1
|
Hurraß J, Heinzow B, Walser-Reichenbach S, Aurbach U, Becker S, Bellmann R, Bergmann KC, Cornely OA, Engelhart S, Fischer G, Gabrio T, Herr CEW, Joest M, Karagiannidis C, Klimek L, Köberle M, Kolk A, Lichtnecker H, Lob-Corzilius T, Mülleneisen N, Nowak D, Rabe U, Raulf M, Steinmann J, Steiß JO, Stemler J, Umpfenbach U, Valtanen K, Werchan B, Willinger B, Wiesmüller GA. [Medical clinical diagnostics for indoor mould exposure - Update 2023 (AWMF Register No. 161/001)]. Pneumologie 2024; 78:693-784. [PMID: 39424320 DOI: 10.1055/a-2194-6914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
This article is an abridged version of the updated AWMF mould guideline "Medical clinical diagnostics in case of indoor mould exposure - Update 2023", presented in July 2023 by the German Society of Hygiene, Environmental Medicine and Preventive Medicine (Gesellschaft für Hygiene, Umweltmedizin und Präventivmedizin, GHUP), in collaboration with German and Austrian scientific medical societies, and experts. Indoor mould growth is a potential health risk, even if a quantitative and/or causal relationship between the occurrence of individual mould species and health problems has yet to be established. There is no evidence for a causal relationship between moisture/mould damage and human diseases, mainly because of the ubiquitous presence of fungi and hitherto inadequate diagnostic methods. Sufficient evidence for an association between moisture/mould damage and the following health effects has been established for: allergic respiratory diseases, allergic rhinitis, allergic rhino-conjunctivitis, allergic bronchopulmonary aspergillosis (ABPA), other allergic bronchopulmonary mycosis (ABPM), aspergilloma, Aspergillus bronchitis, asthma (manifestation, progression, exacerbation), bronchitis (acute, chronic), community-acquired Aspergillus pneumonia, hypersensitivity pneumonitis (HP; extrinsic allergic alveolitis (EEA)), invasive Aspergillosis, mycoses, organic dust toxic syndrome (ODTS) [workplace exposure], promotion of respiratory infections, pulmonary aspergillosis (subacute, chronic), and rhinosinusitis (acute, chronically invasive, or granulomatous, allergic). In this context the sensitizing potential of moulds is obviously low compared to other environmental allergens. Recent studies show a comparatively low sensitization prevalence of 3-22,5 % in the general population across Europe. Limited or suspected evidence for an association exist with respect to atopic eczema (atopic dermatitis, neurodermatitis; manifestation), chronic obstructive pulmonary disease (COPD), mood disorders, mucous membrane irritation (MMI), odor effects, and sarcoidosis. (iv) Inadequate or insufficient evidence for an association exist for acute idiopathic pulmonary hemorrhage in infants, airborne transmitted mycotoxicosis, arthritis, autoimmune diseases, cancer, chronic fatigue syndrome (CFS), endocrinopathies, gastrointestinal effects, multiple chemical sensitivity (MCS), multiple sclerosis, neuropsychological effects, neurotoxic effects, renal effects, reproductive disorders, rheumatism, sick building syndrome (SBS), sudden infant death syndrome, teratogenicity, thyroid diseases, and urticaria.The risk of infection posed by moulds regularly occurring indoors is low for healthy persons; most species are in risk group 1 and a few in risk group 2 (Aspergillus fumigatus, A. flavus) of the German Biological Agents Act (Biostoffverordnung). Only moulds that are potentially able to form toxins can be triggers of toxic reactions. Whether or not toxin formation occurs in individual cases is determined by environmental and growth conditions, water activity, temperature and above all the growth substrates.In case of indoor moisture/mould damage, everyone can be affected by odor effects and/or mood disorders.However, this is not an acute health hazard. Predisposing factors for odor effects can include genetic and hormonal influences, imprinting, context and adaptation effects. Predisposing factors for mood disorders may include environmental concerns, anxiety, condition, and attribution, as well as various diseases. Risk groups to be protected particularly regarding infection risk are immunocompromised persons according to the classification of the German Commission for Hospital Hygiene and Infection Prevention (Kommission für Krankenhaushygiene und Infektionsprävention, KRINKO) at the Robert Koch-Institute (RKI), persons suffering from severe influenza, persons suffering from severe COVID-19, and persons with cystic fibrosis (mucoviscidosis); with regard to allergic risk, persons with cystic fibrosis (mucoviscidosis) and patients with bronchial asthma must be protected. The rational diagnostics include the medical history, physical examination, and conventional allergy diagnostics including provocation tests if necessary; sometimes cellular test systems are indicated. In the case of mould infections, the reader is referred to the specific guidelines. Regarding mycotoxins, there are currently no useful and validated test procedures for clinical diagnostics. From a preventive medical point of view, it is important that indoor mould infestation in relevant magnitudes cannot be tolerated for precautionary reasons.For evaluation of mould damage in the indoor environment and appropriate remedial procedures, the reader is referred to the mould guideline issued by the German Federal Environment Agency (Umweltbundesamt, UBA).
Collapse
Affiliation(s)
- Julia Hurraß
- Sachgebiet Hygiene in Gesundheitseinrichtungen, Abteilung Infektions- und Umwelthygiene, Gesundheitsamt der Stadt Köln
| | - Birger Heinzow
- Ehemals: Landesamt für soziale Dienste (LAsD) Schleswig-Holstein, Kiel
| | | | - Ute Aurbach
- Labor Dr. Wisplinghoff
- ZfMK - Zentrum für Umwelt, Hygiene und Mykologie, Köln
| | - Sven Becker
- Universitätsklinik für Hals-, Nasen- und Ohrenheilkunde, Universitätsklinikum Tübingen
| | - Romuald Bellmann
- Universitätsklinik für Innere Medizin I, Medizinische Universität Innsbruck
| | | | - Oliver A Cornely
- Translational Research, CECAD Cluster of Excellence, Universität zu Köln
| | | | - Guido Fischer
- Landesgesundheitsamt Baden-Württemberg im Regierungspräsidium Stuttgart
| | - Thomas Gabrio
- Ehemals: Landesgesundheitsamt Baden-Württemberg im Regierungspräsidium Stuttgart
| | - Caroline E W Herr
- Bayerisches Landesamt für Gesundheit und Lebensmittelsicherheit München
- Ludwig-Maximilians-Universität München, apl. Prof. "Hygiene und Umweltmedizin"
| | - Marcus Joest
- Allergologisch-immunologisches Labor, Helios Lungen- und Allergiezentrum Bonn
| | - Christian Karagiannidis
- Fakultät für Gesundheit, Professur für Extrakorporale Lungenersatzverfahren, Universität Witten/Herdecke
- Lungenklinik Köln Merheim, Kliniken der Stadt Köln
| | | | - Martin Köberle
- Klinik und Poliklinik für Dermatologie und Allergologie am Biederstein, Technische Universität München
| | - Annette Kolk
- Institut für Arbeitsschutz der DGUV (IFA), Bereich Biostoffe, Sankt Augustin
| | | | | | | | - Dennis Nowak
- Institut und Poliklinik für Arbeits-, Sozial- und Umweltmedizin, Mitglied Deutsches Zentrum für Lungenforschung, Klinikum der Universität München
| | - Uta Rabe
- Zentrum für Allergologie und Asthma, Johanniter-Krankenhaus Treuenbrietzen
| | - Monika Raulf
- Institut für Prävention und Arbeitsmedizin der Deutschen Gesetzlichen Unfallversicherung, Institut der Ruhr-Universität Bochum (IPA)
| | - Jörg Steinmann
- Institut für Klinikhygiene, Medizinische Mikrobiologie und Klinische Infektiologie, Paracelsus Medizinische Privatuniversität Klinikum Nürnberg
| | - Jens-Oliver Steiß
- Zentrum für Kinderheilkunde und Jugendmedizin, Universitätsklinikum Gießen und Marburg GmbH, Gießen
- Schwerpunktpraxis Allergologie und Kinder-Pneumologie Fulda
| | - Jannik Stemler
- Translational Research, CECAD Cluster of Excellence, Universität zu Köln
| | - Ulli Umpfenbach
- Arzt für Kinderheilkunde und Jugendmedizin, Kinderpneumologie, Umweltmedizin, klassische Homöopathie, Asthmatrainer, Neurodermitistrainer, Viersen
| | | | | | - Birgit Willinger
- Klinisches Institut für Labormedizin, Klinische Abteilung für Klinische Mikrobiologie - MedUni Wien
| | - Gerhard A Wiesmüller
- Labor Dr. Wisplinghoff
- ZfMK - Zentrum für Umwelt, Hygiene und Mykologie, Köln
- Institut für Arbeits-, Sozial- und Umweltmedizin, Uniklinik RWTH Aachen
| |
Collapse
|
2
|
Koschel D, Behr J, Berger M, Bonella F, Hamer O, Joest M, Jonigk D, Kreuter M, Leuschner G, Nowak D, Raulf M, Rehbock B, Schreiber J, Sitter H, Theegarten D, Costabel U. [Diagnosis and Treatment of Hypersensitivity Pneumonitis - S2k Guideline of the German Respiratory Society and the German Society for Allergology and Clinical Immunology]. Pneumologie 2024. [PMID: 39227017 DOI: 10.1055/a-2369-8458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Hypersensitivity pneumonitis (HP) is an immune-mediated interstitial lung disease (ILD) in sensitized individuals caused by a large variety of inhaled antigens. The clinical form of acute HP is often misdiagnosed, while the chronic form, especially the chronic fibrotic HP, is difficult to differentiate from other fibrotic ILDs. The present guideline for the diagnosis and treatment of HP replaces the former German recommendations for the diagnosis of HP from 2007 and is amended explicitly by the issue of the chronic fibrotic form, as well as by treatment recommendations for the first time. The evidence was discussed by a multidisciplinary committee of experts. Then, recommendations were formulated for twelve questions on important issues of diagnosis and treatment strategies. Recently published national and international guidelines for ILDs and HP were considered. Detailed background information on HP is useful for a deeper insight into HP and the handling of the guideline.
Collapse
Affiliation(s)
- Dirk Koschel
- Abteilung Innere Medizin und Pneumologie, Fachkrankenhaus Coswig, Lungenzentrum, Coswig, Deutschland
- Bereich Pneumologie, Medizinische Klinik 1, Universitätsklinikum Carl Gustav Carus, TU Dresden, Dresden, Deutschland
- Ostdeutsches Lungenzentrum (ODLZ), Coswig/Dresden, Deutschland
| | - Jürgen Behr
- Medizinische Klinik und Poliklinik V, LMU Klinikum der Universität München, München, Deutschland
- Deutsches Zentrum für Lungenforschung, Gießen, Deutschland
| | - Melanie Berger
- Lungenklinik, Kliniken der Stadt Köln gGmbH, Köln
- Lehrstuhl für Pneumologie, Universität Witten/Herdecke, Fakultät für Gesundheit, Köln, Deutschland
| | - Francesco Bonella
- Zentrum für interstitielle und seltene Lungenerkrankungen, Ruhrlandklinik, Universitätsmedizin Essen, Essen, Deutschland
| | - Okka Hamer
- Institut für Röntgendiagnostik, Universitätsklinikum Regensburg, Regensburg, Deutschland
- Abteilung für Radiologie, Lungenfachklinik Donaustauf, Donaustauf, Deutschland
| | - Marcus Joest
- Praxis für Pneumologie und Allergologie, Bonn, Deutschland
| | - Danny Jonigk
- Deutsches Zentrum für Lungenforschung, Gießen, Deutschland
- Institut für Pathologie, RWTH Aachen, Universität Aachen, Aachen, Deutschland
| | - Michael Kreuter
- Lungenzentrum Mainz, Klinik für Pneumologie, Beatmungs- und Schlafmedizin, Marienhaus Klinikum Mainz und Klinik für Pneumologie, ZfT, Universitätsmedizin Mainz, Mainz, Deutschland
| | - Gabriela Leuschner
- Medizinische Klinik und Poliklinik V, LMU Klinikum der Universität München, München, Deutschland
- Deutsches Zentrum für Lungenforschung, Gießen, Deutschland
| | - Dennis Nowak
- Institut und Poliklinik für Arbeits-, Sozial- und Umweltmedizin, LMU München, München, Deutschland
| | - Monika Raulf
- Abteilung Kompetenz-Zentrum Allergologie/Immunologie, Institut für Prävention und Arbeitsmedizin der DGUV, Institut der Ruhr-Universität Bochum (IPA), Bochum, Deutschland
| | - Beate Rehbock
- Privatpraxis für Diagnostische Radiologie und Begutachtung, Berlin, Deutschland
| | - Jens Schreiber
- Universitätsklinik für Pneumologie, Universitätsklinikum Magdeburg, Magdeburg, Deutschland
| | - Helmut Sitter
- Institut für Theoretische Chirurgie, Philipps-Universität Marburg, Marburg, Deutschland
| | - Dirk Theegarten
- Institut für Pathologie, Universitätsklinikum Essen, Essen, Deutschland
| | - Ulrich Costabel
- Zentrum für interstitielle und seltene Lungenerkrankungen, Ruhrlandklinik, Universitätsmedizin Essen, Essen, Deutschland
| |
Collapse
|
3
|
Sánchez-Díez S, Muñoz X, Montalvo T, Ojanguren I, Romero-Mesones C, Senar JC, Peracho-Tobeña V, Cruz MJ. Sensitization to avian and fungal proteins in different work environments. ALLERGY, ASTHMA, AND CLINICAL IMMUNOLOGY : OFFICIAL JOURNAL OF THE CANADIAN SOCIETY OF ALLERGY AND CLINICAL IMMUNOLOGY 2023; 19:96. [PMID: 37957771 PMCID: PMC10644561 DOI: 10.1186/s13223-023-00852-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023]
Abstract
INTRODUCTION Hypersensitivity pneumonitis (HP) is usually caused by the inhalation of avian and fungal proteins. The present study assesses a cohort of Urban Pest Surveillance and Control Service (UPSCS) workers with high exposure to avian and fungal antigens, in order to identify their degree of sensitization and the potential risk of developing HP. METHODS Workers were divided according to their work activity into Nest pruners (Group 1) and Others (Group 2). All individuals underwent a medical interview, pulmonary function tests and the determination of specific IgG antibodies. Antigenic proteins of pigeon sera were analysed using two-dimensional immunoblotting. Proteins of interest were sequenced by liquid-chromatography-mass spectrometry (LC-MS). RESULTS 101 workers were recruited (76 men, average age: 42 yrs); (Group 1 = 41, Group 2 = 60). Up to 30% of the study population exhibited increased levels of IgGs to pigeon, small parrot and parrot, and up to 60% showed high levels of Aspergillus and Penicillium IgGs. In Group 1, specific parakeet and Mucor IgGs were higher (p = 0.044 and 0.003 respectively) while DLCO/VA% were lower (p = 0.008) than in Group 2. Two-dimensional immunoblotting showed protein bands of 20-30 KDa recognized by HP patients but not by workers. LC-MS analysis identified Ig Lambda chain and Apolipoprotein A-I as candidate proteins for distinguishing HP patients from exposed workers. CONCLUSIONS Two pigeon proteins were identified that may play a role in the development of pathological differences between HP patients and exposed workers. DLCO/VA may have a predictive value in the development of HP disease.
Collapse
Affiliation(s)
- Silvia Sánchez-Díez
- Servicio de Neumología, Departamento de Medicina, Hospital Universitario Vall d'Hebron, Universidad Autónoma de Barcelona, Passeig Vall d'Hebron, 119, 08035, Barcelona, Spain
| | - Xavier Muñoz
- Servicio de Neumología, Departamento de Medicina, Hospital Universitario Vall d'Hebron, Universidad Autónoma de Barcelona, Passeig Vall d'Hebron, 119, 08035, Barcelona, Spain.
- CIBER Enfermedades Respiratorias (Ciberes), Madrid, Spain.
| | - Tomás Montalvo
- Servicio de Vigilancia y Control de Plagas Urbanas Agencia de Salud Pública de Barcelona, Barcelona, Spain
- CIBER de Epidemiología y Salud Pública (Ciberesp), Madrid, Spain
| | - Iñigo Ojanguren
- Servicio de Neumología, Departamento de Medicina, Hospital Universitario Vall d'Hebron, Universidad Autónoma de Barcelona, Passeig Vall d'Hebron, 119, 08035, Barcelona, Spain
- CIBER Enfermedades Respiratorias (Ciberes), Madrid, Spain
| | - Christian Romero-Mesones
- Servicio de Neumología, Departamento de Medicina, Hospital Universitario Vall d'Hebron, Universidad Autónoma de Barcelona, Passeig Vall d'Hebron, 119, 08035, Barcelona, Spain
| | - Juan Carlos Senar
- Departamento de Ecología Evolutiva y de la Conducta, Museo de Ciencias Naturales de Barcelona, Barcelona, Spain
| | - Victor Peracho-Tobeña
- Servicio de Vigilancia y Control de Plagas Urbanas Agencia de Salud Pública de Barcelona, Barcelona, Spain
| | - María-Jesús Cruz
- Servicio de Neumología, Departamento de Medicina, Hospital Universitario Vall d'Hebron, Universidad Autónoma de Barcelona, Passeig Vall d'Hebron, 119, 08035, Barcelona, Spain
- CIBER Enfermedades Respiratorias (Ciberes), Madrid, Spain
| |
Collapse
|
4
|
Shirai T, Tanino Y, Nikaido T, Takaku Y, Hashimoto S, Taguchi Y, Baba T, Ogura T, Kataoka K, Nakayama M, Yamada Y, Matsushima S, Minami K, Miyazaki Y. Utility of budgerigar/pigeon/parrot-specific IgG antibody with ImmunoCAP® in bird-related hypersensitivity pneumonitis caused by other bird species and duvet. Respir Investig 2023; 61:520-526. [PMID: 37295290 DOI: 10.1016/j.resinv.2023.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 04/11/2023] [Accepted: 05/01/2023] [Indexed: 06/12/2023]
Abstract
BACKGROUND Bird-related hypersensitivity pneumonitis (BRHP) is an extrinsic allergic alveolitis caused by inhalation of bird antigens. Although the measurement of serum-specific IgG antibodies against budgerigar, pigeon, and parrot with ImmunoCAP® is available in Japan, the utility of the test for patients with causes by bird breeding other than these three species, including contact with wild birds/poultry/bird manure, and use of a duvet is unknown. METHODS Of the 75 BRHP patients who participated in our previous study, 30 were included. Six cases were caused by bird breeding of species other than pigeon, budgerigar, and parrot, seven were in contact with wild birds/poultry/bird manure, and 17 were using a duvet. Bird-specific IgG antibodies were compared among the patients, 64 controls, and 147 healthy participants. RESULTS In patients with BRHP caused by bird breeding, budgerigar and parrot-specific IgG levels were significantly higher than in disease controls. Only parrot-specific IgG was significantly higher than in disease controls in patients caused by duvet use. However, among patients with acute episodes (acute and recurrent type of chronic BRHP), IgG antibodies against all three species were significantly higher than those of disease controls caused by bird breeding and the use of a duvet. CONCLUSIONS Bird-specific IgG antibody with ImmunoCAP® was useful for screening and diagnosing BRHP caused by other bird species and duvets.
Collapse
Affiliation(s)
- Tsuyoshi Shirai
- Department of Respiratory Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yoshinori Tanino
- Department of Pulmonary Medicine, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Takefumi Nikaido
- Department of Pulmonary Medicine, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Yotaro Takaku
- Department of Respiratory Medicine, Saitama Cardiovascular and Respiratory Center, Saitama, Japan
| | | | - Yoshio Taguchi
- Department of Respiratory Medicine, Tenri Hospital, Nara, Japan
| | - Tomohisa Baba
- Department of Respiratory Medicine, Kanagawa Cardiovascular and Respiratory Center, Kanagawa, Japan
| | - Takashi Ogura
- Department of Respiratory Medicine, Kanagawa Cardiovascular and Respiratory Center, Kanagawa, Japan
| | - Kensuke Kataoka
- Department of Respiratory Medicine and Allergy, Tosei General Hospital, Aichi, Japan
| | - Masayuki Nakayama
- Division of Pulmonary Medicine, Department of Medicine, Jichi Medical University, Tochigi, Japan
| | - Yoshihito Yamada
- Department of Respiratory Medicine, JR Tokyo General Hospital, Tokyo, Japan
| | - Sayomi Matsushima
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Keiichiro Minami
- Immuno Diagnostic Division, Thermo Fisher Scientific, Tokyo, Japan
| | - Yasunari Miyazaki
- Department of Respiratory Medicine, Tokyo Medical and Dental University, Tokyo, Japan.
| |
Collapse
|
5
|
Sennekamp J, Lehmann E, Joest M. Optimierte IgG-Antikörper-Diagnostik der exogen-allergischen Alveolitis und pulmonaler Mykosen mittels neu evaluierter Spannweiten und Häufigkeiten der IgG-Antikörper im ImmunoCAPTM. ALLERGO JOURNAL 2022. [DOI: 10.1007/s15007-022-5085-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
6
|
Fernández Pérez ER, Travis WD, Lynch DA, Brown KK, Johannson KA, Selman M, Ryu JH, Wells AU, Tony Huang YC, Pereira CAC, Scholand MB, Villar A, Inase N, Evans RB, Mette SA, Frazer-Green L. Diagnosis and Evaluation of Hypersensitivity Pneumonitis: CHEST Guideline and Expert Panel Report. Chest 2021; 160:e97-e156. [PMID: 33861992 DOI: 10.1016/j.chest.2021.03.066] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 03/07/2021] [Accepted: 03/22/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The purpose of this analysis is to provide evidence-based and consensus-derived guidance for clinicians to improve individual diagnostic decision-making for hypersensitivity pneumonitis (HP) and decrease diagnostic practice variability. STUDY DESIGN AND METHODS Approved panelists developed key questions regarding the diagnosis of HP using the PICO (Population, Intervention, Comparator, Outcome) format. MEDLINE (via PubMed) and the Cochrane Library were systematically searched for relevant literature, which was supplemented by manual searches. References were screened for inclusion, and vetted evaluation tools were used to assess the quality of included studies, to extract data, and to grade the level of evidence supporting each recommendation or statement. The quality of the evidence was assessed using the GRADE (Grading of Recommendations, Assessment, Development, and Evaluation) approach. Graded recommendations and ungraded consensus-based statements were drafted and voted on using a modified Delphi technique to achieve consensus. A diagnostic algorithm is provided, using supporting data from the recommendations where possible, along with expert consensus to help physicians gauge the probability of HP. RESULTS The systematic review of the literature based on 14 PICO questions resulted in 14 key action statements: 12 evidence-based, graded recommendations and 2 ungraded consensus-based statements. All evidence was of very low quality. INTERPRETATION Diagnosis of HP should employ a patient-centered approach and include a multidisciplinary assessment that incorporates the environmental and occupational exposure history and CT pattern to establish diagnostic confidence prior to considering BAL and/or lung biopsy. Criteria are presented to facilitate diagnosis of HP. Additional research is needed on the performance characteristics and generalizability of exposure assessment tools and traditional and new diagnostic tests in modifying clinical decision-making for HP, particularly among those with a provisional diagnosis.
Collapse
Affiliation(s)
- Evans R Fernández Pérez
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health, Denver, CO.
| | - William D Travis
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - David A Lynch
- Department of Radiology, National Jewish Health, Denver, CO
| | - Kevin K Brown
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health, Denver, CO
| | - Kerri A Johannson
- Departments of Medicine and Community Health Science, University of Calgary, Calgary, AB, Canada
| | - Moisés Selman
- Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, México City, México
| | - Jay H Ryu
- Division of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, MN
| | - Athol U Wells
- Department of Medicine, Royal Brompton Hospital, Imperial College London, London, UK
| | | | - Carlos A C Pereira
- Department of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | | | - Ana Villar
- Respiratory Department, Hospital Vall d'Hebron, Barcelona, Spain
| | - Naohiko Inase
- Department of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | | | - Stephen A Mette
- Department of Medicine, University of Arkansas for Medical Sciences, AR
| | | |
Collapse
|
7
|
Fernández Pérez ER, Travis WD, Lynch DA, Brown KK, Johannson KA, Selman M, Ryu JH, Wells AU, Tony Huang YC, Pereira CAC, Scholand MB, Villar A, Inase N, Evans RB, Mette SA, Frazer-Green L. Executive Summary: Diagnosis and Evaluation of Hypersensitivity Pneumonitis: CHEST Guideline and Expert Panel Report. Chest 2021; 160:595-615. [PMID: 33865835 DOI: 10.1016/j.chest.2021.03.067] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 03/25/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The purpose of this summary is to provide a synopsis of evidence-based and consensus-derived guidance for clinicians to improve individual diagnostic decision-making for hypersensitivity pneumonitis (HP) and decrease diagnostic practice variability. STUDY DESIGN AND METHODS Approved panelists developed key questions regarding the diagnosis of HP using the PICO (Population, Intervention, Comparator, and Outcome) format. MEDLINE (via PubMed) and the Cochrane Library were systematically searched for relevant literature, which was supplemented by manual searches. References were screened for inclusion and vetted evaluation tools were used to assess the quality of included studies, to extract data, and to grade the level of evidence supporting each recommendation or statement. The quality of the evidence was assessed using the GRADE (Grading of Recommendations, Assessment, Development, and Evaluation) approach. Graded recommendations and ungraded consensus-based statements were drafted and voted on using a modified Delphi technique to achieve consensus. RESULTS The systematic review of the literature based on 14 PICO questions resulted in 14 key action statements: 12 evidence-based, graded recommendations, and 2 ungraded consensus-based statements. All evidence was of very low quality. INTERPRETATION Diagnosis of HP should employ a patient-centered approach and include a multidisciplinary assessment that incorporates the environmental and occupational exposure history and CT pattern to establish diagnostic confidence prior to considering BAL and/or lung biopsy. Additional research is needed on the performance characteristics and generalizability of exposure assessment tools and traditional and new diagnostic tests in modifying clinical decision-making for HP, particularly among those with a provisional diagnosis.
Collapse
Affiliation(s)
- Evans R Fernández Pérez
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health, Denver, CO.
| | - William D Travis
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - David A Lynch
- Department of Radiology, National Jewish Health, Denver, CO
| | - Kevin K Brown
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health, Denver, CO
| | - Kerri A Johannson
- Departments of Medicine and Community Health Science, University of Calgary, Calgary, AB, Canada
| | - Moisés Selman
- Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, México City, México
| | - Jay H Ryu
- Division of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, MN
| | - Athol U Wells
- Department of Medicine, Royal Brompton Hospital, Imperial College London, London, England
| | - Yuh-Chin Tony Huang
- Department of Environmental and Occupational Medicine, Duke University Medical Center, Durham, NC
| | - Carlos A C Pereira
- Department of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | | | - Ana Villar
- Respiratory Department, Hospital Vall d'Hebron, Barcelona, Spain
| | - Naohiko Inase
- Department of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | | | - Stephen A Mette
- Department of Medicine, University of Arkansas for Medical Sciences, AR
| | | |
Collapse
|
8
|
Rouzet A, Morell F, Reboux G, Villar A, Millon L, Cruz MJ. Pilot Study Using Recombinant Antigens r-PROE and r-IGLL1 for the Serodiagnosis of Feather Duvet Lung. Arch Bronconeumol 2021; 58:S0300-2896(21)00073-9. [PMID: 33771385 DOI: 10.1016/j.arbres.2021.02.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 02/07/2021] [Accepted: 02/09/2021] [Indexed: 11/02/2022]
Abstract
BACKGROUND Feather duvet lung (FDL) is an underestimated form of acute and chronic hypersensitivity pneumonitis. Serological tests for FDL need to be validated. We investigated the ability of recombinant pigeon Proproteinase E (r-PROE) and Immunoglobulin-lambda-like-polypeptide-1 (r-IGLL1) proteins to support the serological diagnosis of FDL, and propose them as a serological tool for clinicians to differentiate cases from FDL and Bird fancier's lung (BFL). METHODS Specific IgG antibodies against r-PROE and r-IGLL1, analyzed with ELISA, were measured in patients diagnosed with FDL (n=31), BFL (n=15) controls exposed (n=15) and unexposed to feathers (n=15). RESULTS The sensitivity and specificity of the r-PROE ELISA for the serological diagnosis of FDL cases versus exposed and unexposed controls were 74.2% and 86.7% respectively, with an index threshold of 0.5 (AUC: 0.89). In addition, this serological test was effective to support the serological diagnosis of FDL and BFL cases with significantly different thresholds. The r-IGLL1 ELISA was only effective for the serological diagnosis of BFL. Also, these two serological tests were useful for the diagnosis of both chronic and acute forms. CONCLUSIONS The new diagnostic test for FDL using r-PROE protein should help to detect overt and hidden cases of FDL. The combination of both test will help the clinician in distinguish between the etiology of birds or feathers duvet.
Collapse
Affiliation(s)
- Adeline Rouzet
- Chrono-Environment Research Team UMR/CNRS-6249, University of Bourgogne Franche-Comté, Besançon, France; Parasitology-Mycology Department, University Hospital, Besançon, France.
| | - Ferran Morell
- Pulmonology Department, Hospital Universitari Vall d'Hebron, and VHIR, Spain; Department of Medicine, Universitat Autònoma de Barcelona, Spain; CIBER enfermedades respiratorias (CIBERES), Catalonia, Spain
| | - Gabriel Reboux
- Chrono-Environment Research Team UMR/CNRS-6249, University of Bourgogne Franche-Comté, Besançon, France; Parasitology-Mycology Department, University Hospital, Besançon, France
| | - Ana Villar
- Pulmonology Department, Hospital Universitari Vall d'Hebron, and VHIR, Spain; Department of Medicine, Universitat Autònoma de Barcelona, Spain; CIBER enfermedades respiratorias (CIBERES), Catalonia, Spain
| | - Laurence Millon
- Chrono-Environment Research Team UMR/CNRS-6249, University of Bourgogne Franche-Comté, Besançon, France; Parasitology-Mycology Department, University Hospital, Besançon, France
| | - Maria Jesús Cruz
- Pulmonology Department, Hospital Universitari Vall d'Hebron, and VHIR, Spain; Department of Medicine, Universitat Autònoma de Barcelona, Spain; CIBER enfermedades respiratorias (CIBERES), Catalonia, Spain
| |
Collapse
|
9
|
Costabel U, Miyazaki Y, Pardo A, Koschel D, Bonella F, Spagnolo P, Guzman J, Ryerson CJ, Selman M. Hypersensitivity pneumonitis. Nat Rev Dis Primers 2020; 6:65. [PMID: 32764620 DOI: 10.1038/s41572-020-0191-z] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/11/2020] [Indexed: 02/06/2023]
Abstract
Hypersensitivity pneumonitis (HP) is a complex syndrome caused by the inhalation of a variety of antigens in susceptible and sensitized individuals. These antigens are found in the environment, mostly derived from bird proteins and fungi. The prevalence and incidence of HP vary widely depending on the intensity of exposure, the geographical area and the local climate. Immunopathologically, HP is characterized by an exaggerated humoral and cellular immune response affecting the small airways and lung parenchyma. A complex interplay of genetic, host and environmental factors underlies the development and progression of HP. HP can be classified into acute, chronic non-fibrotic and chronic fibrotic forms. Acute HP results from intermittent, high-level exposure to the inducing antigen, usually within a few hours of exposure, whereas chronic HP mostly originates from long-term, low-level exposure (usually to birds or moulds in the home), is not easy to define in terms of time, and may occur within weeks, months or even years of exposure. Some patients with fibrotic HP may evolve to a progressive phenotype, even with complete exposure avoidance. Diagnosis is based on an accurate exposure history, clinical presentation, characteristic high-resolution CT findings, specific IgG antibodies to the offending antigen, bronchoalveolar lavage and pathological features. Complete antigen avoidance is the mainstay of treatment. The pharmacotherapy of chronic HP consists of immunosuppressive drugs such as corticosteroids, with antifibrotic therapy being a potential therapy for patients with progressive disease.
Collapse
Affiliation(s)
- Ulrich Costabel
- Center for Interstitial and Rare Lung Diseases, Pneumology Department, Ruhrlandklinik, University Hospital, University of Essen, Essen, Germany.
| | - Yasunari Miyazaki
- Department of Respiratory Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Annie Pardo
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Dirk Koschel
- Department of Internal Medicine and Pneumology, Fachkrankenhaus Coswig, Centre for Pulmonary Diseases and Thoracic Surgery, Coswig, Germany.,Division of Pneumology, Medical Department I, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Francesco Bonella
- Center for Interstitial and Rare Lung Diseases, Pneumology Department, Ruhrlandklinik, University Hospital, University of Essen, Essen, Germany
| | - Paolo Spagnolo
- Respiratory Disease Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padua, Italy
| | - Josune Guzman
- General and Experimental Pathology, Ruhr-University, Bochum, Germany
| | - Christopher J Ryerson
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada.,Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, BC, Canada
| | - Moises Selman
- Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Mexico City, Mexico
| |
Collapse
|
10
|
SZTURMOWICZ MONIKA, GARCZEWSKA BARBARA, JĘDRYCH MAŁGORZATAE, BARTOSZUK IWONA, SOBIECKA MAŁGORZATA, TOMKOWSKI WITOLD, AUGUSTYNOWICZ-KOPEĆ EWA. The value of serum precipitins against specific antigens in patients diagnosed with hypersensitivity pneumonitis - retrospective study. Cent Eur J Immunol 2020; 44:390-394. [PMID: 32140051 PMCID: PMC7050063 DOI: 10.5114/ceji.2019.92791] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 08/14/2019] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION Hypersensitivity pneumonitis (HP) is the third most common interstitial lung disease, and is often under-recognized, especially in patients who are not aware of their occupational or environmental contact with organic antigens. The aim of the present study was to assess the results of serum specific IgG antibodies (ssIgG) in HP patients and their correlation with clinical data. MATERIAL AND METHODS 128 HP patients, median age 53 years, participated in the study. The control group consisted of 102 patients with interstitial lung diseases (ILDs) other than HP. Assessment of pretreatment ssIgG to thermophilic actinomycetes and protein antigens from bird droppings (pigeons, hens, ducks, parrots, turkeys) was performed by double diffusion in agar gel according to Ouchterlony method. RESULTS Positive precipitins were obtained in 57% of all HP patients and in 61% of those exposed to above mentioned antigens. Positive results in the control group were obtained in 7% of patients. Sensitivity of ssIgG in HP group was 0.57 and specificity 0.93. Precipitins to at least one bird antigen was confirmed in 64% of HP patients exposed to birds. Precipitins to thermophilic bacteria were found in 29% of HP patients exposed to hay or hay products. CONCLUSIONS The results of the study indicate that ssIgG against birds' allergens were the valuable diagnostic tool in HP patients. Low-rate of confirmation of ssIgG to thermophilic bacteria in patients exposed to hay or hay products indicate that other microorganisms, most likely molds, could be responsible for the disease development.
Collapse
Affiliation(s)
- MONIKA SZTURMOWICZ
- I Department of Lung Diseases, National Institute of Tuberculosis and Lung Diseases, Warsaw, Poland
| | - BARBARA GARCZEWSKA
- Department of Microbiology, National Institute of Tuberculosis and Lung Diseases, Warsaw, Poland
| | - MAŁGORZATA E. JĘDRYCH
- I Department of Lung Diseases, National Institute of Tuberculosis and Lung Diseases, Warsaw, Poland
| | - IWONA BARTOSZUK
- I Department of Lung Diseases, National Institute of Tuberculosis and Lung Diseases, Warsaw, Poland
| | - MAŁGORZATA SOBIECKA
- I Department of Lung Diseases, National Institute of Tuberculosis and Lung Diseases, Warsaw, Poland
| | - WITOLD TOMKOWSKI
- I Department of Lung Diseases, National Institute of Tuberculosis and Lung Diseases, Warsaw, Poland
| | - EWA AUGUSTYNOWICZ-KOPEĆ
- Department of Microbiology, National Institute of Tuberculosis and Lung Diseases, Warsaw, Poland
| |
Collapse
|
11
|
Abstract
A 43-year-old non-smoker was referred with a 3-month history of malaise, fatigue and breathlessness. Blood avian precipitins were strongly positive. Lung function testing confirmed a restrictive pattern with impaired gas transfer. A 'ground glass' mosaic pattern was seen on CT imaging, suggestive of hypersensitivity pneumonitis. Although he had no pet birds, on closer questioning he had recently acquired a duvet and pillows containing feathers. His symptoms, chest radiograph and lung function tests improved after removal of all feather bedding, and he was also started on oral corticosteroid therapy. Our case reinforces the importance of taking a meticulous exposure history and asking about domestic bedding in patients with unexplained breathlessness. Prompt recognition and cessation of antigen exposure may prevent the development of irreversible lung fibrosis.
Collapse
Affiliation(s)
| | | | | | - Owen Dempsey
- Respiratory Medicine, Aberdeen Royal Infirmary, Aberdeen, UK
| |
Collapse
|
12
|
Raulf M, Joest M, Sander I, Hoffmeyer F, Nowak D, Ochmann U, Preisser A, Schreiber J, Sennekamp J, Koschel D. Update of reference values for IgG antibodies against typical antigens of hypersensitivity pneumonitis. ALLERGO JOURNAL 2019. [DOI: 10.1007/s15007-019-1917-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
13
|
Lipińska-Ojrzanowska A, Marcinkiewicz A, Walusiak-Skorupa J. Usefulness of Biomarkers in Work-Related Airway Disease. CURRENT TREATMENT OPTIONS IN ALLERGY 2017; 4:181-190. [PMID: 28680796 PMCID: PMC5488075 DOI: 10.1007/s40521-017-0121-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Determination of biomarkers may be useful in the surveillance of occupational exposure and workers' health. The possibility of predicting development/clinical course of specific disorders or current disease, diagnosing in early steps, and health condition monitoring is a real necessity. Various agents present in the workplace environment (or their metabolites) can be measured in samples possessed from human body (blood and urine, saliva, etc.). On the other hand, inhalant exposure may induce specific or non-specific, local or systemic, acute or chronic biological response expressed by synthesis or releasing specific or non-specific substances/mediators that also can be determined in blood, nasal and bronchial lavage or sputum, tear fluid, exhaled breath, etc. The least is known about genetic markers which may predict individual susceptibility to develop some work-related disorders under the influence of occupational exposure. Due to common exposure to inhalant agents at workplace, researches on biomarkers that allow to inspect the impact of exposure to humans' health are still needed. The authors of this article summarize the utility of biomarkers' determination in work-related airway diseases in a recent clinical approach.
Collapse
Affiliation(s)
- Agnieszka Lipińska-Ojrzanowska
- Department of Occupational Diseases and Environmental Health, Nofer Institute of Occupational Medicine, 8 St. Teresy, 91-348 Lodz, Poland
| | - Andrzej Marcinkiewicz
- Department of Occupational Diseases and Environmental Health, Nofer Institute of Occupational Medicine, 8 St. Teresy, 91-348 Lodz, Poland
| | - Jolanta Walusiak-Skorupa
- Department of Occupational Diseases and Environmental Health, Nofer Institute of Occupational Medicine, 8 St. Teresy, 91-348 Lodz, Poland
| |
Collapse
|
14
|
Quirce S, Vandenplas O, Campo P, Cruz MJ, de Blay F, Koschel D, Moscato G, Pala G, Raulf M, Sastre J, Siracusa A, Tarlo SM, Walusiak-Skorupa J, Cormier Y. Occupational hypersensitivity pneumonitis: an EAACI position paper. Allergy 2016; 71:765-79. [PMID: 26913451 DOI: 10.1111/all.12866] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/17/2016] [Indexed: 12/14/2022]
Abstract
The aim of this document was to provide a critical review of the current knowledge on hypersensitivity pneumonitis caused by the occupational environment and to propose practical guidance for the diagnosis and management of this condition. Occupational hypersensitivity pneumonitis (OHP) is an immunologic lung disease resulting from lymphocytic and frequently granulomatous inflammation of the peripheral airways, alveoli, and surrounding interstitial tissue which develops as the result of a non-IgE-mediated allergic reaction to a variety of organic materials or low molecular weight agents that are present in the workplace. The offending agents can be classified into six broad categories that include bacteria, fungi, animal proteins, plant proteins, low molecular weight chemicals, and metals. The diagnosis of OHP requires a multidisciplinary approach and relies on a combination of diagnostic tests to ascertain the work relatedness of the disease. Both the clinical and the occupational history are keys to the diagnosis and often will lead to the initial suspicion. Diagnostic criteria adapted to OHP are proposed. The cornerstone of treatment is early removal from exposure to the eliciting antigen, although the disease may show an adverse outcome even after avoidance of exposure to the causal agent.
Collapse
Affiliation(s)
- S. Quirce
- Department of Allergy; Hospital La Paz Institute for Health Research (IdiPAZ) and CIBER de Enfermedades Respiratorias (CIBERES); Madrid Spain
| | - O. Vandenplas
- Department of Chest Medicine; Centre Hospitalier Universitaire de Mont-Godinne; Université Catholique de Louvain; Yvoir Belgium
| | - P. Campo
- Unidad de Gestión Clínica Allergy-IBIMA; Hospital Regional Universitario; Málaga Spain
| | - M. J. Cruz
- Pulmonology Service; Hospital Universitari Vall d'Hebron; Universitat Autonoma de Barcelona; Barcelona Spain
- CIBER de Enfermedades Respiratorias (CIBERES); Barcelona Spain
| | - F. de Blay
- Division of Asthma and Allergy; Department of Chest Diseases; University Hospital; Fédération de Médecine Translationnelle de Strasbourg; Strasbourg University; Strasbourg France
| | - D. Koschel
- Fachkrankenhaus Coswig GmbH Zentrum für Pneumologie, Allergologie, Beatmungsmedizin, Thorax- und Gefäßchirurgie; Coswig Germany
| | - G. Moscato
- Department of Public Health, Experimental and Forensic Medicine; University of Pavia; Pavia Italy
| | - G. Pala
- Occupational Physician's Division; Local Health Authority of Sassari; Sassari Italy
| | - M. Raulf
- IPA Institute for Prevention and Occupational Medicine of the German Social Accident Insurance; Institute of the Ruhr-Universität Bochum; Bochum Germany
| | - J. Sastre
- Department of Allergy; Fundación Jiménez Díaz, and CIBER de Enfermedades Respiratorias (CIBERES); Madrid Spain
| | - A. Siracusa
- Formerly Department of Clinical and Experimental Medicine; University of Perugia; Perugia Italy
| | - S. M. Tarlo
- Department of Medicine and Dalla Lana School of Public Health; University of Toronto; Toronto ON Canada
- Respiratory Division Toronto Western Hospital; Gage Occupational and Environmental Health Unit; St Michael's Hospital; Toronto ON Canada
| | - J. Walusiak-Skorupa
- Department of Occupational Diseases and Toxicology; Nofer Institute of Occupational Medicine; Lodz Poland
| | - Y. Cormier
- Centre de Pneumologie; Institut Universitaire de Cardiologie et de Pneumologie de Québec; Université Laval; Québec City QC Canada
| |
Collapse
|
15
|
Cooper CJ, Teleb M, Elhanafi S, Ajmal S, Hernandez GT. Bird fanciers' lung induced by exposure to duck and goose feathers. AMERICAN JOURNAL OF CASE REPORTS 2014; 15:155-8. [PMID: 24753784 PMCID: PMC3992218 DOI: 10.12659/ajcr.890184] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 12/20/2013] [Indexed: 11/09/2022]
Abstract
PATIENT Female, 60 FINAL DIAGNOSIS: Bird fanciers' lung Symptoms: Cough productive • hypoxia • short of breath • substernal chest pain MEDICATION - Clinical Procedure: - Specialty: - OBJECTIVE Rare disease. BACKGROUND Hypersensitivity pneumonitis (HP) is a group of inflammatory interstitial lung diseases caused by hypersensitivity reactions from repeated insults of inhalation of fine particulate organic dusts derived from environmental sources. Bird fanciers' lung (BFL) is the most common form of HP, with an estimated prevalence of 0.5-7.5% and is observed in individuals who develop a hypersensitivity response to avian droppings or antigens on bird feathers. CASE REPORT A 60-year-old woman presented to our care with shortness of breath with exertion. She was hypoxic with oxygen saturation of 70% on room air. The CTA of the chest revealed a diffuse bilateral ground glass density in the lung parenchyma with a mosaic attenuation pattern. On further questioning she explained that she collected many duck and goose feathers she found on the ranch and placed them in a vase at home. Transbronchial lung biopsy revealed non-caseating granulomas, aggregates of epithelioid macrophages, and patchy mononuclear cell infiltration with lymphocytes and fibrotic tissue. The patient clinically improved and was discharged home on the 6(th) hospital day with prednisone 20 mg daily, with clinical improvement noted on subsequent follow up visits. CONCLUSIONS There is no specific clinical manifestation; abnormal laboratory test results help establish a definitive diagnosis. The best diagnostic tool is the correlation of symptom onset with the environmental exposure. The prognosis is excellent after a single episode of HP, but continuous re-exposure carries the risk of progressive pulmonary impairment.
Collapse
Affiliation(s)
- Chad J Cooper
- Department of Internal Medicine, Texas Tech University Health Sciences Center, El Paso, TX, U.S.A
| | - Mohamed Teleb
- Department of Internal Medicine, Texas Tech University Health Sciences Center, El Paso, TX, U.S.A
| | - Sherif Elhanafi
- Department of Internal Medicine, Texas Tech University Health Sciences Center, El Paso, TX, U.S.A
| | - Shajeea Ajmal
- Department of Internal Medicine, Texas Tech University Health Sciences Center, El Paso, TX, U.S.A
| | - German T Hernandez
- Department of Internal Medicine, Texas Tech University Health Sciences Center, El Paso, TX, U.S.A
| |
Collapse
|
16
|
Rouzet A, Reboux G, Rognon B, Barrera C, De Vuyst P, Dalphin JC, Millon L, Roussel S. Immunogenic proteins specific to different bird species in bird fancier's lung. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2014; 77:724-30. [PMID: 24786679 DOI: 10.1080/15287394.2014.889616] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Bird fancier's lung (BFL) is a disease produced by exposure to avian proteins present in droppings, blooms, and serum of a variety of birds. Although serological test results are currently used to confirm clinical diagnosis of the disease, bird species specificity is poorly understood. This study aimed to contribute to a better understanding of the specificity of immunogenic proteins revealed from the droppings of three bird species. Sera from four patients with BFL and two controls without exposure were analyzed by Western blotting with antigens from droppings of two pigeon and budgerigar strains and two hen species. When the antigens from the droppings of the three bird species were compared, the profile of immunogenic proteins was different and there were similarities between strains of the same species. Only one 68-kD protein was common to pigeon and budgerigar droppings, while proteins of 200, 175, 140, 100, and 35 kD were detected as specific in one bird species. These results provide insight to further characterize these proteins, and to design new serological tests specific to different bird species. These tests may help to refine strategies of antigenic exclusion and also to allow a patient compensation in case of BFL of occupational origin.
Collapse
Affiliation(s)
- Adeline Rouzet
- a Parasitology-Mycology Department , University Hospital of Besançon , Besançon , France
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Agache IO, Rogozea L. Management of hypersensivity pneumonitis. Clin Transl Allergy 2013; 3:5. [PMID: 23374544 PMCID: PMC3585806 DOI: 10.1186/2045-7022-3-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 02/01/2013] [Indexed: 12/28/2022] Open
Abstract
Hypersensitivity pneumonitis (HP) is an interstitial lung disease due to a combined type III and IV reaction with a granulomatous inflammation, caused by cytotoxic delayed hypersensitivity lymphocytes, in a Th1/Th17 milieu, chaperoned by a deficient suppressor function of T regulatory cells. Skewing toward a Th2 phenotype is reported for chronic HP. Phenotypic expression and severity depends on environmental and/or host genetic and immune co-factors. The wide spectrum of causative antigens is continuously up-dated with new sources of airborne organic particles and drug-induced HP. The diagnosis requires a detailed history, measurement of environmental exposure, pulmonary function tests, imaging, detection of serum specific antibodies, broncho-alveolar lavage, antigen-induced lymphocyte proliferation, environmental or laboratory-controlled inhalation challenge and lung biopsy. Complete antigen avoidance is the best therapeutic measure, although very difficult to achieve in some cases. Systemic steroids are of value for subacute and chronic forms of HP, but do not influence long term outcome. Manipulation of the immune response in HP holds future promise.
Collapse
Affiliation(s)
- Ioana O Agache
- Theramed Medical Center, Spatarul Luca Arbore 16, 500112, Brasov, Romania.
| | | |
Collapse
|
18
|
Ohshimo S, Bonella F, Guzman J, Costabel U. Hypersensitivity pneumonitis. Immunol Allergy Clin North Am 2012; 32:537-56. [PMID: 23102065 DOI: 10.1016/j.iac.2012.08.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Clinical manifestations of hypersensitivity pneumonitis may closely mimic other interstitial lung diseases, and the disease onset is usually insidious. High-resolution computed tomography and bronchoalveolar lavage are the sensitive and characteristic diagnostic tests for hypersensitivity pneumonitis. The relevant antigen to hypersensitivity pneumonitis cannot be identified in up to 20% to 30% of patients. Clinicians should be aware that hypersensitivity pneumonitis must be considered in all cases of interstitial lung disease, and a detailed environmental exposure history is mandatory.
Collapse
Affiliation(s)
- Shinichiro Ohshimo
- Department of Molecular and Internal Medicine, Graduate School of Biomedical Sciences, Hiroshima University, Japan
| | | | | | | |
Collapse
|