1
|
Asnicar D, Cappelli C, Zanovello L, Masiero L, Badocco D, Marin MG, Munari M. Adaptive resilience of sea urchins against seawater acidification: A study on egg quality and offspring performance within a volcanic vents area. ENVIRONMENTAL RESEARCH 2025:121143. [PMID: 39971114 DOI: 10.1016/j.envres.2025.121143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 02/04/2025] [Accepted: 02/14/2025] [Indexed: 02/21/2025]
Abstract
Local adaptation plays a critical role in an organism's ability to survive and reproduce in diverse environmental conditions, potentially improving an organism's response to stressful conditions such as ocean acidification or pollution. In this study, the effects of lower pH coupled with the presence of environmental contaminants were assessed on sea urchins (Paracentrotus lividus) collected outside and inside a volcanic CO2-vent system, where the mean ambient pH is 8.1 and 7.7, respectively. Both groups of sea urchins were spawned, and offspring were reared at pH 8.1 and 7.7, and in the presence or absence of a mixture of 100 μg/L of glyphosate and its main metabolite aminomethylphosphonic acid. Offspring performance metrics (development, abnormalities, and growth) were investigated under the different exposure conditions. The exposure to reduced pH affected the development and larval growth in echinoplutei obtained from adults of both sites, although to a different extent. Chemicals mixture had an additive effect in slowing embryo development. Results revealed that sea urchins living within the lower pH Vents area exhibited significantly higher egg quality, which likely enhanced embryonic development, reduced abnormalities, and increased larval size compared to their counterparts outside the Vents system, both in the presence and absence of contaminants. Findings suggest that sea urchins living within the CO2-Vents system developed adaptations to thrive under lower pH conditions. Elevated egg quality and improved offspring performance suggest organisms' resilience to environmental stressors associated with seawater acidification. Although insights gained from this study are preliminary, mostly due to the limited number of replicates in the egg biochemical analysis, they contribute to unveiling the adaptive capabilities of sea urchins in facing ongoing ocean acidification challenges.
Collapse
Affiliation(s)
- Davide Asnicar
- Aquatic Bioscience, Huntsman Marine Science Centre, St Andrews, New Brunswick, Canada; Department of Biology, University of Padova, Padova, Italy.
| | - Costanza Cappelli
- Department of Biology, University of Padova, Padova, Italy; Section for Oceans and Arctic, National Institute of Aquatic Resources (DTU Aqua), Kongens Lyngby, Denmark
| | | | | | - Denis Badocco
- Department of Chemical Sciences, University of Padova, Padova, Italy
| | | | - Marco Munari
- Department of Biology, Stazione Idrobiologica Umberto D'Ancona, University of Padova, Venice, Italy; Department of Integrative Marine Ecology, Ischia Marine Centre, Stazione Zoologica Anton Dohrn, Naples, Italy
| |
Collapse
|
2
|
Ge H, Huang Y, Zhang L, Huang S, Wang G. The Cell States of Sea Urchin During Metamorphosis Revealed by Single-Cell RNA Sequencing. Int J Mol Sci 2025; 26:1059. [PMID: 39940825 PMCID: PMC11817407 DOI: 10.3390/ijms26031059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/13/2025] [Accepted: 01/24/2025] [Indexed: 02/16/2025] Open
Abstract
Metamorphosis is a key process in the life history of sea urchin Heliocidaris crassispina. However, the understanding of its molecular mechanisms is still lacking, especially the basic cell biology pre-metamorphosis and post-metamorphosis. Therefore, we employed single-cell RNA sequencing to delineate the cellular states of larvae and juveniles of H. crassispina. Our investigation revealed that the cell composition in sea urchins comprises six primary populations, encompassing nerve cells, skeletogenic cells, immune cells, digestive cells, germ cells, and muscle cells. Subsequently, we identified subpopulations within these cells. Our findings indicated that the larval peripheral nerves were discarded during metamorphosis. A decrease in the number of spicules was observed during this process. Additionally, we examined the differences between larval and adult pigment cells. Meanwhile, cellulase is highlighted as an essential factor for the development of competent juveniles. In summary, this study not only serves as a valuable resource for future research on sea urchins but also deepens our understanding of the intricate metamorphosis process.
Collapse
Affiliation(s)
- Hui Ge
- State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, Xiamen 361021, China; (H.G.); (Y.H.); (L.Z.); (S.H.)
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Xiamen 361021, China
- Fisheries Research Institute of Fujian, 7 Shanhai Road, Huli, Xiamen 361000, China
| | - Yongyu Huang
- State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, Xiamen 361021, China; (H.G.); (Y.H.); (L.Z.); (S.H.)
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Xiamen 361021, China
| | - Lili Zhang
- State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, Xiamen 361021, China; (H.G.); (Y.H.); (L.Z.); (S.H.)
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Xiamen 361021, China
| | - Shiyu Huang
- State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, Xiamen 361021, China; (H.G.); (Y.H.); (L.Z.); (S.H.)
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Xiamen 361021, China
| | - Guodong Wang
- State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, Xiamen 361021, China; (H.G.); (Y.H.); (L.Z.); (S.H.)
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Xiamen 361021, China
| |
Collapse
|
3
|
The evolution of neurosensation provides opportunities and constraints for phenotypic plasticity. Sci Rep 2022; 12:11883. [PMID: 35831328 PMCID: PMC9279360 DOI: 10.1038/s41598-022-15583-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 06/27/2022] [Indexed: 11/08/2022] Open
Abstract
Phenotypic plasticity is widely regarded as important for enabling species resilience to environmental change and for species evolution. However, insight into the complex mechanisms by which phenotypic plasticity evolves in nature is limited by our ability to reconstruct evolutionary histories of plasticity. By using part of the molecular mechanism, we were able to trace the evolution of pre-feeding phenotypic plasticity across the class Echinoidea and identify the origin of plasticity at the base of the regular urchins. The neurosensory foundation for plasticity was ancestral within the echinoids. However, coincident development of the plastic trait and the neurosensory system was not achieved until the regular urchins, likely due to pleiotropic effects and linkages between the two colocalized systems. Plasticity continues to evolve within the urchins with numerous instances of losses associated with loss of sensory abilities and neurons, consistent with a cost of maintaining these capabilities. Thus, evidence was found for the neurosensory system providing opportunities and constraints to the evolution of phenotypic plasticity.
Collapse
|
4
|
Crown of thorns starfish life-history traits contribute to outbreaks, a continuing concern for coral reefs. Emerg Top Life Sci 2022; 6:67-79. [PMID: 35225331 PMCID: PMC9023020 DOI: 10.1042/etls20210239] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 01/22/2022] [Accepted: 02/03/2022] [Indexed: 11/24/2022]
Abstract
Crown of thorns starfish (COTS, Acanthaster sp.) are notorious for their destructive consumption of coral that decimates tropical reefs, an attribute unique among tropical marine invertebrates. Their populations can rapidly increase from 0–1 COTS ha−1 to more than 10–1000 COTS ha−1 in short order causing a drastic change to benthic communities and reducing the functional and species diversity of coral reef ecosystems. Population outbreaks were first identified to be a significant threat to coral reefs in the 1960s. Since then, they have become one of the leading causes of coral loss along with coral bleaching. Decades of research and significant investment in Australia and elsewhere, particularly Japan, have been directed towards identifying, understanding, and managing the potential causes of outbreaks and designing population control methods. Despite this, the drivers of outbreaks remain elusive. What is becoming increasingly clear is that the success of COTS is tied to their inherent biological traits, especially in early life. Survival of larval and juvenile COTS is likely to be enhanced by their dietary flexibility and resilience to variable food conditions as well as their phenotypically plastic growth dynamics, all magnified by the extreme reproductive potential of COTS. These traits enable COTS to capitalise on anthropogenic disturbances to reef systems as well as endure less favourable conditions.
Collapse
|
5
|
A novel system for intensive Diadema antillarum propagation as a step towards population enhancement. Sci Rep 2021; 11:11244. [PMID: 34045538 PMCID: PMC8160213 DOI: 10.1038/s41598-021-90564-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 05/12/2021] [Indexed: 02/04/2023] Open
Abstract
The long-spined sea urchin Diadema antillarum was once an abundant reef grazing herbivore throughout the Caribbean. During the early 1980s, D. antillarum populations were reduced by > 93% due to an undescribed disease. This event resulted in a lack of functional reef herbivory and contributed to ongoing ecological shifts from hard coral towards macroalgae dominated reefs. Limited natural recovery has increased interest in a range of strategies for augmenting herbivory. An area of focus has been developing scalable ex situ methods for rearing D. antillarum from gametes. The ultimate use of such a tool would be exploring hatchery origin restocking strategies. Intensive ex situ aquaculture is a potentially viable, yet difficult, method for producing D. antillarum at scales necessary to facilitate restocking. Here we describe a purpose-built, novel recirculating aquaculture system and the broodstock management and larval culture process that has produced multiple D. antillarum cohorts, and which has the potential for practical application in a dedicated hatchery setting. Adult animals held in captivity can be induced to spawn year-round, with some evidence for annual and lunar periodicity. Fecundity and fertilization rates are both consistently very high, yet challenges persist in both late stage larval development and early post-settlement survival. Initial success was realized with production of 100 juvenile D. antillarum from ~ 1200 competent larvae. While the system we describe requires a significant level of investment and technical expertise, this work advances D. antillarum culture efforts in potential future hatchery settings and improves the viability of scalable ex situ production for population enhancement.
Collapse
|
6
|
Ellison A, Pouv A, Pace DA. Different protein metabolic strategies for growth during food-induced physiological plasticity in echinoid larvae. J Exp Biol 2021; 224:jeb.230748. [PMID: 33526554 DOI: 10.1242/jeb.230748] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 01/21/2021] [Indexed: 11/20/2022]
Abstract
Food-induced morphological plasticity, a type of developmental plasticity, is a well-documented phenomenon in larvae of the echinoid echinoderm, Dendraster excentricus A recent study in our lab has shown that this morphological plasticity is associated with significant physiological plasticity for growth. The goal of the current study was to measure several aspects of protein metabolism in larvae growing at different rates to understand the mechanistic basis for this physiological growth plasticity. Larvae of D. excentricus were fed rations of 1000 algal cells ml-1 (low-fed larvae) or 10,000 algal cells ml-1 (high-fed larvae). Relative protein growth rate was 6.0 and 12.2% day-1 for low- and high-fed larvae, respectively. The energetic cost of protein synthesis was similar for the two treatments at 4.91 J mg-1 protein synthesized. Larvae in both treatments used about 50% of their metabolic energy production to fuel protein synthesis. Mass-specific rates of protein synthesis were also similar. Large differences in mass-specific rates of protein degradation were observed. Low-fed larvae had relatively low rates of degradation early in development that increased with larval age, surpassing those of high-fed larvae at 20 days post-fertilization. Changes in protein depositional efficiency during development were similar to those of larval growth efficiency, indicating that differences in protein metabolism are largely responsible for whole-organism growth plasticity. Low-fed larvae also had alanine transport rates that were 2 times higher than those of high-fed larvae. In total, these results provide an explanation for the differences in growth efficiency between low- and high-fed larvae and allow for a more integrated understanding of developmental plasticity in echinoid larvae.
Collapse
Affiliation(s)
- Aimee Ellison
- Department of Biological Sciences, California State University Long Beach, Long Beach, CA 90084, USA
| | - Amara Pouv
- Department of Biological Sciences, California State University Long Beach, Long Beach, CA 90084, USA
| | - Douglas A Pace
- Department of Biological Sciences, California State University Long Beach, Long Beach, CA 90084, USA
| |
Collapse
|
7
|
Carrier TJ, Dupont S, Reitzel AM. Geographic location and food availability offer differing levels of influence on the bacterial communities associated with larval sea urchins. FEMS Microbiol Ecol 2019; 95:5526217. [PMID: 31260050 DOI: 10.1093/femsec/fiz103] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 06/27/2019] [Indexed: 12/17/2022] Open
Abstract
Determining the factors underlying the assembly, structure, and diversity of symbiont communities remains a focal point of animal-microbiome research. Much of these efforts focus on taxonomic variation of microbiota within or between animal populations, but rarely test the proportional impacts of ecological components that may affect animal-associated microbiota. Using larvae from the sea urchin Strongylocentrotus droebachiensis from the Atlantic and Pacific Oceans, we test the hypothesis that, under natural conditions, inter-population differences in the composition of larval-associated bacterial communities are larger than intra-population variation due to a heterogeneous feeding environment. Despite significant differences in bacterial community structure within each S. droebachiensis larval population based on food availability, development, phenotype, and time, variation in OTU membership and community composition correlated more strongly with geographic location. Moreover, 20-30% of OTUs associated with larvae were specific to a single location while less than 10% were shared. Taken together, these results suggest that inter-populational variation in symbiont communities may be more pronounced than intra-populational variation, and that this difference may suggest that broad-scale ecological variables (e.g., across ocean basins) may mask smaller scale ecological variables (e.g., food availability).
Collapse
Affiliation(s)
- Tyler J Carrier
- Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte, NC 28223, USA
| | - Sam Dupont
- Department of Biological and Environmental Sciences, University of Gothenburg, The Sven Lovén Centre for Marine Infrastructure, Kristineberg, 45178 Sweden
| | - Adam M Reitzel
- Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte, NC 28223, USA
| |
Collapse
|
8
|
Peters-Didier J, Sewell MA. The role of the hyaline spheres in sea cucumber metamorphosis: lipid storage via transport cells in the blastocoel. EvoDevo 2019; 10:8. [PMID: 31007889 PMCID: PMC6458721 DOI: 10.1186/s13227-019-0119-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 03/16/2019] [Indexed: 01/01/2023] Open
Abstract
Background For echinoderms with feeding larvae, metamorphic and post-settlement success may be highly dependent on larval nutrition and the accumulation of energetic lipids from the diet. In contrast to the sea urchins, starfish and brittle stars within the Phylum Echinodermata, sea cucumber metamorphosis does not involve formation of a juvenile rudiment, but instead there is a rearrangement of the entire larval body. Successful metamorphosis in sea cucumbers is often associated with the presence in the late auricularia stage of an evolutionary novelty, the hyaline spheres (HS), which form in the base of the larval arms. Known since the 1850s the function of these HS has remained enigmatic—suggestions include assistance with flotation, as an organizer for ciliary band formation during metamorphosis and as a nutrient store for metamorphosis. Results Here using multiple methodologies (lipid mapping, resin-section light microscopy, lipid and fatty acid analyses) we show definitively that the HS are used to store neutral lipids that fuel the process of metamorphosis in Australostichopus mollis. Neutral lipids derived from the phytoplankton diet are transported by secondary mesenchyme cells (“lipid transporting cells”, LTC), likely as free fatty acids or lipoproteins, from the walls of the stomach and intestine through the blastocoel to the HS; here, they are converted to triacylglycerol with a higher saturated fatty acid content. During metamorphosis the HS decreased in size as the triacylglycerol was consumed and LTC again transported neutral lipids within the blastocoel. Conclusion The HS in A. mollis functions as a nutrient storage structure that separates lipid stores from the major morphogenic events that occur during the metamorphic transition from auricularia–doliolaria–pentactula (settled juvenile). The discovery of LTC within the blastocoel of sea cucumbers has implications for other invertebrate larvae with a gel-filled blastocoel and for our understanding of lipid use during metamorphosis in marine invertebrates.
Collapse
Affiliation(s)
- Josefina Peters-Didier
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, 1142 New Zealand
| | - Mary A Sewell
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, 1142 New Zealand
| |
Collapse
|
9
|
Fadl AEA, Mahfouz ME, El-Gamal MMT, Heyland A. Onset of feeding in juvenile sea urchins and its relation to nutrient signalling. INVERTEBR REPROD DEV 2018. [DOI: 10.1080/07924259.2018.1513873] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Alyaa Elsaid Abdelaziz Fadl
- Department of Integrative Biology, Faculty of Biological science, University of Guelph, Guelph, Ontario, Canada
- Department of Zoology, Faculty of Science, University of Kafrelsheikh, Kafr Elsheikh, Egypt
| | - Magdy Elsayed Mahfouz
- Department of Zoology, Faculty of Science, University of Kafrelsheikh, Kafr Elsheikh, Egypt
| | | | - Andreas Heyland
- Department of Integrative Biology, Faculty of Biological science, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
10
|
Convergent shifts in host-associated microbial communities across environmentally elicited phenotypes. Nat Commun 2018; 9:952. [PMID: 29507332 PMCID: PMC5838112 DOI: 10.1038/s41467-018-03383-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 02/08/2018] [Indexed: 02/02/2023] Open
Abstract
Morphological plasticity is a genotype-by-environment interaction that enables organisms to increase fitness across varying environments. Symbioses with diverse microbiota may aid in acclimating to this variation, but whether the associated bacteria community is phenotype specific remains understudied. Here we induce morphological plasticity in three species of sea urchin larvae and measure changes in the associated bacterial community. While each host species has unique bacterial communities, the expression of plasticity results in the convergence on a phenotype-specific microbiome that is, in part, driven by differential association with α- and γ-proteobacteria. Furthermore, these results suggest that phenotype-specific signatures are the product of the environment and are correlated with ingestive and digestive structures. By manipulating diet quantity over time, we also show that differentially associating with microbiota along a phenotypic continuum is bidirectional. Taken together, our data support the idea of a phenotype-specific microbial community and that phenotypic plasticity extends beyond a genotype-by-environment interaction.
Collapse
|
11
|
Fadl AEA, Mahfouz ME, El-Gamal MMT, Heyland A. New biomarkers of post-settlement growth in the sea urchin Strongylocentrotus purpuratus. Heliyon 2017; 3:e00412. [PMID: 29034337 PMCID: PMC5635345 DOI: 10.1016/j.heliyon.2017.e00412] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 08/24/2017] [Accepted: 09/15/2017] [Indexed: 11/29/2022] Open
Abstract
Some sea urchins, including the purple sea urchin Strongylocentrotus purpuratus, have been successfully used in aquaculture, but their slow growth and late reproduction are challenging to overcome when developing efficient aquaculture production techniques. S. purpuratus develops via an indirect life history that is characterized by a drastic settlement process at the end of a larval period that lasts for several weeks. During this transition, the bilateral larva is transformed into a pentaradial juvenile, which will start feeding and growing in the benthic habitat. Due to predation and other ecological factors, settlement is typically associated with high mortality rates in juvenile populations. Additionally, juveniles require several days to develop a functional mouth and digestive system. During this perimetamorphic period, juveniles use up larval resources until they are capable to digest adult food. Mechanisms underlying the onset of juvenile feeding and metabolism have implications for the recruitment of natural populations as well as aquaculture and are relatively poorly understood in S. purpuratus. The insulin/insulin-like growth factor signalling (IIS)/Target of Rapamycin (TOR) pathway (IIS/TOR) is well conserved among animal phyla and regulates physiological and developmental functions, such as growth, reproduction, aging and nutritional status. We analyzed the expression of FoxO, TOR, and ILPs in post-settlement juveniles in conjunction with their early growth trajectories. We also tested how pre-settlement starvation affected post-settlement expression of IIS. We found that FoxO provides a useful molecular marker in early juveniles as its expression is strongly correlated with juvenile growth. We also found that pre-settlement starvation affects juvenile growth trajectories as well as IIS. Our findings provide preliminary insights into the mechanisms underlying post-settlement growth and metabolism in S. purpuratus. They also have important implications for sea urchin aquaculture, as they show that pre-settlement nutrient environment significantly affects both early growth trajectories and gene expression. This information can be used to develop new biomarkers for juvenile health in sea urchin population ecology and aquaculture aquaculture.
Collapse
Affiliation(s)
- Alyaa Elsaid Abdelaziz Fadl
- Department of Integrative Biology, Faculty of Biological Science, University of Guelph, Guelph, Ontario, Canada.,Department of Zoology, Faculty of Science, University of Kafrelsheikh, Kafr Elsheikh, Egypt
| | - Magdy Elsayed Mahfouz
- Department of Zoology, Faculty of Science, University of Kafrelsheikh, Kafr Elsheikh, Egypt
| | | | - Andreas Heyland
- Department of Integrative Biology, Faculty of Biological Science, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
12
|
Wolfe K, Graba-Landry A, Dworjanyn SA, Byrne M. Superstars: Assessing nutrient thresholds for enhanced larval success of Acanthaster planci, a review of the evidence. MARINE POLLUTION BULLETIN 2017; 116:307-314. [PMID: 28094041 DOI: 10.1016/j.marpolbul.2016.12.079] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 12/29/2016] [Accepted: 12/31/2016] [Indexed: 05/14/2023]
Abstract
Crown-of-thorns starfish, Acanthaster planci (COTS), predation is a major cause of coral reef decline, but the factors behind their population outbreaks remain unclear. Increased phytoplankton food resulting from eutrophication is suggested to enhance larval survival. We addressed the hypothesis that larval success is associated with particular chl-a levels in tightly controlled larval:algal conditions. We used chl-a conditions found on coral reefs (0.1-5.0μgchl-aL-1), including nominal threshold levels for disproportionate larval success (≥1.0μgchl-aL-1). High success to the juvenile occurred across an order of magnitude of chl-a concentrations (0.5-5.0μgchl-aL-1), suggesting there may not be a narrow value for optimal success. Oligotrophic conditions (0.1μgchl-aL-1) appeared to be a critical limit. With a review of the evidence, we suggest that opportunistic COTS larvae may be more resilient to low food levels than previously appreciated. Initiation of outbreak populations need not require eutrophic conditions.
Collapse
Affiliation(s)
- Kennedy Wolfe
- School of Medical Sciences, The University of Sydney, NSW 2006, Australia.
| | - Alexia Graba-Landry
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia
| | - Symon A Dworjanyn
- National Marine Science Centre, Southern Cross University, Coffs Harbour, NSW 2450, Australia
| | - Maria Byrne
- School of Medical Sciences, The University of Sydney, NSW 2006, Australia; School of Biological Sciences, The University of Sydney, NSW 2006, Australia
| |
Collapse
|
13
|
Interactive Effects of Endogenous and Exogenous Nutrition on Larval Development for Crown-Of-Thorns Starfish. DIVERSITY-BASEL 2017. [DOI: 10.3390/d9010015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
14
|
Selective Feeding and Microalgal Consumption Rates by Crown-Of-Thorns Seastar (Acanthaster cf. solaris) Larvae. DIVERSITY-BASEL 2017. [DOI: 10.3390/d9010008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
15
|
Hodin J, Lutek K, Heyland A. A newly identified left-right asymmetry in larval sea urchins. ROYAL SOCIETY OPEN SCIENCE 2016; 3:160139. [PMID: 27853591 PMCID: PMC5108941 DOI: 10.1098/rsos.160139] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 07/29/2016] [Indexed: 06/06/2023]
Abstract
Directional asymmetry (DA) in body form is a widespread phenomenon in animals and plants alike, and a functional understanding of such asymmetries can offer insights into the ways in which ecology and development interface to drive evolution. Echinoids (sea urchins, sand dollars and their kin) with planktotrophic development have a bilaterally symmetrical feeding pluteus larva that undergoes a dramatic metamorphosis into a pentameral juvenile that enters the benthos at settlement. The earliest stage of this transformation involves a DA: a left-side invagination in mid-stage larvae leads to the formation of the oral field of the juvenile via a directionally asymmetric structure called the echinus rudiment. Here, we show for the first time in two echinoid species that there is a corresponding DA in the overall shape of the larva: late-stage plutei have consistently shorter arms specifically on the rudiment (left) side. We then demonstrate a mechanistic connection between the rudiment and arm length asymmetries by examining rare, anomalous purple urchin larvae that have rudiments on both the left and the right side. Our data suggest that this asymmetry is probably a broadly shared feature characterizing ontogeny in the class Echinoidea. We propose several functional hypotheses-including developmental constraints and water column stability-to account for this newly identified asymmetry.
Collapse
Affiliation(s)
- Jason Hodin
- Friday Harbor Laboratories, University of Washington, Friday Harbor, WA, USA
| | - Keegan Lutek
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| | - Andreas Heyland
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
16
|
The Role of Maternal Nutrition on Oocyte Size and Quality, with Respect to Early Larval Development in The Coral-Eating Starfish, Acanthaster planci. PLoS One 2016; 11:e0158007. [PMID: 27327627 PMCID: PMC4915722 DOI: 10.1371/journal.pone.0158007] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 06/08/2016] [Indexed: 11/19/2022] Open
Abstract
Variation in local environmental conditions can have pronounced effects on the population structure and dynamics of marine organisms. Previous studies on crown-of-thorns starfish, Acanthaster planci, have primarily focused on effects of water quality and nutrient availability on larval growth and survival, while the role of maternal nutrition on reproduction and larval development has been overlooked. To examine the effects of maternal nutrition on oocyte size and early larval development in A. planci, we pre-conditioned females for 60 days on alternative diets of preferred coral prey (Acropora abrotanoides) versus non-preferred coral prey (Porites rus) and compared resulting gametes and progeny to those produced by females that were starved over the same period. Females fed ad libitum with Acropora increased in weight, produced heavier gonads and produced larger oocytes compared to Porites-fed and starved females. Fed starfish (regardless of whether it was Acropora or Porites) produced bigger larvae with larger stomachs and had a higher frequency of normal larvae that reached the late bipinnaria / early brachiolaria stage compared to starved starfish. Females on Acropora diet also produced a higher proportion of larvae that progressed to more advanced stages faster compared to Porites-fed starfish, which progressed faster than starved starfish. These results suggest that maternal provisioning can have important consequences for the quality and quantity of progeny. Because food quality (coral community structure) and quantity (coral abundance) varies widely among reef locations and habitats, local variation in maternal nutrition of A. planci is likely to moderate reproductive success and may explain temporal and spatial fluctuations in abundance of this species.
Collapse
|
17
|
Carrasco SA, Phillips NE, Sewell MA. Maternal Lipid Provisioning Mirrors Evolution of Reproductive Strategies in Direct-Developing Whelks. THE BIOLOGICAL BULLETIN 2016; 230:188-196. [PMID: 27365414 DOI: 10.1086/bblv230n3p188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The energetic input that offspring receive from their mothers is a well-studied maternal effect that can influence the evolution of life histories. Using the offspring of three sympatric whelks: Cominella virgata (one embryo per capsule); Cominella maculosa (multiple embryos per capsule); and Haustrum scobina (multiple embryos per capsule and nurse-embryo consumption), we examined how contrasting reproductive strategies mediate inter- and intraspecific differences in hatchling provisioning. Total lipid content (as measured in μg hatchling(-1) ± SE) was unrelated to size among the 3 species; the hatchlings of H. scobina were the smallest but had the highest lipid content (33.8 ± 8.1 μg hatchling(-1)). In offspring of C. maculosa, lipid content was 6.6 ± 0.4 μg hatchling(-1), and in offspring of C. virgata, it was 21.7 ± 3.2 μg hatchling(-1) The multi-encapsulated hatchlings of C. maculosa and H. scobina were the only species that contained the energetic lipids, wax ester (WE) and methyl ester (ME). However, the overall composition of energetic lipid between hatchlings of the two Cominella species reflected strong affinities of taxonomy, suggesting a phylogenetic evolution of the non-adelphophagic development strategy. Inter- and intracapsular variability in sibling provisioning was highest in H. scobina, a finding that implies less control of allocation to individual hatchlings in this adelphophagic developer. We suggest that interspecific variability of lipids offers a useful approach to understanding the evolution of maternal provisioning in direct-developing species.
Collapse
Affiliation(s)
- Sergio A Carrasco
- School of Biological Sciences and Coastal Ecology Laboratory, Victoria University of Wellington, Wellington 6140, New Zealand; and
| | - Nicole E Phillips
- School of Biological Sciences and Coastal Ecology Laboratory, Victoria University of Wellington, Wellington 6140, New Zealand; and
| | - Mary A Sewell
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| |
Collapse
|
18
|
Carrier TJ, King BL, Coffman JA. Gene Expression Changes Associated With the Developmental Plasticity of Sea Urchin Larvae in Response to Food Availability. THE BIOLOGICAL BULLETIN 2015; 228:171-80. [PMID: 26124444 PMCID: PMC4706744 DOI: 10.1086/bblv228n3p171] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Planktotrophic sea urchin larvae are developmentally plastic: in response to food scarcity, development of the juvenile rudiment is suspended and larvae instead develop elongated arms, thus increasing feeding capacity and extending larval life. Here, data are presented on the effect of different feeding regimes on gene expression in larvae of the green sea urchin Strongylocentrotus droebachiensis. These data indicate that during periods of starvation, larvae down-regulate genes involved in growth and metabolic activity while up-regulating genes involved in lipid transport, environmental sensing, and defense. Additionally, we show that starvation increases FoxO activity and that in well-fed larvae rapamycin treatment impedes rudiment growth, indicating that the latter requires TOR activity. These results suggest that the developmental plasticity of echinoplutei is regulated by genes known to control aging and longevity in other animals.
Collapse
Affiliation(s)
- Tyler J Carrier
- MDI Biological Laboratory, Salisbury Cove, Maine 04672; and School of Marine Sciences, University of Maine, Orono, Maine 04469
| | | | | |
Collapse
|
19
|
Kaposi KL, Mos B, Kelaher BP, Dworjanyn SA. Ingestion of microplastic has limited impact on a marine larva. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:1638-45. [PMID: 24341789 DOI: 10.1021/es404295e] [Citation(s) in RCA: 222] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
There is increasing concern about the impacts of microplastics (<1 mm) on marine biota. Microplastics may be mistaken for food items and ingested by a wide variety of organisms. While the effects of ingesting microplastic have been explored for some adult organisms, there is poor understanding of the effects of microplastic ingestion on marine larvae. Here, we investigated the ingestion of polyethylene microspheres by larvae of the sea urchin, Tripneustes gratilla. Ingestion rates scaled with the concentration of microspheres. Ingestion rates were, however, reduced by biological fouling of microplastic and in the presence of phytoplankton food. T. gratilla larvae were able to egest microspheres from their stomach within hours of ingestion. A microsphere concentration far exceeding those recorded in the marine environment had a small nondose dependent effect on larval growth, but there was no significant effect on survival. In contrast, environmentally realistic concentrations appeared to have little effect. Overall, these results suggest that current levels of microplastic pollution in the oceans only pose a limited threat to T. gratilla and other marine invertebrate larvae, but further research is required on a broad range of species, trophic levels, and polymer types.
Collapse
Affiliation(s)
- Katrina L Kaposi
- National Marine Science Centre, Southern Cross University , Coffs Harbour, New South Wales, Australia
| | | | | | | |
Collapse
|
20
|
Leroy F, Meziane T, Riera P, Comtet T. Seasonal variations in maternal provisioning of Crepidula fornicata (Gastropoda): fatty acid composition of females, embryos and larvae. PLoS One 2013; 8:e75316. [PMID: 24086505 PMCID: PMC3782457 DOI: 10.1371/journal.pone.0075316] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 08/12/2013] [Indexed: 11/18/2022] Open
Abstract
Recruitment success of marine invertebrate populations not only depends on the number of recruits but also on their quality which affects their survival. In species characterized by a mixed development (encapsulated embryonic development and release of planktotrophic larvae), the offspring quality depends on both maternal provisioning and larval feeding. Here, we investigated potential changes of maternal provisioning over the whole reproductive period in a gastropod with a mixed development: Crepidulafornicata. In its introduction area, C. fornicata reproduces from February to October, which implies that both adults and larvae are exposed to different food availabilities. Maternal provisioning was assessed by measuring the fatty acid (FA) composition of females, encapsulated embryos and larvae, in February, May, July and September 2009. FA are essential resources for the development of embryos and larvae, and are key biomarkers of offspring quality. Our results showed differences in FA composition between muscles, visceral masses, and encapsulated embryos. In particular, FA composition of embryos was similar to that of the visceral mass. Seasonal variations in FA composition were observed: in the middle of the reproductive season (May and July), female tissues and embryos showed a higher proportion of polyunsaturated fatty acids and especially ω3, as compared to the beginning and end of the reproductive season (February and September). This showed that through maternal provisioning the quality of C. fornicata offspring was higher in the middle of the reproductive season. Whether this would result in an increase of recruitment success and juvenile performance would require further investigations.
Collapse
Affiliation(s)
- Fanny Leroy
- UPMC Univ Paris 06, UMR 7144, Station Biologique, Roscoff, France
- CNRS, UMR 7144, Station Biologique, Roscoff, France
- * E-mail:
| | - Tarik Meziane
- Muséum National d’Histoire Naturelle, UMR BOREA 7208, Committee for Programme and Coordination 53, Paris, France
| | - Pascal Riera
- UPMC Univ Paris 06, UMR 7144, Station Biologique, Roscoff, France
- CNRS, UMR 7144, Station Biologique, Roscoff, France
| | - Thierry Comtet
- UPMC Univ Paris 06, UMR 7144, Station Biologique, Roscoff, France
- CNRS, UMR 7144, Station Biologique, Roscoff, France
| |
Collapse
|
21
|
Sun XJ, Li Q. The effect of food availability on development and phenotypic plasticity in larvae of the sea cucumber (Apostichopus japonicus). INVERTEBR REPROD DEV 2013. [DOI: 10.1080/07924259.2012.757564] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
22
|
Matson PG, Yu PC, Sewell MA, Hofmann GE. Development under elevated pCO2 conditions does not affect lipid utilization and protein content in early life-history stages of the purple sea urchin, Strongylocentrotus purpuratus. THE BIOLOGICAL BULLETIN 2012; 223:312-327. [PMID: 23264477 DOI: 10.1086/bblv223n3p312] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Ocean acidification (OA) is expected to have a major impact on marine species, particularly during early life-history stages. These effects appear to be species-specific and may include reduced survival, altered morphology, and depressed metabolism. However, less information is available regarding the bioenergetics of development under elevated CO(2) conditions. We examined the biochemical and morphological responses of Strongylocentrotus purpuratus during early development under ecologically relevant levels of pCO(2) (365, 1030, and 1450 μatm) that may occur during intense upwelling events. The principal findings of this study were (1) lipid utilization rates and protein content in S. purpuratus did not vary with pCO(2); (2) larval growth was reduced at elevated pCO(2) despite similar rates of energy utilization; and (3) relationships between egg phospholipid content and larval length were found under control but not high pCO(2) conditions. These results suggest that this species may either prioritize endogenous energy toward development and physiological function at the expense of growth, or that reduced larval length may be strictly due to higher costs of growth under OA conditions. This study highlights the need to further expand our knowledge of the physiological mechanisms involved in OA response in order to better understand how present populations may respond to global environmental change.
Collapse
Affiliation(s)
- Paul G Matson
- Department of Ecology, Evolution and Marine Biology, University of California-Santa Barbara, CA 93106-9620, USA
| | | | | | | |
Collapse
|
23
|
Carboni S, Hughes AD, Atack T, Tocher DR, Migaud H. Fatty acid profiles during gametogenesis in sea urchin (Paracentrotus lividus): effects of dietary inputs on gonad, egg and embryo profiles. Comp Biochem Physiol A Mol Integr Physiol 2012. [PMID: 23178813 DOI: 10.1016/j.cbpa.2012.11.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The effects of dietary fatty acids on the composition of Paracentrotus lividus gonads were investigated to determine whether dietary inputs affect their relative abundance during gametogenesis. Egg and embryo FA compositions were compared with that of mature gonads to understand how maternal FA is transferred to the offspring. Urchins were fed an experimental Pellet diet in comparison to brown Kelp (Laminaria digitata). FA profiles of diets, gonads, eggs and embryos revealed the presence in gonads of FA that was absent in the diets and/or higher in contents of some long-chain polyunsaturated fatty acid (LC-PUFA). Moreover, some unusual FA, such as non-methylene interrupted (NMI), was found in gonads, eggs and embryos, but not in the diets, suggesting that P. lividus may be capable of synthesizing this FA and accumulating them in the eggs. A description of gonad FA profiles during gametogenesis is reported for the first time and data suggest that eicosapentaenoic and docosahexaenoic acids are accumulated during gametogenesis, while arachidonic acid is highly regulated and is the only LC-PUFA clearly accumulated into the eggs along with NMI. Further studies are required to determine if maternal provisioning of FA has the potential to influence sea urchin production outputs and to increase hatchery profitability.
Collapse
Affiliation(s)
- Stefano Carboni
- Institute of Aquaculture, Stirling University, Stirling FK9 4LA, Scotland UK.
| | | | | | | | | |
Collapse
|
24
|
McAlister JS, Moran AL. Relationships among egg size, composition, and energy: a comparative study of geminate sea urchins. PLoS One 2012; 7:e41599. [PMID: 22911821 PMCID: PMC3402426 DOI: 10.1371/journal.pone.0041599] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 06/22/2012] [Indexed: 11/19/2022] Open
Abstract
Egg size is one of the fundamental parameters in the life histories of marine organisms. However, few studies have examined the relationships among egg size, composition, and energetic content in a phylogenetically controlled context. We investigated the associations among egg size, composition, and energy using a comparative system, geminate species formed by the closure of the Central American Seaway. We examined western Atlantic (WA) and eastern Pacific (EP) species in three echinoid genera, Echinometra, Eucidaris, and Diadema. In the genus with the largest difference in egg size between geminates (Echinometra), the eggs of WA species were larger, lipid rich and protein poor compared to the smaller eggs of their EP geminate. In addition, the larger WA eggs had significantly greater total egg energy and summed biochemical constituents yet significantly lower egg energy density (energy-per-unit-volume). However, the genera with smaller (Eucidaris) or no (Diadema) differences in egg size were not significantly different in summed biochemical constituents, total egg energy, or energy density. Theoretical models generally assume a strong tradeoff between egg size and fecundity that limits energetic investment and constrains life history evolution. We show that even among closely-related taxa, large eggs cannot be assumed to be scaled-up small eggs either in terms of energy or composition. Although our data comes exclusively from echinoid echinoderms, this pattern may be generalizable to other marine invertebrate taxa. Because egg composition and egg size do not necessarily evolve in lockstep, selective factors such as sperm limitation could act on egg volume without necessarily affecting maternal or larval energetics.
Collapse
Affiliation(s)
- Justin S McAlister
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, United States of America.
| | | |
Collapse
|
25
|
Mos B, Cowden KL, Nielsen SJ, Dworjanyn SA. Do cues matter? Highly inductive settlement cues don't ensure high post-settlement survival in sea urchin aquaculture. PLoS One 2011; 6:e28054. [PMID: 22162755 PMCID: PMC3230603 DOI: 10.1371/journal.pone.0028054] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Accepted: 10/31/2011] [Indexed: 11/30/2022] Open
Abstract
Increasing settlement and post-settlement survival during the critical transition from planktonic larvae to benthic juveniles will increase efficiency for sea urchin aquaculture. This study investigated the effects of temperature and settlement cues on the settlement and post-settlement survival of the sea urchin Tripneustes gratilla during this phase. The current commercial methodology, which utilises natural biofilm settlement plates, was tested and resulted in low settlement (<2%) and poor post-settlement survival (<1% of settled urchins). In laboratory trials, settlement was high and unaffected by temperatures between 24 and 30°C, but significantly decreased at 33°C. Development of spines, however, was significantly affected by temperatures over 29°C. Mirroring this result, post-settlement survival was optimal between 24-28°C. In laboratory assays, the macroalgae Sargassum linearifolium and Corallina officinalis, and seawater conditioned with these algae, induced significantly higher settlement (>90%) than a natural biofilm (∼25%). The addition of macroalgae-conditioned seawater to natural biofilm significantly increased settlement rates (>85%). Mixed consortia and single strains of bacteria isolated from macroalgae, biofilms and adult conspecifics all induced significant settlement, but at significantly lower rates than macroalgae. No evidence was found that higher rates of settlement to bacteria on macroalgae were generated by a cofactor from the macroalgae. Age of bacterial cultures, culturing bacteria on solid and liquid media and concentration of nutrients in cultures had little effect on settlement rates. Finally, macroalgae-conditioned seawater combined with natural biofilm settlement plates induced significantly higher settlement than to the biofilm plates alone in a commercial scale trial. However, high post-settlement mortality resulted in equivalent survival between treatments after 25 days. This study highlights that settlement studies should extend to post-settlement survival, which remains poor for T. gratilla and is a significant obstacle to increasing efficiency for aquaculture.
Collapse
Affiliation(s)
- Benjamin Mos
- National Marine Science Centre, Southern Cross University, Coffs Harbour, New South Wales, Australia.
| | | | | | | |
Collapse
|
26
|
Lister KN, Lamare MD, Burritt DJ. Oxidative Damage in Response to Natural Levels of UV-B Radiation in Larvae of the Tropical Sea Urchin Tripneustes gratilla. Photochem Photobiol 2010; 86:1091-8. [DOI: 10.1111/j.1751-1097.2010.00779.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
27
|
Sheppard Brennand H, Soars N, Dworjanyn SA, Davis AR, Byrne M. Impact of ocean warming and ocean acidification on larval development and calcification in the sea urchin Tripneustes gratilla. PLoS One 2010; 5:e11372. [PMID: 20613879 PMCID: PMC2894059 DOI: 10.1371/journal.pone.0011372] [Citation(s) in RCA: 181] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Accepted: 06/09/2010] [Indexed: 11/22/2022] Open
Abstract
Background As the oceans simultaneously warm, acidify and increase in PCO2, prospects for marine biota are of concern. Calcifying species may find it difficult to produce their skeleton because ocean acidification decreases calcium carbonate saturation and accompanying hypercapnia suppresses metabolism. However, this may be buffered by enhanced growth and metabolism due to warming. Methodology/Principal Findings We examined the interactive effects of near-future ocean warming and increased acidification/PCO2 on larval development in the tropical sea urchin Tripneustes gratilla. Larvae were reared in multifactorial experiments in flow-through conditions in all combinations of three temperature and three pH/PCO2 treatments. Experiments were placed in the setting of projected near future conditions for SE Australia, a global change hot spot. Increased acidity/PCO2 and decreased carbonate mineral saturation significantly reduced larval growth resulting in decreased skeletal length. Increased temperature (+3°C) stimulated growth, producing significantly bigger larvae across all pH/PCO2 treatments up to a thermal threshold (+6°C). Increased acidity (-0.3-0.5 pH units) and hypercapnia significantly reduced larval calcification. A +3°C warming diminished the negative effects of acidification and hypercapnia on larval growth. Conclusions and Significance This study of the effects of ocean warming and CO2 driven acidification on development and calcification of marine invertebrate larvae reared in experimental conditions from the outset of development (fertilization) shows the positive and negative effects of these stressors. In simultaneous exposure to stressors the dwarfing effects of acidification were dominant. Reduction in size of sea urchin larvae in a high PCO2 ocean would likely impair their performance with negative consequent effects for benthic adult populations.
Collapse
Affiliation(s)
| | - Natalie Soars
- School of Medical Sciences, University of Sydney, Sydney, New South Whales, Australia
| | - Symon A. Dworjanyn
- National Marine Science Centre, Southern Cross University, Coffs Harbour, New South Whales, Australia
| | - Andrew R. Davis
- Institute for Conservation Biology, University of Wollongong, Wollongong, New South Whales, Australia
| | - Maria Byrne
- School of Medical Sciences, University of Sydney, Sydney, New South Whales, Australia
- Schools of Medical and Biological Sciences, University of Sydney, Sydney, New South Whales, Australia
- * E-mail:
| |
Collapse
|
28
|
Costantini D. Effects of diet quality on serum oxidative status and body mass in male and female pigeons during reproduction. Comp Biochem Physiol A Mol Integr Physiol 2010; 156:294-9. [PMID: 20206709 DOI: 10.1016/j.cbpa.2010.02.021] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2010] [Revised: 02/25/2010] [Accepted: 02/25/2010] [Indexed: 11/26/2022]
Abstract
The quality of diet can affect the oxidative status of an animal and its susceptibility to oxidative damage. However, such effects can be expected to differ among phases of life cycle (e.g., reproduction, migration, moult), because they face the animals with different nutrient requirements and levels of stress. In this study, I investigated the effects of diet quality (standard vs. decreased quality diet) on the patterns of variation in serum oxidative status (oxidative damage, serum antioxidant capacity, serum thiols) and body mass in male and female pigeons (Columba livia) across the incubation and chick-rearing phases. This study shows that effects of environmental quality (diet) on oxidative status and body mass of breeding pigeons can emerge more strongly while chick feeding, but now while incubating. This study also suggests that males and females may differ in oxidative status and in how environmental quality (diet in this study) affects their oxidative status.
Collapse
Affiliation(s)
- David Costantini
- Division of Ecology and Evolutionary Biology, Faculty of Biomedical and Life Sciences, University of Glasgow, Graham Kerr Building, Glasgow G12 8QQ, UK.
| |
Collapse
|
29
|
Moran AL, McAlister JS. Egg size as a life history character of marine invertebrates: Is it all it's cracked up to be? THE BIOLOGICAL BULLETIN 2009; 216:226-242. [PMID: 19556591 DOI: 10.1086/bblv216n3p226] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Egg size is one of the most important aspects of the life history of free-spawning marine organisms, and it is correlated with larval developmental mode and many other life-history characters. Egg size is simple to measure and data are available for a wide range of taxa, but we have a limited understanding of how large and small eggs differ in composition; size is not always the best measure of the characters under selection. Large eggs are generally considered to reflect increased maternal investment, but egg size alone can be a poor predictor of energetic content within and among taxa. We review techniques that have been used to measure the energetic content and biochemical makeup of invertebrate eggs and point out the strengths and difficulties associated with each. We also suggest a number of comparative and descriptive approaches to biochemical constituent analysis that would strengthen our understanding of how natural selection shapes oogenic strategies. Finally, we highlight recent empirical research on the intrinsic factors that drive intraspecific variation in egg size. We also highlight the relative paucity of these data in the literature and provide some suggestions for future research directions.
Collapse
Affiliation(s)
- Amy L Moran
- Department of Biological Sciences, 132 Long Hall, Clemson University, Clemson, South Carolina 29634, USA.
| | | |
Collapse
|