1
|
Franza M, Albanesi J, Mancini B, Pennisi R, Leone S, Acconcia F, Bianchi F, di Masi A. The clinically relevant CHK1 inhibitor MK-8776 induces the degradation of the oncogenic protein PML-RARα and overcomes ATRA resistance in acute promyelocytic leukemia cells. Biochem Pharmacol 2023:115675. [PMID: 37406967 DOI: 10.1016/j.bcp.2023.115675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/27/2023] [Accepted: 06/27/2023] [Indexed: 07/07/2023]
Abstract
Acute promyelocytic leukemia (APL) is a hematological disease characterized by the expression of the oncogenic fusion protein PML-RARα. The current treatment approach for APL involves differentiation therapy using all-trans retinoic acid (ATRA) and arsenic trioxide (ATO). However, the development of resistance to therapy, occurrence of differentiation syndrome, and relapses necessitate the exploration of new treatment options that induce differentiation of leukemic blasts with low toxicity. In this study, we investigated the cellular and molecular effects of MK-8776, a specific inhibitor of CHK1, in ATRA-resistant APL cells. Treatment of APL cells with MK-8776 resulted in a decrease in PML-RARα levels, increased expression of CD11b, and increased granulocytic activity consistent with differentiation. Interestingly, we showed that the MK-8776-induced differentiating effect resulted synergic with ATO. We found that the reduction of PML-RARα by MK-8776 was dependent on both proteasome and caspases. Specifically, both caspase-1 and caspase-3 were activated by CHK1 inhibition, with caspase-3 acting upstream of caspase-1. Activation of caspase-3 was necessary to activate caspase-1 and promote PML-RARα degradation. Transcriptomic analysis revealed significant modulation of pathways and upstream regulators involved in the inflammatory response and cell cycle control upon MK-8776 treatment. Overall, the ability of MK-8776 to induce PML-RARα degradation and stimulate differentiation of immature APL cancer cells into more mature forms recapitulates the concept of differentiation therapy. Considering the in vivo tolerability of MK-8776, it will be relevant to evaluate its potential clinical benefit in APL patients resistant to standard ATRA/ATO therapy, as well as in patients with other forms of acute leukemias.
Collapse
Affiliation(s)
- Maria Franza
- Department of Sciences, Section of Biomedical Sciences and Technologies, Roma Tre University, Roma, Italy
| | - Jacopo Albanesi
- Department of Sciences, Section of Biomedical Sciences and Technologies, Roma Tre University, Roma, Italy
| | - Benedetta Mancini
- Department of Sciences, Section of Biomedical Sciences and Technologies, Roma Tre University, Roma, Italy
| | - Rosa Pennisi
- Department of Oncology, University of Torino Medical School, Torino, Italy; Candiolo Cancer Institute, FPO - IRCCS, Candiolo, Torino, Italy
| | - Stefano Leone
- Department of Sciences, Section of Biomedical Sciences and Technologies, Roma Tre University, Roma, Italy
| | - Filippo Acconcia
- Department of Sciences, Section of Biomedical Sciences and Technologies, Roma Tre University, Roma, Italy
| | - Fabrizio Bianchi
- Unit of Cancer Biomarkers, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo (FG), Italy
| | - Alessandra di Masi
- Department of Sciences, Section of Biomedical Sciences and Technologies, Roma Tre University, Roma, Italy.
| |
Collapse
|
2
|
Investigation of the Possible Role of RAD9 in Post-Diapaused Embryonic Development of the Brine Shrimp Artemia sinica. Genes (Basel) 2019; 10:genes10100768. [PMID: 31574972 PMCID: PMC6826366 DOI: 10.3390/genes10100768] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 09/25/2019] [Accepted: 09/26/2019] [Indexed: 11/17/2022] Open
Abstract
Background: The cell cycle checkpoint protein RAD9 is a vital cell cycle regulator in eukaryotic cells. RAD9 is involved in diverse cellular functions by oligomer or monomer. However, the specific mechanism of its activity remains unknown in crustaceans, especially in embryonic diapause resumption of the brine shrimp Artemia sinica. Methods and Results: In the present article, a 1238 bp full-length cDNA of As–RAD9 gene, encoding 376 amino acids, was obtained from A. sinica. The expression pattern of As–RAD9 was analyzed by qPCR and Western blot. The mRNA expression level climbs to the top at the 10 h stage of embryo development, while the protein expression pattern is generally consistent with qPCR results. Moreover, the As–RADd9 related signaling proteins, As–RAD1, As–HUS1, As–RAD17, and As–CHK1, were also detected. Immunofluorescence assay showed that the location of As–RAD9 did not show tissue or organ specificity, and the intracellular expression was concentrated in the cytoplasm more than in the nucleus. We also explored the amount of As–RAD9 under the stresses of cold and high salinity, and the results indicate that As–RAD9 is a stress-related factor, though the mechanisms may be different in response to different stresses. Knocking down of the As–RAD9 gene led to embryonic development delay in A. sinica. Conclusions: All these results reveal that As–RAD9 is necessary for post-diapaused embryonic development in A. sinica.
Collapse
|
3
|
Rad9a is involved in chromatin decondensation and post-zygotic embryo development in mice. Cell Death Differ 2018; 26:969-980. [PMID: 30154445 DOI: 10.1038/s41418-018-0181-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 07/01/2018] [Accepted: 07/20/2018] [Indexed: 12/13/2022] Open
Abstract
Zygotic chromatin undergoes extensive reprogramming immediately after fertilization. It is generally accepted that maternal factors control this process. However, little is known about the underlying mechanisms. Here we report that maternal RAD9A, a key protein in DNA damage response pathway, is involved in post-zygotic embryo development, via a mouse model with conditional depletion of Rad9a alleles in oocytes of primordial follicles. Post-zygotic losses originate from delayed zygotic chromatin decondensation after depletion of maternal RAD9A. Pronucleus formation and DNA replication of most mutant zygotes are therefore deferred, which subsequently trigger the G2/M checkpoint and arrest development of most mutant zygotes. Delayed zygotic chromatin decondensation could also lead to increased reabsorption of post-implantation mutant embryos. In addition, our data indicate that delayed zygotic chromatin decondensation may be attributed to deferred epigenetic modification of histone in paternal chromatin after fertilization, as fertilization and resumption of secondary meiosis in mutant oocytes were both normal. More interestingly, most mutant oocytes could not support development beyond one-cell stage after parthenogenetic activation. Therefore, RAD9A may also play an important role in maternal chromatin reprogramming. In summary, our data reveal an important role of RAD9A in zygotic chromatin reprogramming and female fertility.
Collapse
|
4
|
Lieberman HB, Rai AJ, Friedman RA, Hopkins KM, Broustas CG. Prostate cancer: unmet clinical needs and RAD9 as a candidate biomarker for patient management. Transl Cancer Res 2018; 7:S651-S661. [PMID: 30079300 PMCID: PMC6071673 DOI: 10.21037/tcr.2018.01.21] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Prostate cancer is a complex disease, with multiple subtypes and clinical presentations. Much progress has been made in recent years to understand the underlying genetic basis that drives prostate cancer. Such mechanistic information is useful for development of novel therapeutic targets, to identify biomarkers for early detection or to distinguish between aggressive and indolent disease, and to predict treatment outcome. Multiple tests have become available in recent years to address these clinical needs for prostate cancer. We describe several of these assays, summarizing test details, performance characteristics, and acknowledging their limitations. There is a pressing unmet need for novel biomarkers that can demonstrate improvement in these areas. We introduce one such candidate biomarker, RAD9, describe its functions in the DNA damage response, and detail why it can potentially fill this void. RAD9 has multiple roles in prostate carcinogenesis, making it potentially useful as a clinical tool for men with prostate cancer. RAD9 was originally identified as a radioresistance gene, and subsequent investigations revealed several key functions in the response of cells to DNA damage, including involvement in cell cycle checkpoint control, at least five DNA repair pathways, and apoptosis. Further studies indicated aberrant overexpression in approximately 45% of prostate tumors, with a strong correlation between RAD9 abundance and cancer stage. A causal relationship between RAD9 and prostate cancer was first demonstrated using a mouse model, where tumorigenicity of human prostate cancer cells after subcutaneous injection into nude mice was diminished when RNA interference was used to reduce the normally high levels of the protein. In addition to activity needed for the initial development of tumors, cell culture studies indicated roles for RAD9 in promoting prostate cancer progression by controlling cell migration and invasion through regulation of ITGB1 protein levels, and anoikis resistance by modulating AKT activation. Furthermore, RAD9 enhances the resistance of human prostate cancer cells to radiation in part by regulating ITGB1 protein abundance. RAD9 binds androgen receptor and inhibits androgen-induced androgen receptor's activity as a transcription factor. Moreover, RAD9 also acts as a gene-specific transcription factor, through binding p53 consensus sequences at target gene promoters, and this likely contributes to its oncogenic activity. Given these diverse and extensive activities, RAD9 plays important roles in the initiation and progression of prostate cancer and can potentially serve as a valuable biomarker useful in the management of patients with this disease.
Collapse
Affiliation(s)
- Howard B. Lieberman
- Center for Radiological Research, Columbia University College of Physicians and Surgeons, New York, NY, USA
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Alex J. Rai
- Department of Pathology and Cell Biology and Special Chemistry Laboratories, Columbia University Medical Center and New York Presbyterian Hospital, New York, NY, USA
| | - Richard A. Friedman
- Biomedical Informatics Shared Resource, Herbert Irving Comprehensive Cancer Center and Department of Biomedical Informatics, Columbia University, New York, NY, USA
| | - Kevin M. Hopkins
- Center for Radiological Research, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Constantinos G. Broustas
- Center for Radiological Research, Columbia University College of Physicians and Surgeons, New York, NY, USA
| |
Collapse
|
5
|
Huang L, Wang ZB, Qi ST, Ma XS, Liang QX, Lei G, Meng TG, Liang LF, Xian YX, Hou Y, Sun XF, Zhao Y, Wang WH, Sun QY. Rad9a is required for spermatogonia differentiation in mice. Oncotarget 2016; 7:86350-86358. [PMID: 27861152 PMCID: PMC5349919 DOI: 10.18632/oncotarget.13405] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 11/09/2016] [Indexed: 12/14/2022] Open
Abstract
Spermatogenesis in testes requires precise spermatogonia differentiation. Spermatocytes lacking the Rad9a gene are arrested in pachytene prophase, implying a possible role for RAD9A in spermatogonia differentiation. However, numerous RAD9A-positive pachytene spermatocytes are still observed in mouse testes following Rad9a excision using the Stra8-Cre system, and it is unclear whether Rad9a deletion in spermatogonia interrupts differentiation. Here, we generated a mouse model in which Rad9a was specifically deleted in spermatogonial stem cells (SSCs) using Cre recombinase expression driven by the germ cell-specific Vasa promoter. Adult Rad9a-null male mice were infertile as a result of completely blocked spermatogonia differentiation. No early spermatocytes were detected in mutant testicular cords of 9-day-old mice. Mutant spermatogonia were prone to apoptosis, although proliferation rates were unaffected. Rad9a deletion also resulted in malformation of seminiferous tubules, in which cells assembled irregularly into clusters, and malformation led to testicular cord disruption. Our findings suggest that Rad9a is indispensable for spermatogonia differentiation and testicular development in mice.
Collapse
Affiliation(s)
- Lin Huang
- Key Laboratory of Major Obstetrics Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Hospital Affiliated to Guangzhou Medical University, Guangdong, China.,State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Zhen-Bo Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Shu-Tao Qi
- Key Laboratory of Major Obstetrics Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Hospital Affiliated to Guangzhou Medical University, Guangdong, China
| | - Xue-Shan Ma
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Qiu-Xia Liang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of the Chinese Academy of Sciences, Beijing, China
| | - Guo Lei
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Tie-Gang Meng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Li-Feng Liang
- Key Laboratory of Major Obstetrics Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Hospital Affiliated to Guangzhou Medical University, Guangdong, China
| | - Ye-Xin Xian
- Key Laboratory of Major Obstetrics Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Hospital Affiliated to Guangzhou Medical University, Guangdong, China
| | - Yi Hou
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xiao-Fang Sun
- Key Laboratory of Major Obstetrics Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Hospital Affiliated to Guangzhou Medical University, Guangdong, China
| | - Yong Zhao
- State Key Laboratory of Biomembrane, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Wei-Hua Wang
- Key Laboratory of Major Obstetrics Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Hospital Affiliated to Guangzhou Medical University, Guangdong, China.,Houston Fertility Institute/Houston Fertility Laboratory, Houston, Texas, USA
| | - Qing-Yuan Sun
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of the Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
6
|
Chk1 Activation Protects Rad9A from Degradation as Part of a Positive Feedback Loop during Checkpoint Signalling. PLoS One 2015; 10:e0144434. [PMID: 26658951 PMCID: PMC4676731 DOI: 10.1371/journal.pone.0144434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 11/18/2015] [Indexed: 11/19/2022] Open
Abstract
Phosphorylation of Rad9A at S387 is critical for establishing a physical interaction with TopBP1, and to downstream activation of Chk1 for checkpoint activation. We have previously demonstrated a phosphorylation of Rad9A that occurs at late time points in cells exposed to genotoxic agents, which is eliminated by either Rad9A overexpression, or conversion of S387 to a non-phosphorylatable analogue. Based on this, we hypothesized that this late Rad9A phosphorylation is part of a feedback loop regulating the checkpoint. Here, we show that Rad9A is hyperphosphorylated and accumulates in cells exposed to bleomycin. Following the removal of bleomycin, Rad9A is polyubiquitinated, and Rad9A protein levels drop, indicating an active degradation process for Rad9A. Chk1 inhibition by UCN-01 or siRNA reduces Rad9A levels in cells synchronized in S-phase or exposed to DNA damage, indicating that Chk1 activation is required for Rad9A stabilization in S-phase and during checkpoint activation. Together, these results demonstrate a positive feedback loop involving Rad9A-dependend activation of Chk1, coupled with Chk1-dependent stabilization of Rad9A that is critical for checkpoint regulation.
Collapse
|
7
|
Franchitto A, Pichierri P. Replication fork recovery and regulation of common fragile sites stability. Cell Mol Life Sci 2014; 71:4507-17. [PMID: 25216703 PMCID: PMC11113654 DOI: 10.1007/s00018-014-1718-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 08/28/2014] [Indexed: 10/24/2022]
Abstract
The acquisition of genomic instability is a triggering factor in cancer development, and common fragile sites (CFS) are the preferential target of chromosomal instability under conditions of replicative stress in the human genome. Although the mechanisms leading to CFS expression and the cellular factors required to suppress CFS instability remain largely undefined, it is clear that DNA becomes more susceptible to breakage when replication is impaired. The models proposed so far to explain how CFS instability arises imply that replication fork progression along these regions is perturbed due to intrinsic features of fragile sites and events that directly affect DNA replication. The observation that proteins implicated in the safe recovery of stalled forks or in engaging recombination at collapsed forks increase CFS expression when downregulated or mutated suggests that the stabilization and recovery of perturbed replication forks are crucial to guarantee CFS integrity.
Collapse
Affiliation(s)
- Annapaola Franchitto
- Section of Molecular Epidemiology, Department of Environment and Primary Prevention, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161, Rome, Italy,
| | | |
Collapse
|
8
|
Broustas CG, Lieberman HB. RAD9 enhances radioresistance of human prostate cancer cells through regulation of ITGB1 protein levels. Prostate 2014; 74:1359-70. [PMID: 25111005 PMCID: PMC4142073 DOI: 10.1002/pros.22842] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 06/03/2014] [Indexed: 01/17/2023]
Abstract
BACKGROUND Mouse embryonic stem cells null for Rad9 are sensitive to deleterious effects of ionizing radiation exposure. Likewise, integrin β1 is a known radioprotective factor. Previously, we showed that RAD9 downregulation in human prostate cancer cells reduces integrin β1 protein levels and ectopic expression of Mrad9 restores inherent high levels. METHODS We used RNA interference to knockdown Rad9 expression in PC3 and DU145 prostate cancer cells. These cells were then exposed to ionizing radiation, and integrin β1 protein levels were measured by immunoblotting. Survival of irradiated cells was measured by clonogenicity, cell cycle analysis, PARP-1 cleavage, and trypan blue exclusion. RESULTS The function of RAD9 in controlling integrin β1 expression is unique and not shared by the other members of the 9-1-1 complex, HUS1 and RAD1. RAD9 or integrin β1 silencing sensitizes DU145 and PC3 cells to ionizing radiation. Irradiation of DU145 cells with low levels of RAD9 induces cleavage of PARP-1 protein. High levels of ionizing radiation have no effect on integrin β1 protein levels. However, when RAD9 downregulation is combined with 10 Gy of ionizing radiation in DU145 or PC3 cells, there is an additional 50% downregulation of integrin β1 compared with levels in unirradiated RAD9 knockdown cells. Finally, PC3 cells growing on fibronectin display increased radioresistance. However, PC3 cells with RAD9 knockdown are no longer protected by fibronectin after treatment with ionizing radiation. CONCLUSIONS Downregulation of RAD9 when combined with ionizing radiation results in reduction of ITGB1 protein levels in prostate cancer cells, and increased lethality.
Collapse
Affiliation(s)
- Constantinos G. Broustas
- Center for Radiological Research, Columbia University College of Physicians and Surgeons, New York, NY 10032
| | - Howard B. Lieberman
- Center for Radiological Research, Columbia University College of Physicians and Surgeons, New York, NY 10032
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY 10032
| |
Collapse
|
9
|
Li T, Wang Z, Zhao Y, He W, An L, Liu S, Liu Y, Wang H, Hang H. Checkpoint protein Rad9 plays an important role in nucleotide excision repair. DNA Repair (Amst) 2013; 12:284-92. [PMID: 23433811 DOI: 10.1016/j.dnarep.2013.01.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Revised: 01/11/2013] [Accepted: 01/17/2013] [Indexed: 11/27/2022]
Abstract
Rad9, an evolutionarily conserved checkpoint gene with multiple functions for preserving genomic integrity, has been shown to play important roles in homologous recombination repair, base excision repair and mismatch repair. However, whether Rad9 has an impact on nucleotide excision repair remains unknown. Here we demonstrated that Rad9 was involved in nucleotide excision repair and loss of Rad9 led to defective removal of the UV-derived photoproduct 6-4PP (6,4 pyrimidine-pyrimidone) and the BPDE (anti-benzo(a)pyrene-trans-7,8-dihydrodiol-9,10-epoxide)-DNA adducts in mammalian cells. We also demonstrated that Rad9 could co-localize with XPC in response to local UV irradiation. However, our data showed that Rad9 was not required for the photoproducts recognition step of nucleotide excision repair. Further investigation revealed that reduction of Rad9 reduced the UV-induced transcription of the genes of the nucleotide excision repair factors DDB2, XPC, DDB1 and XPB and DDB2 protein levels in human cells. Interestingly, knockdown of one subunit of DNA damage recognition complex, hHR23B impaired Rad9-loading onto UV-damaged chromatin. Based on these results, we suggest that Rad9 plays an important role in nucleotide excision repair through mechanisms including maintaining DDB2 protein level in human cells.
Collapse
Affiliation(s)
- Tiepeng Li
- Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Thompson LH. Recognition, signaling, and repair of DNA double-strand breaks produced by ionizing radiation in mammalian cells: the molecular choreography. Mutat Res 2012; 751:158-246. [PMID: 22743550 DOI: 10.1016/j.mrrev.2012.06.002] [Citation(s) in RCA: 261] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Revised: 06/09/2012] [Accepted: 06/16/2012] [Indexed: 12/15/2022]
Abstract
The faithful maintenance of chromosome continuity in human cells during DNA replication and repair is critical for preventing the conversion of normal diploid cells to an oncogenic state. The evolution of higher eukaryotic cells endowed them with a large genetic investment in the molecular machinery that ensures chromosome stability. In mammalian and other vertebrate cells, the elimination of double-strand breaks with minimal nucleotide sequence change involves the spatiotemporal orchestration of a seemingly endless number of proteins ranging in their action from the nucleotide level to nucleosome organization and chromosome architecture. DNA DSBs trigger a myriad of post-translational modifications that alter catalytic activities and the specificity of protein interactions: phosphorylation, acetylation, methylation, ubiquitylation, and SUMOylation, followed by the reversal of these changes as repair is completed. "Superfluous" protein recruitment to damage sites, functional redundancy, and alternative pathways ensure that DSB repair is extremely efficient, both quantitatively and qualitatively. This review strives to integrate the information about the molecular mechanisms of DSB repair that has emerged over the last two decades with a focus on DSBs produced by the prototype agent ionizing radiation (IR). The exponential growth of molecular studies, heavily driven by RNA knockdown technology, now reveals an outline of how many key protein players in genome stability and cancer biology perform their interwoven tasks, e.g. ATM, ATR, DNA-PK, Chk1, Chk2, PARP1/2/3, 53BP1, BRCA1, BRCA2, BLM, RAD51, and the MRE11-RAD50-NBS1 complex. Thus, the nature of the intricate coordination of repair processes with cell cycle progression is becoming apparent. This review also links molecular abnormalities to cellular pathology as much a possible and provides a framework of temporal relationships.
Collapse
Affiliation(s)
- Larry H Thompson
- Biology & Biotechnology Division, L452, Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, CA 94551-0808, United States.
| |
Collapse
|
11
|
Weis E, Schoen H, Victor A, Spix C, Ludwig M, Schneider-Raetzke B, Kohlschmidt N, Bartsch O, Gerhold-Ay A, Boehm N, Grus F, Haaf T, Galetzka D. Reduced mRNA and protein expression of the genomic caretaker RAD9A in primary fibroblasts of individuals with childhood and independent second cancer. PLoS One 2011; 6:e25750. [PMID: 21991345 PMCID: PMC3185005 DOI: 10.1371/journal.pone.0025750] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 09/09/2011] [Indexed: 12/20/2022] Open
Abstract
Background The etiology of secondary cancer in childhood cancer survivors is largely unclear. Exposure of normal somatic cells to radiation and/or chemotherapy can damage DNA and if not all DNA lesions are properly fixed, the mis-repair may lead to pathological consequences. It is plausible to assume that genetic differences, i.e. in the pathways responsible for cell cycle control and DNA repair, play a critical role in the development of secondary cancer. Methodology/Findings To identify factors that may influence the susceptibility for second cancer formation, we recruited 20 individuals who survived a childhood malignancy and then developed a second cancer as well as 20 carefully matched control individuals with childhood malignancy but without a second cancer. By antibody microarrays, we screened primary fibroblasts of matched patients for differences in the amount of representative DNA repair-associated proteins. We found constitutively decreased levels of RAD9A and several other DNA repair proteins in two-cancer patients, compared to one-cancer patients. The RAD9A protein level increased in response to DNA damage, however to a lesser extent in the two-cancer patients. Quantification of mRNA expression by real-time RT PCR revealed lower RAD9A mRNA levels in both untreated and 1 Gy γ-irradiated cells of two-cancer patients. Conclusions/Significance Collectively, our results support the idea that modulation of RAD9A and other cell cycle arrest and DNA repair proteins contribute to the risk of developing a second malignancy in childhood cancer patients.
Collapse
Affiliation(s)
- Eva Weis
- Institute of Human Genetics, University Medical Center, Mainz, Germany
| | - Holger Schoen
- Institute of Human Genetics, University Medical Center, Mainz, Germany
| | - Anja Victor
- Institute of Medical Biometry, Epidemiology and Informatics, University Medical Center, Mainz, Germany
| | - Claudia Spix
- Institute of Medical Biometry, Epidemiology and Informatics, University Medical Center, Mainz, Germany
| | - Marco Ludwig
- Institute of Human Genetics, University Medical Center, Mainz, Germany
| | | | | | - Oliver Bartsch
- Institute of Human Genetics, University Medical Center, Mainz, Germany
| | - Aslihan Gerhold-Ay
- Institute of Medical Biometry, Epidemiology and Informatics, University Medical Center, Mainz, Germany
| | - Nils Boehm
- Experimental Ophthalmology, Ocular Proteomics and Immunology Center, University Medical Center, Mainz, Germany
| | - Franz Grus
- Experimental Ophthalmology, Ocular Proteomics and Immunology Center, University Medical Center, Mainz, Germany
| | - Thomas Haaf
- Institute of Human Genetics, Julius Maximilians University, Würzburg, Germany
- * E-mail:
| | - Danuta Galetzka
- Institute of Human Genetics, University Medical Center, Mainz, Germany
| |
Collapse
|
12
|
Lieberman HB, Bernstock JD, Broustas CG, Hopkins KM, Leloup C, Zhu A. The role of RAD9 in tumorigenesis. J Mol Cell Biol 2011; 3:39-43. [PMID: 21278450 DOI: 10.1093/jmcb/mjq039] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
RAD9 regulates multiple cellular processes that influence genomic integrity, and for at least some of its functions the protein acts as part of a heterotrimeric complex bound to HUS1 and RAD1 proteins. RAD9 participates in DNA repair, including base excision repair, homologous recombination repair and mismatch repair, multiple cell cycle phase checkpoints and apoptosis. In addition, functions including the transactivation of downstream target genes, immunoglobulin class switch recombination, as well as 3'-5' exonuclease activity have been reported. Aberrant RAD9 expression has been linked to breast, lung, thyroid, skin and prostate tumorigenesis, and a cause-effect relationship has been demonstrated for the latter two. Interestingly, human RAD9 overproduction correlates with prostate cancer whereas deletion of Mrad9, the corresponding mouse gene, in keratinocytes leads to skin cancer. These results reveal that RAD9 protein can function as an oncogene or tumor suppressor, and aberrantly high or low levels can have deleterious health consequences. It is not clear which of the many functions of RAD9 is critical for carcinogenesis, but several alternatives are considered herein and implications for the development of novel cancer therapies based on these findings are examined.
Collapse
Affiliation(s)
- Howard B Lieberman
- Center for Radiological Research, Columbia University College of Physicians and Surgeons, 630 W 168th St, New York, NY 10032, USA.
| | | | | | | | | | | |
Collapse
|
13
|
Association between single nucleotide polymorphisms in the DNA repair gene LIG3 and acute adverse skin reactions following radiotherapy. Radiother Oncol 2011; 99:231-4. [DOI: 10.1016/j.radonc.2011.05.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Revised: 05/03/2011] [Accepted: 05/03/2011] [Indexed: 02/01/2023]
|
14
|
Marchetti F, Coleman MA, Jones IM, Wyrobek AJ. Candidate protein biodosimeters of human exposure to ionizing radiation. Int J Radiat Biol 2009; 82:605-39. [PMID: 17050475 DOI: 10.1080/09553000600930103] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
PURPOSE To conduct a literature review of candidate protein biomarkers for individual radiation biodosimetry of exposure to ionizing radiation. MATERIALS AND METHODS Reviewed approximately 300 publications (1973 - April 2006) that reported protein effects in mammalian systems after either in vivo or in vitro radiation exposure. RESULTS We found 261 radiation-responsive proteins including 173 human proteins. Most of the studies used high doses of ionizing radiation (>4 Gy) and had no information on dose- or time-responses. The majority of the proteins showed increased amounts or changes in phosphorylation states within 24 h after exposure (range: 1.5- to 10-fold). Of the 47 proteins that are responsive at doses of 1 Gy and below, 6 showed phosphorylation changes at doses below 10 cGy. Proteins were assigned to 9 groups based on consistency of response across species, dose- and time-response information and known role in the radiation damage response. CONCLUSIONS ATM (Ataxia telengiectasia mutated), H2AX (histone 2AX), CDKN1A (Cyclin-dependent kinase inhibitor 1A), and TP53 (tumor protein 53) are top candidate radiation protein biomarkers. Furthermore, we recommend a panel of protein biomarkers, each with different dose and time optima, to improve individual radiation biodosimetry for discriminating between low-, moderate-, and high-dose exposures. Our findings have applications for early triage and follow-up medical assessments.
Collapse
Affiliation(s)
- Francesco Marchetti
- Biosciences Directorate, Lawrence Livermore National Laboratory, Livermore, California, USA
| | | | | | | |
Collapse
|
15
|
Yamamoto M, Nishiuma T, Kobayashi K, Maniwa Y, Sakashita A, Funada Y, Kotani Y, Nishimura Y. Rad9 is upregulated and plays protective roles in an acute lung injury model. Biochem Biophys Res Commun 2008; 376:590-4. [DOI: 10.1016/j.bbrc.2008.09.058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2008] [Accepted: 09/10/2008] [Indexed: 11/16/2022]
|
16
|
Loss of Hus1 sensitizes cells to etoposide-induced apoptosis by regulating BH3-only proteins. Oncogene 2008; 27:7248-59. [PMID: 18794804 DOI: 10.1038/onc.2008.336] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The Rad9-Rad1-Hus1 (9-1-1) cell cycle checkpoint complex plays a key role in the DNA damage response. Cells with a defective 9-1-1 complex have been shown to be sensitive to apoptosis induced by certain types of genotoxic stress. However, the mechanism linking the loss of a functional 9-1-1 complex to the cell death machinery has yet to be determined. Here, we report that etoposide treatment dramatically upregulates the BH3-only proteins, Bim and Puma, in Hus1-deficient cells. Inhibition of either Bim or Puma expression in Hus1-knockout cells confers significant resistance to etoposide-induced apoptosis, whereas knockdown of both proteins results in further resistance, suggesting that Bim and Puma cooperate in sensitizing Hus1-deficient cells to etoposide treatment. Moreover, we found that Rad9 collaborates with Bim and Puma to sensitize Hus1-deficient cells to etoposide-induced apoptosis. In response to DNA damage, Rad9 localizes to chromatin in Hus1-wild-type cells, whereas in Hus1-deficient cells, it is predominantly located in the cytoplasm where it binds to Bcl-2. Taken together, these results suggest that loss of Hus1 sensitizes cells to etoposide-induced apoptosis not only by inducing Bim and Puma expressions but also by releasing Rad9 into the cytosol to augment mitochondrial apoptosis.
Collapse
|
17
|
Hu Z, Liu Y, Zhang C, Zhao Y, He W, Han L, Yang L, Hopkins KM, Yang X, Lieberman HB, Hang H. Targeted deletion of Rad9 in mouse skin keratinocytes enhances genotoxin-induced tumor development. Cancer Res 2008; 68:5552-61. [PMID: 18632607 DOI: 10.1158/0008-5472.can-07-5670] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The Rad9 gene is evolutionarily conserved from yeast to humans and plays crucial roles in genomic maintenance, DNA repair, and cell cycle checkpoint controls. However, the function of this gene with respect to tumorigenesis is not well-understood. A Rad9-null mutation in mice causes embryonic lethality. In this study, we created mice in which mouse Rad9, Mrad9, was deleted only in keratinocytes to permit examination of the potential function of the gene in tumor development. Mice with Mrad9(+/-) or Mrad9(-/-) keratinocytes showed no overt, spontaneous morphologic defects and seemed similar to wild-type controls. Painting the carcinogen 7,12-dimethylbenzanthracene (DMBA) onto the skin of the animals caused earlier onset and more frequent formation of tumors and senile skin plaques in Mrad9(-/-) mice, compared with Mrad9(+/-) and Mrad9(+/+) littermates. DNA damage response genes p21, p53, and Mrad9B were expressed at higher levels in Mrad9(-/-) relative to Mrad9(+/+) skin. Keratinocytes isolated from Mrad9(-/-) skin had more spontaneous and DMBA-induced DNA double strand breaks than Mrad9(+/+) keratinocytes, and the levels were reduced by incubation with the antioxidant epigallocatechin gallate. These data suggest that Mrad9 plays an important role in maintaining genomic stability and preventing tumor development in keratinocytes.
Collapse
Affiliation(s)
- Zhishang Hu
- National Laboratory of Biomacromolecules, Chinese Academy of Sciences, Beijing, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Cabrera G, Cabrejos ME, Morassutti AL, Cabezón C, Orellana J, Hellman U, Zaha A, Galanti N. DNA damage, RAD9 and fertility/infertility of Echinococcus granulosus hydatid cysts. J Cell Physiol 2008; 216:498-506. [PMID: 18348165 DOI: 10.1002/jcp.21418] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Hydatidosis, caused by the larval stage of the platyhelminth parasite Echinococcus granulosus, affects human and animal health. Hydatid fertile cysts are formed in intermediate hosts (human and herbivores) producing protoscoleces, the infective form to canines, at their germinal layers. Infertile cysts are also formed, but they are unable to produce protoscoleces. The molecular mechanisms involved in hydatid cysts fertility/infertility are unknown. Nevertheless, previous work from our laboratory has suggested that apoptosis is involved in hydatid cyst infertility and death. On the other hand, fertile hydatid cysts can resist oxidative damage due to reactive oxygen and nitrogen species. On these foundations, we have postulated that when oxidative damage of DNA in the germinal layers exceeds the capability of DNA repair mechanisms, apoptosis is triggered and hydatid cysts infertility occurs. We describe a much higher percentage of nuclei with oxidative DNA damage in dead protoscoleces and in the germinal layer of infertile cysts than in fertile cysts, suggesting that DNA repair mechanisms are active in fertile cysts. rad9, a conserved gene, plays a key role in cell cycle checkpoint modulation and DNA repair. We found that RAD9 of E. granulosus (EgRAD9) is expressed at the mRNA and protein levels. As it was found in other eukaryotes, EgRAD9 is hyperphosphorylated in response to DNA damage. Our results suggest that molecules involved in DNA repair in the germinal layer of fertile hydatid cysts and in protoscoleces, such as EgRAD9, may allow preserving the fertility of hydatid cysts in the presence of ROS and RNS.
Collapse
Affiliation(s)
- Gonzalo Cabrera
- Programa Disciplinario de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | | | | | | | | | | | | | | |
Collapse
|
19
|
|
20
|
Gambetta K, Al-Ahdab MK, Ilbawi MN, Hassaniya N, Gupta M. Transcription repression and blocks in cell cycle progression in hypoplastic left heart syndrome. Am J Physiol Heart Circ Physiol 2008; 294:H2268-75. [PMID: 18344372 DOI: 10.1152/ajpheart.91494.2007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hypoplastic left heart syndrome (HLHS) is characterized by abnormally developed atrial septum and a severe underdevelopment of the left side of the heart. Despite significant advances in its surgical management, little is known about the molecular abnormalities in this syndrome. To gain molecular insights into HLHS, expression profiling by gene-chip microarray (Affymetrix U133 2.0) and by real-time RT-PCR was performed in the atrial septum of patients diagnosed with HLHS and compared with age-matched non-HLHS patients. Hierarchical clustering of all expressed genes with a P < 0.01 of all tissue samples showed two main clusters, one of HLHS and the other of non-HLHS, suggesting different expression patterns by the two groups. Net affix followed by real-time RT-PCR analysis identified the differentially expressed genes to be those involved in chromatin remodeling, cell cycle regulation, and transcriptional regulation. These included remodeling factors, histone deactylase 2 and SET and MYND domain containing 1; transcription factors, FoxP1, and components of the calcineurin-nuclear factor of activated T cells signaling pathway; and cell cycle regulators, cyclin-dependent kinase (CDK)-4, phosphatase and tensin homolog, and p18. Since these factors play essential roles in heart growth and development, the abnormal expression pattern suggests that these molecules may contribute to the pathogenesis of HLHS.
Collapse
Affiliation(s)
- Katheryn Gambetta
- The Heart Institute for Children, Hope Children's Hospital, Oak Lawn, IL, USA
| | | | | | | | | |
Collapse
|
21
|
Huang J, Yuan H, Lu C, Liu X, Cao X, Wan M. Jab1 mediates protein degradation of the Rad9-Rad1-Hus1 checkpoint complex. J Mol Biol 2007; 371:514-27. [PMID: 17583730 PMCID: PMC2712929 DOI: 10.1016/j.jmb.2007.05.095] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2007] [Revised: 04/09/2007] [Accepted: 05/23/2007] [Indexed: 12/11/2022]
Abstract
The Rad1-Rad9-Hus1 (9-1-1) complex serves a dual role as a DNA-damage sensor in checkpoint signaling and as a mediator in the DNA repair pathway. However, the intercellular mechanisms that regulate the 9-1-1 complex are poorly understood. Jab1, the fifth component of the COP9 signalosome complex, has a central role in the degradation of multiple proteins and is emerging as an important regulator in cancer development. Here, we tested the hypothesis that Jab1 controls the protein stability of the 9-1-1 complex via the proteosome pathway. We provide evidence that Jab1 physically associates with the 9-1-1 complex, and show that this association is mediated through direct interaction between Jab1 and Rad1, one of the subunits of the 9-1-1 complex. Importantly, Jab1 causes translocation of the 9-1-1 complex from the nucleus to the cytoplasm, mediating rapid degradation of the 9-1-1 complex via the 26 S proteasome. Furthermore, Jab1 significantly suppresses checkpoint signaling activation, DNA synthesis recovery from blockage and cell viability after replication stresses such as UV exposure, gamma radiation and treatment with hydroxyurea. These results suggest that Jab1 is an important regulator for the stability of protein 9-1-1 control in cells, which may provide novel information on the involvement of Jab1 in the checkpoint and DNA repair signaling in response to DNA damage.
Collapse
Affiliation(s)
- Jin Huang
- The Department of Pathology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- School of Medicine, Shihezi University, Shihezi, Xinjiang, People’s Republic of China
| | - Honglin Yuan
- The Department of Pathology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- School of Medicine, Shihezi University, Shihezi, Xinjiang, People’s Republic of China
| | - Chongyuan Lu
- The Department of Pathology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Ximeng Liu
- The Department of Pathology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Xu Cao
- The Department of Pathology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Mei Wan
- The Department of Pathology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Address correspondence to: Mei Wan, MD., Ph.D., Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, Tel. 205 975-0076; Fax: 205 934-1775;
| |
Collapse
|
22
|
Zaugg K, Su YW, Reilly PT, Moolani Y, Cheung CC, Hakem R, Hirao A, Liu Q, Elledge SJ, Mak TW. Cross-talk between Chk1 and Chk2 in double-mutant thymocytes. Proc Natl Acad Sci U S A 2007; 104:3805-10. [PMID: 17360434 PMCID: PMC1820665 DOI: 10.1073/pnas.0611584104] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2006] [Indexed: 12/22/2022] Open
Abstract
Chk1 is a checkpoint kinase and an important regulator of mammalian cell division. Because null mutation of Chk1 in mice is embryonic lethal, we used the Cre-loxP system and the Lck promoter to generate conditional mutant mice in which Chk1 was deleted only in the T lineage. In the absence of Chk1, the transition of CD4(-)CD8(-) double-negative (DN) thymocytes to CD4(+)CD8(+) double-positive (DP) cells was blocked due to an increase in apoptosis at the DN2 and DN3 stages. Strikingly, loss of Chk1 activated the checkpoint kinase Chk2 as well as the tumor suppressor p53 in these thymocytes. However, the developmental defects caused by Chk1 deletion were not rescued by p53 inactivation. Significantly, even though Chk1 deletion is highly lethal in proliferating tissues, we succeeded in using in vivo methods to generate Chk1/Chk2 double-knockout T cells. Analysis of these T cells revealed an interesting interaction between Chk1 and Chk2 functions that partially rescued the apoptosis of the double-mutant cells. Thus, Chk1 is both critical for the survival of proliferating cells and engages in cross-talk with the Chk2 checkpoint kinase pathway. These factors have implications for the targeting of Chk1 as an anticancer therapy.
Collapse
Affiliation(s)
- Kathrin Zaugg
- *Campbell Family Institute for Breast Cancer Research, 620 University Avenue, Suite 706, Toronto, ON, Canada M5G 2C1
- Departments of Immunology and Medical Biophysics, University of Toronto, and University Health Network, Toronto, ON, Canada M5G 2C1
| | - Yu-Wen Su
- *Campbell Family Institute for Breast Cancer Research, 620 University Avenue, Suite 706, Toronto, ON, Canada M5G 2C1
| | - Patrick T. Reilly
- *Campbell Family Institute for Breast Cancer Research, 620 University Avenue, Suite 706, Toronto, ON, Canada M5G 2C1
| | - Yasmin Moolani
- Institute of Medical Science, University of Toronto, MARS Centre, 101 College Street, Toronto, ON, Canada M5G 2C1
| | - Carol C. Cheung
- Departments of Immunology and Medical Biophysics, University of Toronto, and University Health Network, Toronto, ON, Canada M5G 2C1
| | | | - Atsushi Hirao
- Sakaguchi Laboratory of Developmental Biology, School of Medicine, Keio University, Shinjuku, Tokyo 160-8582, Japan
| | - Quinghua Liu
- **Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9038; and
| | - Stephen J. Elledge
- Department of Genetics, Howard Hughes Medical Institute, Center for Genetics and Genomics, Brigham and Women's Hospital, Harvard University Medical School, Boston, MA 02115
| | - Tak W. Mak
- *Campbell Family Institute for Breast Cancer Research, 620 University Avenue, Suite 706, Toronto, ON, Canada M5G 2C1
- Departments of Immunology and Medical Biophysics, University of Toronto, and University Health Network, Toronto, ON, Canada M5G 2C1
| |
Collapse
|
23
|
Niida H, Katsuno Y, Banerjee B, Hande MP, Nakanishi M. Specific role of Chk1 phosphorylations in cell survival and checkpoint activation. Mol Cell Biol 2007; 27:2572-81. [PMID: 17242188 PMCID: PMC1899884 DOI: 10.1128/mcb.01611-06] [Citation(s) in RCA: 131] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Chk1 is a multifunctional protein kinase that plays essential roles in cell survival and cell cycle checkpoints. Chk1 is phosphorylated at multiple sites by several protein kinases, but the precise effects of these phosphorylations are largely unknown. Using a knockout-knockin system, we examined the abilities of Chk1 mutants to reverse the defects of Chk1-null cells. Wild-type Chk1 could rescue all the defects of Chk1-null cells. Like endogenous Chk1, wild-type Chk1 localized in both the cytoplasm and the nucleus, and its centrosomal association was enhanced by DNA damage. The mutation at S345 resulted in mitotic catastrophe, impaired checkpoints, and loss of the ability to localize in the cytoplasm, but the mutant retained the ability to be released from chromatin upon encountering genotoxic stressors. In contrast, the mutation at S317 resulted in impaired checkpoints and loss of chromatin release upon encountering genotoxic stressors, but its mutant retained the abilities to prevent mitotic catastrophes and to localize in the cytoplasm, suggesting the distinct effects of these phosphorylations. The forced immobilization of S317A/S345A in centrosomes resulted in the prevention of apoptosis in the presence or absence of DNA damage. Thus, two-step phosphorylation of Chk1 at S317 and S345 appeared to be required for proper localization of Chk1 to centrosomes.
Collapse
Affiliation(s)
- Hiroyuki Niida
- Department of Biochemistry and Cell Biology, Graduate School of Medical Sciences, Nagoya City University, 1 Kawasumi, Mizuho-ku, Mizuho-cho, Nagoya 467-8601, Japan
| | | | | | | | | |
Collapse
|
24
|
Ishikawa K, Ishii H, Saito T. DNA damage-dependent cell cycle checkpoints and genomic stability. DNA Cell Biol 2006; 25:406-11. [PMID: 16848682 DOI: 10.1089/dna.2006.25.406] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In response to genotoxic stress, which can be caused by environmental or endogenous genotoxic insults such as ionizing or ultraviolet radiation, various chemicals and reactive cellular metabolites, cell cycle checkpoints which slow down or arrest cell cycle progression can be activated, allowing the cell to repair or prevent the transmission of damaged or incompletely replicated chromosomes. Checkpoint machineries can also initiate pathways leading to apoptosis and the removal of a damaged cell from a tissue. The balance between cell cycle arrest and damage repair on one hand and the initiation of cell death, on the other hand, could determine if cellular or DNA damage is compatible with cell survival or requires cell elimination by apoptosis. Defects in these processes may lead to hypersensitivity to cellular stress, and susceptibility to DNA damage, genomic defects, and resistance to apoptosis, which characterize cancer cells. In this article, we have noted recent studies of DNA damage-dependent cell cycle checkpoints, which may be significant in preventing genomic instability.
Collapse
|
25
|
Lieberman HB. Rad9, an evolutionarily conserved gene with multiple functions for preserving genomic integrity. J Cell Biochem 2006; 97:690-7. [PMID: 16365875 DOI: 10.1002/jcb.20759] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The Rad9 gene is evolutionarily conserved. Analysis of the gene from yeast, mouse and human reveal roles in multiple, fundamental biological processes primarily but not exclusively important for regulating genomic integrity. The encoded mammalian proteins participate in promoting resistance to DNA damage, cell cycle checkpoint control, DNA repair, and apoptosis. Other functions include a role in embryogenesis, the transactivation of multiple target genes, co-repression of androgen-induced transcription activity of the androgen receptor, a 3'-5' exonuclease activity, and the regulation of ribonucleotide synthesis. Analyses of the functions of Rad9, and in particular its role in regulating and coordinating numerous fundamental biological activities, should not only provide information about the molecular mechanisms of several individual cellular processes, but might also lend insight into the more global control and coordination of what at least superficially present as independent pathways.
Collapse
Affiliation(s)
- Howard B Lieberman
- Center for Radiological Research, Columbia University, 630 W. 168th St., New York, New York 10032, USA.
| |
Collapse
|
26
|
Pandita RK, Sharma GG, Laszlo A, Hopkins KM, Davey S, Chakhparonian M, Gupta A, Wellinger RJ, Zhang J, Powell SN, Roti Roti JL, Lieberman HB, Pandita TK. Mammalian Rad9 plays a role in telomere stability, S- and G2-phase-specific cell survival, and homologous recombinational repair. Mol Cell Biol 2006; 26:1850-64. [PMID: 16479004 PMCID: PMC1430264 DOI: 10.1128/mcb.26.5.1850-1864.2006] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The protein products of several rad checkpoint genes of Schizosaccharomyces pombe (rad1+, rad3+, rad9+, rad17+, rad26+, and hus1+) play crucial roles in sensing changes in DNA structure, and several function in the maintenance of telomeres. When the mammalian homologue of S. pombe Rad9 was inactivated, increases in chromosome end-to-end associations and frequency of telomere loss were observed. This telomere instability correlated with enhanced S- and G2-phase-specific cell killing, delayed kinetics of gamma-H2AX focus appearance and disappearance, and reduced chromosomal repair after ionizing radiation (IR) exposure, suggesting that Rad9 plays a role in cell cycle phase-specific DNA damage repair. Furthermore, mammalian Rad9 interacted with Rad51, and inactivation of mammalian Rad9 also resulted in decreased homologous recombinational (HR) repair, which occurs predominantly in the S and G2 phases of the cell cycle. Together, these findings provide evidence of roles for mammalian Rad9 in telomere stability and HR repair as a mechanism for promoting cell survival after IR exposure.
Collapse
Affiliation(s)
- Raj K Pandita
- Department of Radiation Oncology, Washington University School of Medicine, 4511 Forest Park Ave., St. Louis, MO 63108, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Ishii H, Inageta T, Mimori K, Saito T, Sasaki H, Isobe M, Mori M, Croce CM, Huebner K, Ozawa K, Furukawa Y. Frag1, a homolog of alternative replication factor C subunits, links replication stress surveillance with apoptosis. Proc Natl Acad Sci U S A 2005; 102:9655-60. [PMID: 15983387 PMCID: PMC1172282 DOI: 10.1073/pnas.0504222102] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
We report the identification and characterization of a potent regulator of genomic integrity, mouse and human FRAG1 gene, a conserved homolog of replication factor C large subunit that is homologous to the alternative replication factor C subunits Elg1, Ctf18/Chl12, and Rad24 of budding yeast. FRAG1 was identified in a search for key caretaker genes involved in the regulation of genomic stability under conditions of replicative stress. In response to stress, Atr participates in the down-regulation of FRAG1 expression, leading to the induction of apoptosis through the release of Rad9 from damaged chromatin during the S phase of the cell cycle, allowing Rad9-Bcl2 association and induction of proapoptotic Bax protein. We propose that the Frag1 signal pathway, by linking replication stress surveillance with apoptosis induction, plays a central role in determining whether DNA damage is compatible with cell survival or whether it requires cell elimination by apoptosis.
Collapse
Affiliation(s)
- Hideshi Ishii
- Center for Molecular Medicine, Jichi Medical School, Tochigi 329-0498, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Genomic Instability:Signaling Pathways Orchestrating the Responsesto Ionizing Radiation and Cisplatin. Genome Integr 2005. [DOI: 10.1007/7050_010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|