, and by clinical examination. No differences in thyroid-function parameters were found between the four groups of workers across approximately three orders of magnitude of exposure and of dose. Thus human thyroid function was not affected by these levels of absorbed perchlorate. In addition, no clinical evidence of thyroid abnormalities was found in any exposure group. The blood-cell counts were normal in all groups, indicating no evidence of hematotoxicity in this exposure range. The absence of evidence of an effect on thyroid function or blood cells from occupational airborne perchlorate exposure at a mean absorption of 34 mg/day demonstrates a no-observed-adverse-effect-level (NOAEL) that can assist in the evaluation of human health risks from environmental perchlorate contamination.
Collapse
Affiliation(s)
- S H Lamm
- Epidemiology and Occupational Health, Inc. (CEOH, Inc.), Washington, DC 20007, USA
| | | | | | | | | | | |
Collapse
|
9
|
Affiliation(s)
- R Von Burg
- ICF Kaiser Engineers, Oakland, CA 94612, USA
| |
Collapse
|
10
|
|
11
|
|
12
|
Rocmans PA, Penel JC, Cantraine FR, Dumont JE. Kinetic analysis of iodide transport in dog thyroid slices: perchlorate-induced discharge. Am J Physiol Endocrinol Metab 1977; 232:E343-52. [PMID: 190903 DOI: 10.1152/ajpendo.1977.232.3.e343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Dog thyroid slices were incubated with methimazole (2 mM) and radioiodide. The medium radioactivity was continuously recorded for 8 h. Multiple data were collected for individual glands to calculate simultaneously by compartmental analysis the influx and efflux rates of iodide from the slices. A two-compartment thyroid model was necessary and sufficient to simulate the transport of inorganic iodide. The two compartments could be defined as the cellular and the luminal spaces, but interferences due to slice thickness, nonuniform follicle sizes, and open follicles were not excluded. Sodium perchlorate (1 mM) inhibited the influx of iodide into the follicles and discharged the trapped radioiode into the medium with increased efflux rates. Our data suggest that perchlorate decreases the inward influx rates by competition and enhances the outward efflux rates by countertransport and support the hypothesis of mobile iodide carriers at the basal and apical membranes of the thyroid cells.
Collapse
|