Lu WD, Wu ML, Zhang JX, Huang TT, Du SS, Cao YX. The effect of sodium carboxymethyl starch with high degree of substitution on defecation.
PLoS One 2021;
16:e0257012. [PMID:
34478474 PMCID:
PMC8415588 DOI:
10.1371/journal.pone.0257012]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 08/23/2021] [Indexed: 11/18/2022] Open
Abstract
Sodium carboxymethyl starch (CMS-Na), a kind of food additive with high degree of substitution, is also known as a prebiotic. The aim of this study was to determine the effect of CMS-Na on defecation. Constipated mouse model was prepared by loperamide. Normal rats were also used in the study. Short-chain fatty acids in rat feces were detected by gas chromatography. The bacterial communities in rat feces were identified by 16S rDNA gene sequencing. 5-hydroxytryptamine (5-HT) and tryptophan hydroxylase 1 (Tph1) were measured by ELISA. The results showed that CMS-Na increased the fecal granule counts and intestinal propulsion rate in constipated mice. The contents of water, acetic acid, propionic acid and n-butyrate in feces, Tph1 in colon and 5-HT in serum of rats were increased. In addition, CMS-Na shortened the colonic transport time in rats. The 16S rDNA gene sequencing results indicated that CMS-Na increased the relative abundance of Alloprevotella and decreased the proportion of Lactobacillus. However, the biodiversity of the normal intestinal flora was not altered. In conclusion, CMS-Na can promote defecation in constipated mice. The mechanism may be related to the regulation of Alloprevotella and Lactobacillus in colon, the increase of short-chain fatty acids, and the promotion of the synthesis of Tph1 and 5-HT.
Collapse