1
|
Yang HJ, Asakawa H, Haraguchi T, Hiraoka Y. Nup132 modulates meiotic spindle attachment in fission yeast by regulating kinetochore assembly. J Cell Biol 2015; 211:295-308. [PMID: 26483559 PMCID: PMC4621824 DOI: 10.1083/jcb.201501035] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 09/11/2015] [Indexed: 02/06/2023] Open
Abstract
The fission yeast nucleoporin Nup132 is required for timely assembly of outer kinetochore proteins during meiotic prophase and its depletion activates the spindle assembly checkpoint in meiosis I, suggesting a role in establishing monopolar spindle attachment through outer kinetochore reorganization at meiotic prophase. During meiosis, the kinetochore undergoes substantial reorganization to establish monopolar spindle attachment. In the fission yeast Schizosaccharomyces pombe, the KNL1–Spc7-Mis12-Nuf2 (KMN) complex, which constitutes the outer kinetochore, is disassembled during meiotic prophase and is reassembled before meiosis I. Here, we show that the nucleoporin Nup132 is required for timely assembly of the KMN proteins: In the absence of Nup132, Mis12 and Spc7 are precociously assembled at the centromeres during meiotic prophase. In contrast, Nuf2 shows timely dissociation and reappearance at the meiotic centromeres. We further demonstrate that depletion of Nup132 activates the spindle assembly checkpoint in meiosis I, possibly because of the increased incidence of erroneous spindle attachment at sister chromatids. These results suggest that precocious assembly of the kinetochores leads to the meiosis I defects observed in the nup132-disrupted mutant. Thus, we propose that Nup132 plays an important role in establishing monopolar spindle attachment at meiosis I through outer kinetochore reorganization at meiotic prophase.
Collapse
Affiliation(s)
- Hui-Ju Yang
- Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan
| | - Haruhiko Asakawa
- Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan
| | - Tokuko Haraguchi
- Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, Iwaoka-cho, Nishi-ku, Kobe 651-2492, Japan
| | - Yasushi Hiraoka
- Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, Iwaoka-cho, Nishi-ku, Kobe 651-2492, Japan
| |
Collapse
|
2
|
Awazu A. Nuclear dynamical deformation induced hetero- and euchromatin positioning. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:032709. [PMID: 26465500 DOI: 10.1103/physreve.92.032709] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Indexed: 06/05/2023]
Abstract
We studied the role of active deformation dynamics in cell nuclei in chromatin positioning. Model chains containing two types of regions, with high (euchromatic) or low (heterochromatic) mobility, were confined in a pulsating container simulating a nucleus showing dynamic deformations. Brownian dynamic simulations show that the positioning of low mobility regions changes from sites near the periphery to the center if the affinity between these regions and the container periphery disappears. The former and latter positionings are similar to the "conventional" and "inverted" chromatin positionings in nuclei of normal differentiated cells and cells lacking Lamin-related proteins. Additionally, nuclear dynamical deformation played essential roles in "inverted" chromatin positioning.
Collapse
Affiliation(s)
- Akinori Awazu
- Department of Mathematical and Life Sciences, Hiroshima University and Research Center for Mathematics on Chromatin Live Dynamics, Kagami-yama 1-3-1, Higashi-Hiroshima 739-8526, Japan
| |
Collapse
|
3
|
Bouissou A, Vérollet C, de Forges H, Haren L, Bellaïche Y, Perez F, Merdes A, Raynaud-Messina B. γ-Tubulin Ring Complexes and EB1 play antagonistic roles in microtubule dynamics and spindle positioning. EMBO J 2014; 33:114-28. [PMID: 24421324 DOI: 10.1002/embj.201385967] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
γ-Tubulin is critical for microtubule (MT) assembly and organization. In metazoa, this protein acts in multiprotein complexes called γ-Tubulin Ring Complexes (γ-TuRCs). While the subunits that constitute γ-Tubulin Small Complexes (γ-TuSCs), the core of the MT nucleation machinery, are essential, mutation of γ-TuRC-specific proteins in Drosophila causes sterility and morphological abnormalities via hitherto unidentified mechanisms. Here, we demonstrate a role of γ-TuRCs in controlling spindle orientation independent of MT nucleation activity, both in cultured cells and in vivo, and examine a potential function for γ-TuRCs on astral MTs. γ-TuRCs locate along the length of astral MTs, and depletion of γ-TuRC-specific proteins increases MT dynamics and causes the plus-end tracking protein EB1 to redistribute along MTs. Moreover, suppression of MT dynamics through drug treatment or EB1 down-regulation rescues spindle orientation defects induced by γ-TuRC depletion. Therefore, we propose a role for γ-TuRCs in regulating spindle positioning by controlling the stability of astral MTs.
Collapse
Affiliation(s)
- Anaïs Bouissou
- Centre Biologie du Développement, UMR 5547 CNRS-UPS Toulouse 3, Toulouse Cedex 04, France
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Rogers SL. Short-circuiting microtubule plus and minus end proteins in spindle positioning. EMBO J 2014; 33:96-8. [PMID: 24421323 DOI: 10.1002/embj.201387341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Proteins residing at the plus and minus ends of microtubules have been thought not to communicate with each other, but recent findings on bona fide nucleation factors also regulating microtubule dynamics have challenged this notion. New work by Bouissou et al (2014) in The EMBO Journal now reveals that interplay between the nucleation factor γ‐TuRC and the plus‐end tracking protein EB1 controls mitotic spindle positioning by affecting the stability and dynamics of astral microtubules.
Collapse
Affiliation(s)
- Stephen L Rogers
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
5
|
Masuda H, Mori R, Yukawa M, Toda T. Fission yeast MOZART1/Mzt1 is an essential γ-tubulin complex component required for complex recruitment to the microtubule organizing center, but not its assembly. Mol Biol Cell 2013; 24:2894-906. [PMID: 23885124 PMCID: PMC3771951 DOI: 10.1091/mbc.e13-05-0235] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 07/05/2013] [Accepted: 07/11/2013] [Indexed: 12/13/2022] Open
Abstract
γ-Tubulin plays a universal role in microtubule nucleation from microtubule organizing centers (MTOCs) such as the animal centrosome and fungal spindle pole body (SPB). γ-Tubulin functions as a multiprotein complex called the γ-tubulin complex (γ-TuC), consisting of GCP1-6 (GCP1 is γ-tubulin). In fungi and flies, it has been shown that GCP1-3 are core components, as they are indispensable for γ-TuC complex assembly and cell division, whereas the other three GCPs are not. Recently a novel conserved component, MOZART1, was identified in humans and plants, but its precise functions remain to be determined. In this paper, we characterize the fission yeast homologue Mzt1, showing that it is essential for cell viability. Mzt1 is present in approximately equal stoichiometry with Alp4/GCP2 and localizes to all the MTOCs, including the SPB and interphase and equatorial MTOCs. Temperature-sensitive mzt1 mutants display varying degrees of compromised microtubule organization, exhibiting multiple defects during both interphase and mitosis. Mzt1 is required for γ-TuC recruitment, but not sufficient to localize to the SPB, which depends on γ-TuC integrity. Intriguingly, the core γ-TuC assembles in the absence of Mzt1. Mzt1 therefore plays a unique role within the γ-TuC components in attachment of this complex to the major MTOC site.
Collapse
Affiliation(s)
- Hirohisa Masuda
- Laboratory of Cell Regulation, Cancer Research UK, London Research Institute, Lincoln's Inn Fields Laboratories, London WC2A 3LY, United Kingdom
| | - Risa Mori
- Laboratory of Cell Regulation, Cancer Research UK, London Research Institute, Lincoln's Inn Fields Laboratories, London WC2A 3LY, United Kingdom
| | - Masashi Yukawa
- Laboratory of Cell Regulation, Cancer Research UK, London Research Institute, Lincoln's Inn Fields Laboratories, London WC2A 3LY, United Kingdom
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima 739-8530, Japan
| | - Takashi Toda
- Laboratory of Cell Regulation, Cancer Research UK, London Research Institute, Lincoln's Inn Fields Laboratories, London WC2A 3LY, United Kingdom
| |
Collapse
|
6
|
Virtual and biophysical screening targeting the γ-tubulin complex--a new target for the inhibition of microtubule nucleation. PLoS One 2013; 8:e63908. [PMID: 23691113 PMCID: PMC3655011 DOI: 10.1371/journal.pone.0063908] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Accepted: 04/08/2013] [Indexed: 01/11/2023] Open
Abstract
Microtubules are the main constituents of mitotic spindles. They are nucleated in large amounts during spindle assembly, from multiprotein complexes containing γ-tubulin and associated γ-tubulin complex proteins (GCPs). With the aim of developing anti-cancer drugs targeting these nucleating complexes, we analyzed the interface between GCP4 and γ-tubulin proteins usually located in a multiprotein complex named γ-TuRC (γ-Tubulin Ring Complex). 10 ns molecular dynamics simulations were performed on the heterodimers to obtain a stable complex in silico and to analyze the residues involved in persistent protein-protein contacts, responsible for the stability of the complex. We demonstrated in silico the existence of a binding pocket at the interface between the two proteins upon complex formation. By combining virtual screening using a fragment-based approach and biophysical screening, we found several small molecules that bind specifically to this pocket. Sub-millimolar fragments have been experimentally characterized on recombinant proteins using differential scanning fluorimetry (DSF) for validation of these compounds as inhibitors. These results open a new avenue for drug development against microtubule-nucleating γ-tubulin complexes.
Collapse
|
7
|
Hirose Y, Suzuki R, Ohba T, Hinohara Y, Matsuhara H, Yoshida M, Itabashi Y, Murakami H, Yamamoto A. Chiasmata promote monopolar attachment of sister chromatids and their co-segregation toward the proper pole during meiosis I. PLoS Genet 2011; 7:e1001329. [PMID: 21423721 PMCID: PMC3053323 DOI: 10.1371/journal.pgen.1001329] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Accepted: 02/08/2011] [Indexed: 11/18/2022] Open
Abstract
The chiasma is a structure that forms between a pair of homologous chromosomes by crossover recombination and physically links the homologous chromosomes during meiosis. Chiasmata are essential for the attachment of the homologous chromosomes to opposite spindle poles (bipolar attachment) and their subsequent segregation to the opposite poles during meiosis I. However, the overall function of chiasmata during meiosis is not fully understood. Here, we show that chiasmata also play a crucial role in the attachment of sister chromatids to the same spindle pole and in their co-segregation during meiosis I in fission yeast. Analysis of cells lacking chiasmata and the cohesin protector Sgo1 showed that loss of chiasmata causes frequent bipolar attachment of sister chromatids during anaphase. Furthermore, high time-resolution analysis of centromere dynamics in various types of chiasmate and achiasmate cells, including those lacking the DNA replication checkpoint factor Mrc1 or the meiotic centromere protein Moa1, showed the following three outcomes: (i) during the pre-anaphase stage, the bipolar attachment of sister chromatids occurs irrespective of chiasma formation; (ii) the chiasma contributes to the elimination of the pre-anaphase bipolar attachment; and (iii) when the bipolar attachment remains during anaphase, the chiasmata generate a bias toward the proper pole during poleward chromosome pulling that results in appropriate chromosome segregation. Based on these results, we propose that chiasmata play a pivotal role in the selection of proper attachments and provide a backup mechanism that promotes correct chromosome segregation when improper attachments remain during anaphase I.
Collapse
Affiliation(s)
- Yukinobu Hirose
- The Department of Chemistry, Shizuoka University, Shizuoka, Japan
| | - Ren Suzuki
- The Department of Chemistry, Shizuoka University, Shizuoka, Japan
| | - Tatsunori Ohba
- The Department of Chemistry, Shizuoka University, Shizuoka, Japan
| | - Yumi Hinohara
- The Department of Chemistry, Shizuoka University, Shizuoka, Japan
| | | | - Masashi Yoshida
- The Department of Chemistry, Shizuoka University, Shizuoka, Japan
| | - Yuta Itabashi
- The Department of Chemistry, Shizuoka University, Shizuoka, Japan
| | - Hiroshi Murakami
- Department of Biochemistry and Cell Biology, Graduate School of Medicine, Nagoya City University, Nagoya, Japan
| | - Ayumu Yamamoto
- The Department of Chemistry, Shizuoka University, Shizuoka, Japan
- * E-mail:
| |
Collapse
|
8
|
Masuda H, Fong CS, Ohtsuki C, Haraguchi T, Hiraoka Y. Spatiotemporal regulations of Wee1 at the G2/M transition. Mol Biol Cell 2011; 22:555-69. [PMID: 21233285 PMCID: PMC3046054 DOI: 10.1091/mbc.e10-07-0644] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Wee1 is highly dynamic at the SPB during the G2/M transition. Wee1 accumulates at the nuclear face of the SPB when cyclin B–Cdc2 peaks at the SPB and disappears from the SPB during spindle assembly. This dynamic behavior of Wee1 at the SPB is important for regulation of cyclin B–Cdc2 activity and proper mitotic entry and progression. Wee1 is a protein kinase that negatively regulates mitotic entry in G2 phase by suppressing cyclin B–Cdc2 activity, but its spatiotemporal regulations remain to be elucidated. We observe the dynamic behavior of Wee1 in Schizosaccharomyces pombe cells and manipulate its localization and kinase activity to study its function. At late G2, nuclear Wee1 efficiently suppresses cyclin B–Cdc2 around the spindle pole body (SPB). During the G2/M transition when cyclin B–Cdc2 is highly enriched at the SPB, Wee1 temporally accumulates at the nuclear face of the SPB in a cyclin B–Cdc2-dependent manner and locally suppresses both cyclin B–Cdc2 activity and spindle assembly to counteract a Polo kinase–dependent positive feedback loop. Then Wee1 disappears from the SPB during spindle assembly. We propose that regulation of Wee1 localization around the SPB during the G2/M transition is important for proper mitotic entry and progression.
Collapse
Affiliation(s)
- Hirohisa Masuda
- Laboratory of Cell Regulation, Cancer Research UK, London Research Institute, Lincoln's Inn Fields Laboratories, London WC2A 3LY, United Kingdom.
| | | | | | | | | |
Collapse
|
9
|
Fabian Z, Fearnhead HO. TPCK targets elements of mitotic spindle and induces cell cycle arrest in prometaphase. Biochem Biophys Res Commun 2010; 395:458-64. [PMID: 20381455 DOI: 10.1016/j.bbrc.2010.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Accepted: 04/02/2010] [Indexed: 11/19/2022]
Abstract
The serine protease inhibitor N-alpha-tosyl-epsilon-phenylalanyl chloromethyl ketone (TPCK) has been long used in studies of cellular processes including apoptosis. Depending on the experimental conditions, TPCK either induces or inhibits changes associated with apoptosis but there has been little progress in identifying the relevant targets for TPCK. Our group recently showed that the largest subunit of the RNA polymerase II is one of the intracellular targets of TPCK. The complex effects of TPCK on apoptosis, however, suggested the existence of additional apoptosis-relevant targets in cells. Using our unique polyclonal anti-tosyl antibody, here we report the identification of the mitotic spindle as another intracellular target for TPCK. We also provide data that TPCK-mediated labeling of the mitotic spindle correlates with cell cycle arrest in prometaphase.
Collapse
Affiliation(s)
- Z Fabian
- Department of Medical Biology, Medical School, University of Pécs, Pécs, Hungary
| | | |
Collapse
|
10
|
Bouissou A, Vérollet C, Sousa A, Sampaio P, Wright M, Sunkel CE, Merdes A, Raynaud-Messina B. {gamma}-Tubulin ring complexes regulate microtubule plus end dynamics. ACTA ACUST UNITED AC 2009; 187:327-34. [PMID: 19948476 PMCID: PMC2779254 DOI: 10.1083/jcb.200905060] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Independently of their nucleation activity, γ-tubulin ring complex proteins localize along microtubules, limiting catastrophe events during interphase. γ-Tubulin is critical for the initiation and regulation of microtubule (MT) assembly. In Drosophila melanogaster, it acts within two main complexes: the γ-tubulin small complex (γ-TuSC) and the γ-tubulin ring complex (γ-TuRC). Proteins specific of the γ-TuRC, although nonessential for viability, are required for efficient mitotic progression. Until now, their role during interphase remained poorly understood. Using RNA interference in Drosophila S2 cells, we show that the γ-TuRC is not critical for overall MT organization. However, depletion of any component of this complex results in an increase of MT dynamics. Combined immunofluorescence and live imaging analysis allows us to reveal that the γ-TuRC localizes along interphase MTs and that distal γ-tubulin spots match with sites of pause or rescue events. We propose that, in addition to its role in nucleation, the γ-TuRC associated to MTs may regulate their dynamics by limiting catastrophes.
Collapse
Affiliation(s)
- Anaïs Bouissou
- Centre de Recherche en Pharmacologie-Santé, Unité Mixte de Recherche 2587 Centre National de la Recherche Scientifique-Pierre Fabre, 31400 Toulouse, France
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Unsworth A, Masuda H, Dhut S, Toda T. Fission yeast kinesin-8 Klp5 and Klp6 are interdependent for mitotic nuclear retention and required for proper microtubule dynamics. Mol Biol Cell 2008; 19:5104-15. [PMID: 18799626 DOI: 10.1091/mbc.e08-02-0224] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Fission yeast has two kinesin-8s, Klp5 and Klp6, which associate to form a heterocomplex. Here, we show that Klp5 and Klp6 are mutually dependent on each other for nuclear mitotic localization. During interphase, they are exported to the cytoplasm. In sharp contrast, during mitosis, Klp5 and Klp6 remain in the nucleus, which requires the existence of each counterpart. Canonical nuclear localization signal (NLS) is identified in the nonkinesin C-terminal regions. Intriguingly individual NLS mutants (NLSmut) exhibit loss-of-function phenotypes, suggesting that Klp5 and Klp6 enter the nucleus separately. Indeed, although neither Klp5-NLSmut nor Klp6-NLSmut enters the nucleus, wild-type Klp6 or Klp5, respectively, does so with different kinetics. In the absence of Klp5/6, microtubule catastrophe/rescue frequency and dynamicity are suppressed, whereas growth and shrinkage rates are least affected. Remarkably, chimera strains containing only the N-terminal Klp5 kinesin domains cannot disassemble interphase microtubules during mitosis, leading to the coexistence of cytoplasmic microtubules and nuclear spindles with massive chromosome missegregation. In this strain, a marked reduction of microtubule dynamism, even higher than in klp5/6 deletions, is evident. We propose that Klp5 and Klp6 play a vital role in promoting microtubule dynamics, which is essential for the spatiotemporal control of microtubule morphogenesis.
Collapse
Affiliation(s)
- Amy Unsworth
- Laboratory of Cell Regulation Cancer Research UK, London Research Institute, Lincoln's Inn Fields Laboratories, London WC2A 3PX, United Kingdom
| | | | | | | |
Collapse
|
12
|
Tange Y, Niwa O. Novel mad2 alleles isolated in a Schizosaccharomyces pombe gamma-tubulin mutant are defective in metaphase arrest activity, but remain functional for chromosome stability in unperturbed mitosis. Genetics 2007; 175:1571-84. [PMID: 17277378 PMCID: PMC1855100 DOI: 10.1534/genetics.106.061309] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A previously isolated fission yeast gamma-tubulin mutant containing apparently stabilized microtubules proliferated at an approximately identical rate as wild type, yet the mutant mitosis spindle dynamics were aberrant, particularly the kinetochore microtubule dynamics. Progression through mitosis in the mutant, however, resulted in mostly accurate chromosome segregation. In the absence of the spindle assembly checkpoint gene, mad2+, the spindle dynamics in the gamma-tubulin mutant were greatly compromised, leading to a high incidence of chromosome missegregation. Unlike in wild-type cells, green fluorescent protein (GFP)-tagged Mad2 protein often accumulated near one of the poles of an elongating spindle in the gamma-tubulin mutant. We isolated novel mad2 mutants that were defective in arresting mitotic progression upon gross perturbation of the spindle formation but remained functional for the viability of the gamma-tubulin mutant. Further, the mad2 mutations did not appreciably destabilize minichromosomes in unperturbed mitoses. When overexpressed ectopically, these mutant Mad2 proteins sequestered wild-type Mad2, preventing its function in mitotic checkpoint arrest, but not in minichromosome stability. These results indicated that the Mad2 functions required for checkpoint arrest and chromosome stability in unperturbed mitosis are genetically discernible. Immunoprecipitation studies demonstrated that GFP-fused mutant Mad2 proteins formed a Mad1-containing complex with altered stability compared to that formed with wild-type Mad2, providing clues to the novel mad2 mutant phenotype.
Collapse
Affiliation(s)
- Yoshie Tange
- Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan
| | | |
Collapse
|
13
|
Raynaud-Messina B, Merdes A. γ-tubulin complexes and microtubule organization. Curr Opin Cell Biol 2007; 19:24-30. [PMID: 17178454 DOI: 10.1016/j.ceb.2006.12.008] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2006] [Accepted: 12/08/2006] [Indexed: 11/18/2022]
Abstract
Microtubule nucleation requires gamma-tubulin, which exists in two main protein complexes: the gamma-tubulin small complex, and the gamma-tubulin ring complex. During mitosis, these complexes accumulate at the centrosome to support spindle formation. Gamma-tubulin complexes are also present at non-centrosomal microtubule nucleation sites, both in interphase and in mitosis. In interphase, non-centrosomal nucleation enables the formation of microtubule bundles or networks of branched microtubules. Gamma-tubulin complexes may be involved not only in microtubule nucleation, but also in regulating microtubule dynamics. Recent findings indicate that the dynamics of microtubule plus-ends are altered, depending on the expression of gamma-tubulin complex proteins.
Collapse
Affiliation(s)
- Brigitte Raynaud-Messina
- Centre National de la Recherche Scientifique/Pierre Fabre, UMR 2587, 3 rue des Satellites, 31400 Toulouse, France
| | | |
Collapse
|
14
|
Current awareness on yeast. Yeast 2006. [DOI: 10.1002/yea.1319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
15
|
Anders A, Lourenço PC, Sawin KE. Noncore components of the fission yeast gamma-tubulin complex. Mol Biol Cell 2006; 17:5075-93. [PMID: 17021256 PMCID: PMC1679674 DOI: 10.1091/mbc.e05-11-1009] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Relatively little is known about the in vivo function of individual components of the eukaryotic gamma-tubulin complex (gamma-TuC). We identified three genes, gfh1+, mod21+, and mod22+, in a screen for fission yeast mutants affecting microtubule organization. gfh1+ is a previously characterized gamma-TuC protein weakly similar to human gamma-TuC subunit GCP4, whereas mod21+ is novel and shows weak similarity to human gamma-TuC subunit GCP5. We show that mod21p is a bona fide gamma-TuC protein and that, like gfh1Delta mutants, mod21Delta mutants are viable. We find that gfh1Delta and mod21Delta mutants have qualitatively normal microtubule nucleation from all types of microtubule-organizing centers (MTOCs) in vivo but quantitatively reduced nucleation from interphase MTOCs, and this is exacerbated by mutations in mod22+. Simultaneous deletion of gfh1p, mod21p, and alp16p, a third nonessential gamma-TuC protein, does not lead to additive defects, suggesting that all three proteins contribute to a single function. Coimmunoprecipitation experiments suggest that gfh1p and alp16p are codependent for association with a small "core" gamma-TuC, whereas mod21p is more peripherally associated, and that gfh1p and mod21p may form a subcomplex independently of the small gamma-TuC. Interestingly, sucrose gradient analysis suggests that the major form of the gamma-TuC in fission yeast may be a small complex. We propose that gfh1p, mod21p, and alp16 act as facultative "noncore" components of the fission yeast gamma-TuC and enhance its microtubule-nucleating ability.
Collapse
Affiliation(s)
- Andreas Anders
- Wellcome Trust Centre for Cell Biology, Edinburgh University, Edinburgh EH9 3JR, United Kingdom
| | - Paula C.C. Lourenço
- Wellcome Trust Centre for Cell Biology, Edinburgh University, Edinburgh EH9 3JR, United Kingdom
| | - Kenneth E. Sawin
- Wellcome Trust Centre for Cell Biology, Edinburgh University, Edinburgh EH9 3JR, United Kingdom
| |
Collapse
|