1
|
Kawasaki T, Nishimura T, Tani N, Ramos C, Karaulanov E, Shinya M, Saito K, Taylor E, Ketting RF, Ishiguro KI, Tanaka M, Siegfried KR, Sakai N. Meioc-Piwil1 complexes regulate rRNA transcription for differentiation of spermatogonial stem cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.17.623901. [PMID: 39605693 PMCID: PMC11601514 DOI: 10.1101/2024.11.17.623901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Ribosome biogenesis is vital for sustaining stem cell properties, yet its regulatory mechanisms are obscure. Herein, we show unique properties of zebrafish meioc mutants in which spermatogonial stem cells (SSCs) do not differentiate or upregulate rRNAs. Meioc colocalized with Piwil1 in perinuclear germ granules, but Meioc depletion resulted in Piwil1 accumulation in nucleoli. Nucleolar Piwil1 interacted with 45S pre-rRNA. piwil1 +/- spermatogonia with reduced Piwil1 upregulated rRNAs, and piwil1 +/- ;meioc -/- spermatogonia recovered differentiation later than those in meioc -/-. Further, Piwil1 interacted with Setdb1 and HP1α, and meioc -/- spermatogonia exhibited high levels of H3K9me3 and methylated CpG in the 45S-rDNA region. These results indicate that zebrafish SSCs silence rRNA transcription with repressive marks similar to Drosophila piRNA targets of RNA polymerase II, and that Meioc has a unique function on preventing localization of Piwil1 in nucleoli to upregulate rRNA transcripts and to promote SSC differentiation.
Collapse
Affiliation(s)
- Toshihiro Kawasaki
- Department of Gene Function and Phenomics, National Institute of Genetics
- Department of Genetics, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Mishima 411-8540, Japan
| | - Toshiya Nishimura
- Division of Biological Science, Nagoya University, Nagoya 464-8601, Japan
| | - Naoki Tani
- Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
| | - Carina Ramos
- Biology Department, University of Massachusetts Boston, Boston, MA 02125
| | | | - Minori Shinya
- Department of Gene Function and Phenomics, National Institute of Genetics
- Department of Genetics, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Mishima 411-8540, Japan
| | - Kenji Saito
- Department of Gene Function and Phenomics, National Institute of Genetics
| | - Emily Taylor
- Biology Department, University of Massachusetts Boston, Boston, MA 02125
| | | | - Kei-ichiro Ishiguro
- Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
| | - Minoru Tanaka
- Division of Biological Science, Nagoya University, Nagoya 464-8601, Japan
| | | | - Noriyoshi Sakai
- Department of Gene Function and Phenomics, National Institute of Genetics
- Department of Genetics, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Mishima 411-8540, Japan
| |
Collapse
|
2
|
Duan L, Du S, Wang X, Zhou L, Liu Q, Li J. Glial cell line-derived neurotrophic factor (GDNF) is essential for colonization and expansion of turbot (Scophthalmus maximus) germ cells in recipients and in vitro culture. Theriogenology 2024; 214:1-9. [PMID: 37837722 DOI: 10.1016/j.theriogenology.2023.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/14/2023] [Accepted: 09/17/2023] [Indexed: 10/16/2023]
Abstract
Germ cell transplantation (GCT) is a promising biotechnology that enables the production of donor-derived gametes in surrogate recipients. It plays a crucial role in the protection of endangered species, the propagation of elite species with desired traits, and long-term preservation of genetic resources. This significance is particularly pronounced when GCT is synergistically employed with cryopreservation techniques. However, GCT often encounters challenges due to low colonization rates and, in some cases, complete loss of donor cells in recipients. Glial cell line-derived neurotrophic factor (GDNF) plays a pivotal role in sustaining the self-renewal of spermatogonial stem cells (SSCs) in mammals. Additionally, it has been shown to promote the proliferation of spermatogonia in vitro cultures in certain animal species. In turbot (Scophthalmus maximus), we found that the expressions of gdnf and gfrα1a were predominantly observed in spermatogonia rather than somatic cells, which differed from their expression patterns in mammals. The efficiency of exogenous spermatogonia transplantation in Japanese flounder (Paralichthys olivaceus) larvae could be substantially enhanced by incubating donor cells from turbot with 100 ng/ml GDNF prior to transplantation. This led to a noteworthy increase in the colonization rate, rising from 33%-50%-61.5%. Additionally, the addition of 20 ng/ml GDNF in cell medium could also promote the proliferation of turbot germ cells in vitro. These results demonstrated the gdnf in turbot testis expression characteristics and suggested that addition of GNDF could be an effective way to improve the GCT efficiency and promote the germ cells expansion during in vitro culture.
Collapse
Affiliation(s)
- Lei Duan
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuran Du
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Xueying Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Li Zhou
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Qinghua Liu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.
| | - Jun Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.
| |
Collapse
|
3
|
Tan L, Liu Q, He Y, Zhang J, Hou J, Ren Y, Ma W, Wang Q, Shao C. Establishment and Characterization of a Spermatogonial Stem Cell Line from Tiger Puffer Fish ( Takifugu rubripes). Animals (Basel) 2023; 13:2959. [PMID: 37760359 PMCID: PMC10525247 DOI: 10.3390/ani13182959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/28/2023] [Accepted: 07/29/2023] [Indexed: 09/29/2023] Open
Abstract
Tiger puffer fish (Takifugu rubripes) has become the main fish species cultured in China since the last century because of its high economic value. Male and female tiger puffer fish need 2 and 3 years each to reach sexual maturity, which limits the development of breeding research for this species. In recent years, in vitro culture of fish spermatogonial stem cells (SSCs) have shown potential in aquaculture. In the present study, we established a spermatogenic stem cell line from T. rubripes (TrSSCs). TrSSCs were characterized by polygonal morphology, predominantly retained 44 chromosomes, and grew rapidly at 26 °C and in L-15. TrSSCs were still able to grow stably after more than one year of in vitro culture. TrSSCs showed positive alkaline phosphatase staining. TrSSCs expressed germ cell-associated genes, including dnd, ddx4, piwil, gfra1b, sox2, myca, nanog, ly75, and dazl, as determined by semiquantitative assays, and almost all cells were found to express the germ cell genes ddx4 and gfra1b in a fluorescence in situ hybridization assay. In vitro, induction experiments demonstrated the TrSSCs possessed the ability to differentiate into other types of cells. Our research has enriched the fish spermatogonial stem cell resource bank, which will provide an efficient research model for sex determination and sex control breeding in fish, establishing a foundation for subsequent breeding research.
Collapse
Affiliation(s)
- Leilei Tan
- Jiangsu Key Laboratory of Marine Biological Resources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222000, China;
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Q.L.); (Y.H.); (J.Z.); (W.M.)
| | - Qian Liu
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Q.L.); (Y.H.); (J.Z.); (W.M.)
| | - Yangbin He
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Q.L.); (Y.H.); (J.Z.); (W.M.)
| | - Jingjing Zhang
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Q.L.); (Y.H.); (J.Z.); (W.M.)
| | - Jilun Hou
- Hebei Key Laboratory of the Bohai Sea Fish Germplasm Resources Conservation and Utilization, Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao 066100, China; (J.H.); (Y.R.)
| | - Yuqin Ren
- Hebei Key Laboratory of the Bohai Sea Fish Germplasm Resources Conservation and Utilization, Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao 066100, China; (J.H.); (Y.R.)
| | - Wenxiu Ma
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Q.L.); (Y.H.); (J.Z.); (W.M.)
| | - Qian Wang
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Q.L.); (Y.H.); (J.Z.); (W.M.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Changwei Shao
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Q.L.); (Y.H.); (J.Z.); (W.M.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| |
Collapse
|
4
|
Chen L, Dong Z, Chen X. Fertility preservation in pediatric healthcare: a review. Front Endocrinol (Lausanne) 2023; 14:1147898. [PMID: 37206440 PMCID: PMC10189781 DOI: 10.3389/fendo.2023.1147898] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 04/12/2023] [Indexed: 05/21/2023] Open
Abstract
Survival rates for children and adolescents diagnosed with malignancy have been steadily increasing due to advances in oncology treatments. These treatments can have a toxic effect on the gonads. Currently, oocyte and sperm cryopreservation are recognized as well-established and successful strategies for fertility preservation for pubertal patients, while the use of gonadotropin-releasing hormone agonists for ovarian protection is controversial. For prepubertal girls, ovarian tissue cryopreservation is the sole option. However, the endocrinological and reproductive outcomes after ovarian tissue transplantation are highly heterogeneous. On the other hand, immature testicular tissue cryopreservation remains the only alternative for prepubertal boys, yet it is still experimental. Although there are several published guidelines for navigating fertility preservation for pediatric and adolescent patients as well as transgender populations, it is still restricted in clinical practice. This review aims to discuss the indications and clinical outcomes of fertility preservation. We also discuss the probably effective and efficient workflow to facilitate fertility preservation.
Collapse
Affiliation(s)
- Lin Chen
- Reproductive Medical Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zirui Dong
- Department of Obstetrics and Gynecology, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Xiaoyan Chen
- Maternal-Fetal Medicine Institute, Shenzhen Baoan Women’s and Children’s Hospital, Shenzhen University, Shenzhen, China
- The Fertility Preservation Research Center, Department of Obstetrics and Gynecology, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| |
Collapse
|
5
|
Establishment of a Spermatogonial Stem Cell Line with Potential of Meiosis in a Hermaphroditic Fish, Epinephelus coioides. Cells 2022; 11:cells11182868. [PMID: 36139441 PMCID: PMC9496998 DOI: 10.3390/cells11182868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/03/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
Spermatogonial stem cells (SSCs) are unique adult stem cells capable of self-renewal and differentiation into sperm. Grouper is a protogynous hermaphroditic fish farmed widely in the tropical and subtropical seas. In this study, we established an SSC line derived from adult testis of orange-spotted grouper, Epinephelus coioides. In the presence of basic fibroblast growth factor (bFGF) and leukemia inhibitory factor (LIF), the cells could be maintained with proliferation and self-renewal over 20 months and 120 passages under in vitro culture conditions. The cells exhibited strong alkaline phosphatase activity and the characteristics of SSCs with the expression of germ cell markers, including Vasa, Dazl, and Plzf, as well as the stem cell markers Nanog, Oct4, and Ssea1. Furthermore, the cultured cells could be induced by 11-ketotestosterone treatment to highly express the meiotic markers Rec8, Sycp3, and Dmc1, and produce some spherical cells, and even sperm-like cells with a tail. The findings of this study suggested that the cultured grouper SSC line would serve as an excellent tool to study the molecular mechanisms behind SSCs self-renewal and differentiation, meiosis during spermatogenesis, and sex reversal in hermaphroditic vertebrates. Moreover, this SSC line has great application value in grouper fish aquaculture, such as germ cell transplantation, genetic manipulation, and disease research.
Collapse
|
6
|
Chen X, Kan Y, Zhong Y, Jawad M, Wei W, Gu K, Gui L, Li M. Generation of a Normal Long-Term-Cultured Chinese Hook Snout Carp Spermatogonial Stem Cell Line Capable of Sperm Production In Vitro. BIOLOGY 2022; 11:1069. [PMID: 36101449 PMCID: PMC9312933 DOI: 10.3390/biology11071069] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 11/20/2022]
Abstract
Opsariichthys bidens belongs to the family Cyprinidae and is a small freshwater economic fish widely distributed in China. In recent years, the natural resources of O. bidens have been drastically reduced due to overfishing and the destruction of the water environment. The in vitro culture and long-term preservation of germ stem cells are the key technologies to keep genetic resources from degeneration. However, except for the establishment of the first long-term cultured medaka spermatogonia cell line (SSC) capable of producing sperm in vitro in 2004, no other long-term cultured SSC line has been found in other fish species. In this study, we successfully established another long-term-cultured spermatogonial stem cell line from Opsariichthys bidens (ObSSC). After more than 2 years of culture, ObSSC had a diploid karyotype and stable growth, with the typical gene expression patterns of SSC. Under in vitro culture, ObSSC could be induced to differentiate into sperm and other different types of somatic cells. In vivo, ObSSC could differentiate into different cells of three germ layers upon being transplanted into zebrafish embryos. Our research helps to explore the potential and regulation mechanism of fish SSC differentiation and spermatogenesis in vitro, provides a new way for solving the problem of fish genetic resource degradation and lays a foundation for further research on fish germ cell transplantation.
Collapse
Affiliation(s)
- Xiao Chen
- Key Laboratory of Integrated Rice-Fish Farming, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; (X.C.); (Y.K.); (Y.Z.); (M.J.); (W.W.); (K.G.)
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Yuting Kan
- Key Laboratory of Integrated Rice-Fish Farming, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; (X.C.); (Y.K.); (Y.Z.); (M.J.); (W.W.); (K.G.)
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Ying Zhong
- Key Laboratory of Integrated Rice-Fish Farming, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; (X.C.); (Y.K.); (Y.Z.); (M.J.); (W.W.); (K.G.)
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
- Key Laboratory of Microecological Resources and Utilization in Breeding Industry, Ministry of Agriculture and Rural Affairs, Guangzhou 511400, China
| | - Muhammad Jawad
- Key Laboratory of Integrated Rice-Fish Farming, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; (X.C.); (Y.K.); (Y.Z.); (M.J.); (W.W.); (K.G.)
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Wenbo Wei
- Key Laboratory of Integrated Rice-Fish Farming, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; (X.C.); (Y.K.); (Y.Z.); (M.J.); (W.W.); (K.G.)
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Kaiyan Gu
- Key Laboratory of Integrated Rice-Fish Farming, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; (X.C.); (Y.K.); (Y.Z.); (M.J.); (W.W.); (K.G.)
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Lang Gui
- Key Laboratory of Integrated Rice-Fish Farming, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; (X.C.); (Y.K.); (Y.Z.); (M.J.); (W.W.); (K.G.)
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Mingyou Li
- Key Laboratory of Integrated Rice-Fish Farming, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; (X.C.); (Y.K.); (Y.Z.); (M.J.); (W.W.); (K.G.)
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| |
Collapse
|
7
|
Song H, Park HJ, Lee WY, Lee KH. Models and Molecular Markers of Spermatogonial Stem Cells in Vertebrates: To Find Models in Nonmammals. Stem Cells Int 2022; 2022:4755514. [PMID: 35685306 PMCID: PMC9174007 DOI: 10.1155/2022/4755514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 03/21/2022] [Accepted: 04/17/2022] [Indexed: 11/24/2022] Open
Abstract
Spermatogonial stem cells (SSCs) are the germline stem cells that are essential for the maintenance of spermatogenesis in the testis. However, it has not been sufficiently understood in amphibians, reptiles, and fish because numerous studies have been focused mainly on mammals. The aim of this review is to discuss scientific ways to elucidate SSC models of nonmammals in the context of the evolution of testicular organization since rodent SSC models. To further understand the SSC models in nonmammals, we point out common markers of an SSC pool (undifferentiated spermatogonia) in various types of testes where the kinetics of the SSC pool appears. This review includes the knowledge of (1) common molecular markers of vertebrate type A spermatogonia including putative SSC markers, (2) localization of the markers on the spermatogonia that have been reported in previous studies, (3) highlighting the most common markers in vertebrates, and (4) suggesting ways of finding SSC models in nonmammals.
Collapse
Affiliation(s)
- Hyuk Song
- Department of Stem Cell and Regenerative Technology, KIT, Konkuk University, Seoul 05029, Republic of Korea
| | - Hyun-Jung Park
- Department of Animal Biotechnology, College of Life Science and Natural Resources, Sangji University, Wonju-si 26339, Republic of Korea
| | - Won-Young Lee
- Department of Animal Science, Korea National College of Agriculture and Fisheries, Jeonju-si 54874, Republic of Korea
| | - Kyung Hoon Lee
- Department of Stem Cell and Regenerative Technology, KIT, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
8
|
Ryu JH, Xu L, Wong TT. Advantages, Factors, Obstacles, Potential Solutions, and Recent Advances of Fish Germ Cell Transplantation for Aquaculture-A Practical Review. Animals (Basel) 2022; 12:ani12040423. [PMID: 35203131 PMCID: PMC8868515 DOI: 10.3390/ani12040423] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/05/2022] [Accepted: 02/06/2022] [Indexed: 12/11/2022] Open
Abstract
Simple Summary This review aims to provide practical information and viewpoints regarding fish germ cell transplantation for enhancing its commercial applications. We reviewed and summarized the data from more than 70 important studies and described the advantages, obstacles, recent advances, and future perspectives of fish germ cell transplantation. We concluded and proposed the critical factors for achieving better success and various options for germ cell transplantation with their pros and cons. Additionally, we discussed why this technology has not actively been utilized for commercial purposes, what barriers need to be overcome, and what potential solutions can advance its applications in aquaculture. Abstract Germ cell transplantation technology enables surrogate offspring production in fish. This technology has been expected to mitigate reproductive barriers, such as long generation time, limited fecundity, and complex broodstock management, enhancing seed production and productivity in aquaculture. Many studies of germ cell transplantation in various fish species have been reported over a few decades. So far, surrogate offspring production has been achieved in many commercial species. In addition, the knowledge of fish germ cell biology and the related technologies that can enhance transplantation efficiency and productivity has been developed. Nevertheless, the commercial application of this technology still seems to lag behind, indicating that the established models are neither beneficial nor cost-effective enough to attract potential commercial users of this technology. Furthermore, there are existing bottlenecks in practical aspects such as impractical shortening of generation time, shortage of donor cells with limited resources, low efficiency, and unsuccessful surrogate offspring production in some fish species. These obstacles need to be overcome through further technology developments. Thus, we thoroughly reviewed the studies on fish germ cell transplantation reported to date, focusing on the practicality, and proposed potential solutions and future perspectives.
Collapse
|
9
|
Imai Y, Olaya I, Sakai N, Burgess SM. Meiotic Chromosome Dynamics in Zebrafish. Front Cell Dev Biol 2021; 9:757445. [PMID: 34692709 PMCID: PMC8531508 DOI: 10.3389/fcell.2021.757445] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 09/14/2021] [Indexed: 11/13/2022] Open
Abstract
Recent studies in zebrafish have revealed key features of meiotic chromosome dynamics, including clustering of telomeres in the bouquet configuration, biogenesis of chromosome axis structures, and the assembly and disassembly of the synaptonemal complex that aligns homologs end-to-end. The telomere bouquet stage is especially pronounced in zebrafish meiosis and sub-telomeric regions play key roles in mediating pairing and homologous recombination. In this review, we discuss the temporal progression of these events in meiosis prophase I and highlight the roles of proteins associated with meiotic chromosome architecture in homologous recombination. Finally, we discuss the interplay between meiotic mutants and gonadal sex differentiation and future research directions to study meiosis in living cells, including cell culture.
Collapse
Affiliation(s)
- Yukiko Imai
- Department of Gene Function and Phenomics, National Institute of Genetics, Mishima, Japan
| | - Ivan Olaya
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA, United States.,Integrative Genetics and Genomics Graduate Group, University of California, Davis, Davis, CA, United States
| | - Noriyoshi Sakai
- Department of Gene Function and Phenomics, National Institute of Genetics, Mishima, Japan.,Department of Genetics, School of Life Sciences, SOKENDAI (The Graduate University for Advanced Studies), Mishima, Japan
| | - Sean M Burgess
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA, United States
| |
Collapse
|
10
|
Choe CP, Choi SY, Kee Y, Kim MJ, Kim SH, Lee Y, Park HC, Ro H. Transgenic fluorescent zebrafish lines that have revolutionized biomedical research. Lab Anim Res 2021; 37:26. [PMID: 34496973 PMCID: PMC8424172 DOI: 10.1186/s42826-021-00103-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/26/2021] [Indexed: 12/22/2022] Open
Abstract
Since its debut in the biomedical research fields in 1981, zebrafish have been used as a vertebrate model organism in more than 40,000 biomedical research studies. Especially useful are zebrafish lines expressing fluorescent proteins in a molecule, intracellular organelle, cell or tissue specific manner because they allow the visualization and tracking of molecules, intracellular organelles, cells or tissues of interest in real time and in vivo. In this review, we summarize representative transgenic fluorescent zebrafish lines that have revolutionized biomedical research on signal transduction, the craniofacial skeletal system, the hematopoietic system, the nervous system, the urogenital system, the digestive system and intracellular organelles.
Collapse
Affiliation(s)
- Chong Pyo Choe
- Division of Life Science, Gyeongsang National University, Jinju, 52828, Republic of Korea.,Division of Applied Life Science, Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Seok-Yong Choi
- Department of Biomedical Sciences, Chonnam National University Medical School, Hwasun, 58128, Republic of Korea
| | - Yun Kee
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| | - Min Jung Kim
- Department of Biological Sciences, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Seok-Hyung Kim
- Department of Marine Life Sciences and Fish Vaccine Research Center, Jeju National University, Jeju, 63243, Republic of Korea
| | - Yoonsung Lee
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea
| | - Hae-Chul Park
- Department of Biomedical Sciences, College of Medicine, Korea University, Ansan, 15355, Republic of Korea
| | - Hyunju Ro
- Department of Biological Sciences, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, 34134, Republic of Korea
| |
Collapse
|
11
|
Dias GCM, Batlouni SR, Cassel M, Chehade C, De Jesus LWO, Branco GS, Camargo MP, Borella MI. Isolation, in vitro study, and stem cell markers for type A spermatogonia in a Characiformes species. Mol Reprod Dev 2020; 87:783-799. [PMID: 32557886 DOI: 10.1002/mrd.23394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/31/2020] [Accepted: 06/04/2020] [Indexed: 12/20/2022]
Abstract
The objective of this study was to establish a protocol for the characterization, isolation, and culture of type A spermatogonia using specific molecular markers for these cells in fish. To this end, adult Prochilodus lineatus testes were collected and digested enzymatically and the resulting testicular suspension was separated using a discontinuous Percoll gradient, followed by differential plating. The cell cultures obtained were monitored for 15 days and analyzed using the immunofluorescence method with anti-Vasa, anti-GFRα1, and anti-OCT4 antibodies. Spermatogonial enrichment was also performed using flow cytometry. Although discontinuous Percoll gradient centrifugation followed by differential plating enabled the removal of differentiated germ cells and somatic cells, enriching the pool of type A spermatogonia, the enrichment of type A spermatogonia through flow cytometry of samples without Percoll proved to be more efficient. Prominent cell agglomerates that were characterized according to different stem cell markers as type A spermatogonia were observed during the 15 days of the cell culture. The use of immunoperoxidase and western blot analysis methods confirmed the specificity of the markers for type A spermatogonia of P. lineatus. When combined with specific cell culture conditions, the positive characterization of these molecular markers clarified certain aspects of spermatogonial regulation, such as survival and proliferation. Finally, understanding the regulation of the in vitro germ cell maintenance process may contribute to the enhancement of in vivo and in vitro reproduction techniques of endangered or aquaculture fish species.
Collapse
Affiliation(s)
- Gisele C M Dias
- Fish Endocrinology Laboratory, Department of Cell and Developmental Biology, Biomedical Sciences Institute, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Sérgio R Batlouni
- Aquaculture Center of São Paulo State University (CAUNESP), São Paulo State University (UNESP), Campus Jaboticabal, Jaboticabal, São Paulo, Brazil
| | - Mônica Cassel
- Department of Education - Bachelor of Science in Animal Science, Mato Grosso Federal Institute of Education, Science, and Technology, Campus Alta Floresta, Alta Floresta, Mato Grosso, Brazil
| | - Chayrra Chehade
- Fish Endocrinology Laboratory, Department of Cell and Developmental Biology, Biomedical Sciences Institute, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Lázaro W O De Jesus
- Laboratory of Applied Animal Morphophysiology, Department of Histology and Embryology, Institute of Biological Sciences and Health, Federal University of Alagoas, Campus A. C. Simões, Maceió, Alagoas, Brazil
| | - Giovana S Branco
- Fish Endocrinology Laboratory, Department of Cell and Developmental Biology, Biomedical Sciences Institute, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Marília P Camargo
- Fish Endocrinology Laboratory, Department of Cell and Developmental Biology, Biomedical Sciences Institute, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Maria I Borella
- Fish Endocrinology Laboratory, Department of Cell and Developmental Biology, Biomedical Sciences Institute, University of São Paulo, São Paulo, São Paulo, Brazil
| |
Collapse
|
12
|
Meagre Argyrosomus regius (Asso, 1801) Stem Spermatogonia: Histological Characterization, Immunostaining, In Vitro Proliferation, and Cryopreservation. Animals (Basel) 2020; 10:ani10050851. [PMID: 32423131 PMCID: PMC7278407 DOI: 10.3390/ani10050851] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/11/2020] [Accepted: 05/12/2020] [Indexed: 01/01/2023] Open
Abstract
The meagre, Argyrosomus regius, is a valued fish species of which aquaculture production might be supported by the development of a stem germ cell xenotransplantation technology. Meagre males were sampled at a fish farm in the Ionian Sea (Italy) at the beginning and end of the reproductive season. Small and large Type A undifferentiated spermatogonia were histologically identified in the germinal epithelium. Among the tested stemness markers, anti-oct4 and anti-vasa antibodies labeled cells likely corresponding to the small single Type A spermatogonia; no labeling was obtained with anti-GFRA1 and anti-Nanos2 antibodies. Two types of single A spermatogonia were purified via density gradient centrifugation of enzymatically digested testes. Testes from fish in active spermatogenesis resulted in a more efficient spermatogonial stem cell (SSC) yield. After cell seeding, meagre SSCs showed active proliferation from Day 7 to Day 21 and were cultured up to Day 41. After cryopreservation in dimethyl-sulfoxide-based medium, cell viability was 28.5%. In conclusion, these results indicated that meagre SSCs could be isolated, characterized, cultured in vitro, successfully cryopreserved, and used after thawing. This is a first step towards the development of a xenotransplantation technology that might facilitate the reproduction of this valuable species in captivity.
Collapse
|
13
|
Xie X, Nóbrega R, Pšenička M. Spermatogonial Stem Cells in Fish: Characterization, Isolation, Enrichment, and Recent Advances of In Vitro Culture Systems. Biomolecules 2020; 10:E644. [PMID: 32331205 PMCID: PMC7226347 DOI: 10.3390/biom10040644] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/13/2020] [Accepted: 04/14/2020] [Indexed: 12/14/2022] Open
Abstract
Spermatogenesis is a continuous and dynamic developmental process, in which a single diploid spermatogonial stem cell (SSC) proliferates and differentiates to form a mature spermatozoon. Herein, we summarize the accumulated knowledge of SSCs and their distribution in the testes of teleosts. We also reviewed the primary endocrine and paracrine influence on spermatogonium self-renewal vs. differentiation in fish. To provide insight into techniques and research related to SSCs, we review available protocols and advances in enriching undifferentiated spermatogonia based on their unique physiochemical and biochemical properties, such as size, density, and differential expression of specific surface markers. We summarize in vitro germ cell culture conditions developed to maintain proliferation and survival of spermatogonia in selected fish species. In traditional culture systems, sera and feeder cells were considered to be essential for SSC self-renewal, in contrast to recently developed systems with well-defined media and growth factors to induce either SSC self-renewal or differentiation in long-term cultures. The establishment of a germ cell culture contributes to efficient SSC propagation in rare, endangered, or commercially cultured fish species for use in biotechnological manipulation, such as cryopreservation and transplantation. Finally, we discuss organ culture and three-dimensional models for in vitro investigation of fish spermatogenesis.
Collapse
Affiliation(s)
- Xuan Xie
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in Ceske Budejovice, Zátiší 728/II, 389 25 Vodňany, Czech Republic;
| | - Rafael Nóbrega
- Reproductive and Molecular Biology Group, Department of Morphology, Institute of Biosciences, São Paulo State University, Botucatu, SP 18618-970, Brazil;
| | - Martin Pšenička
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in Ceske Budejovice, Zátiší 728/II, 389 25 Vodňany, Czech Republic;
| |
Collapse
|
14
|
Poursaeid S, Kalbassi MR, Hassani SN, Baharvand H. Isolation, characterization, in vitro expansion and transplantation of Caspian trout (Salmo caspius) type a spermatogonia. Gen Comp Endocrinol 2020; 289:113341. [PMID: 31954748 DOI: 10.1016/j.ygcen.2019.113341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 11/23/2019] [Accepted: 11/23/2019] [Indexed: 01/15/2023]
Abstract
Sprmatogonial stem cells (SSCs) are valuable for preservation of endangered fish species, biological experimentation, as well as biotechnological applications. However, the rarity of SSCs in the testes has been a great obstacle in their application. Thus, establishment of an efficient in-vitro culture system to support continuous proliferation of SSCs is essential. The present study aimed to establish an efficient and simple method for in vitro culture of Caspian trout undifferentiated spermatogonial cells. Using a two-step enzymatic digestion, testicular cells were isolated from immature testes composed of mainly undifferentiated spermatogonial cells with gonadosomatic indices of <0.05%. The spermatogonial cells were purified by differential plating through serial passaging. The purified cells indicated high expression of type A spermatogonia-related genes (Ly75, Gfrα1, Nanos2, Plzf and Vasa). Proliferation of purified cells was confirmed by BrdU incorporation. Co-culture of purified cells with testicular somatic cells as a feeder layer, resulted in continuous proliferation of type A spermatogonia. The cultured cells continued to express type A spermatogonia-specific markers after one month culture. The cultured spermatogonia were successfully incorporated into the germline after being intraperitoneally transplanted into sterile triploid rainbow trout hatchlings. These results, for the first time, demonstrated that the somatic microenvironment of the rainbow trout gonad can support the colonization and survival of intraperitoneally transplanted cells derived from a fish species belonging to a different genus. Therefore, the combination of in vitro culture system and xenotransplantation can be considered as a promising strategy for conservation of Caspian trout genetic resources.
Collapse
Affiliation(s)
- Samaneh Poursaeid
- Fisheries Department, School of Natural Resources and Marine Sciences, Tarbiat Modares University, Noor, Mazandaran, Iran
| | - Mohammad-Reza Kalbassi
- Fisheries Department, School of Natural Resources and Marine Sciences, Tarbiat Modares University, Noor, Mazandaran, Iran.
| | - Seyedeh-Nafiseh Hassani
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Department of Developmental Biology, University of Science and Culture, Tehran, Iran.
| |
Collapse
|
15
|
Struijk RB, Dorssers LCJ, Henneman P, Rijlaarsdam MA, Venema A, Jongejan A, Mannens MMAM, Looijenga LHJ, Repping S, van Pelt AMM. Comparing genome-scale DNA methylation and CNV marks between adult human cultured ITGA6+ testicular cells and seminomas to assess in vitro genomic stability. PLoS One 2020; 15:e0230253. [PMID: 32176716 PMCID: PMC7075560 DOI: 10.1371/journal.pone.0230253] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 02/25/2020] [Indexed: 02/06/2023] Open
Abstract
Autologous transplantation of spermatogonial stem cells is a promising new avenue to restore fertility in infertile recipients. Expansion of the initial spermatogonial stem cell pool through cell culturing is a necessary step to obtain enough cells for effective repopulation of the testis after transplantation. Since in vitro propagation can lead to (epi-)genetic mutations and possibly malignant transformation of the starting cell population, we set out to investigate genome-wide DNA methylation status in uncultured and cultured primary testicular ITGA6+ sorted cells and compare them with germ cell tumor samples of the seminoma subtype. Seminomas displayed a severely global hypomethylated profile, including loss of genomic imprinting, which we did not detect in cultured primary testicular ITGA6+ cells. Differential methylation analysis revealed altered regulation of gamete formation and meiotic processes in cultured primary testicular ITGA6+ cells but not in seminomas. The pivotal POU5F1 marker was hypomethylated in seminomas but not in uncultured or cultured primary testicular ITGA6+ cells, which is reflected in the POU5F1 mRNA expression levels. Lastly, seminomas displayed a number of characteristic copy number variations that were not detectable in primary testicular ITGA6+ cells, either before or after culture. Together, the data show a distinct DNA methylation patterns in cultured primary testicular ITGA6+ cells that does not resemble the pattern found in seminomas, but also highlight the need for more sensitive methods to fully exclude the presence of malignant cells after culture and to further study the epigenetic events that take place during in vitro culture.
Collapse
Affiliation(s)
- Robert B. Struijk
- Center for Reproductive Medicine, Research Institute Reproduction and Development, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Lambert C. J. Dorssers
- Department of Pathology, Erasmus MC University Medical Center, Rotterdam, and Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Peter Henneman
- Department of Clinical Genetics, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Martin A. Rijlaarsdam
- Department of Pathology, Erasmus MC University Medical Center, Rotterdam, and Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Andrea Venema
- Department of Clinical Genetics, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Aldo Jongejan
- Center for Reproductive Medicine, Research Institute Reproduction and Development, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Bioinformatics Laboratory, Department of Clinical Epidemiology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Marcel M. A. M. Mannens
- Department of Clinical Genetics, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Leendert H. J. Looijenga
- Department of Pathology, Erasmus MC University Medical Center, Rotterdam, and Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Sjoerd Repping
- Center for Reproductive Medicine, Research Institute Reproduction and Development, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Ans M. M. van Pelt
- Center for Reproductive Medicine, Research Institute Reproduction and Development, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- * E-mail:
| |
Collapse
|
16
|
Kawabe T, Kariya H, Hara S, Shirozu T, Shiraishi E, Mukai K, Yazawa T, Inoue S, Kitano T. Transcriptional Regulation of Müllerian Inhibiting Substance (MIS) and Establishment of a Gonadal Somatic Cell Line Using mis-GFP Transgenic Medaka ( Oryzias latipes). Front Endocrinol (Lausanne) 2020; 11:578885. [PMID: 33133021 PMCID: PMC7550650 DOI: 10.3389/fendo.2020.578885] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 08/31/2020] [Indexed: 01/15/2023] Open
Abstract
In vertebrate germ cell differentiation, gonadal somatic cells and germ cells are closely related. By analyzing this relationship, it has recently been reported in mammals that primordial germ cells (PGCs), induced from pluripotent stem cells and germline stem cells, can differentiate into functional gametes when co-cultured in vitro with fetal gonadal somatic cells. In some fish species, differentiation into functional sperm by reaggregation or co-culture of gonadal somatic cells and germ cells has also been reported; however, the relationship between gonadal somatic cells and germ cells in these species is not well-understood. Here, we report the transcriptional regulation of Müllerian inhibiting substance (MIS) and the establishment of a gonadal somatic cell line using mis-GFP transgenic fish, in medaka (Oryzias latipes)-a fish model which offers many advantages for molecular genetics. MIS is a glycoprotein belonging to the transforming growth factor β superfamily. In medaka, mis mRNA is expressed in gonadal somatic cells of both sexes before sex differentiation, and MIS regulates the proliferation of germ cells during this period. Using luciferase assays, we found that steroidogenic factor 1 (SF1) and liver receptor homolog 1 (LRH1) activate medaka mis gene transcription, probably by binding to the mis promoter. We also report that mis-GFP transgenic medaka emit GFP fluorescence specific to gonadal somatic cells in the gonads. By fusing Sertoli cells from transgenic medaka with a cell line derived from medaka hepatoma cancer, we produced a hybridoma cell line that expresses gonadal somatic cell-specific markers, including Sertoli and Leydig cell markers. Moreover, embryonic PGCs co-cultured with the established hybridoma, as feeder cells, proliferated and formed significant colonies after 1 week. PGCs cultured for 3 weeks expressed a germ cell marker dnd, as well as the meiotic markers sycp1 and sycp3. Thus, we here provide the first evidence in teleosts that we have successfully established a gonadal somatic cell-derived hybridoma that can induce both the proliferation and meiosis of germ cells.
Collapse
Affiliation(s)
- Toshiaki Kawabe
- Department of Biological Sciences, Graduate School of Science and Technology, Kumamoto University, Kumamoto, Japan
- ARK Resource Co., Ltd., Kumamoto, Japan
| | | | - Seiji Hara
- Department of Biological Sciences, Graduate School of Science and Technology, Kumamoto University, Kumamoto, Japan
| | - Tsuyoshi Shirozu
- Department of Biological Sciences, Graduate School of Science and Technology, Kumamoto University, Kumamoto, Japan
| | - Eri Shiraishi
- Department of Biological Sciences, Graduate School of Science and Technology, Kumamoto University, Kumamoto, Japan
| | - Koki Mukai
- Department of Biological Sciences, Graduate School of Science and Technology, Kumamoto University, Kumamoto, Japan
| | - Takashi Yazawa
- Department of Biochemistry, Asahikawa Medical University, Asahikawa, Japan
| | | | - Takeshi Kitano
- Department of Biological Sciences, Graduate School of Science and Technology, Kumamoto University, Kumamoto, Japan
- *Correspondence: Takeshi Kitano
| |
Collapse
|
17
|
Function of leukaemia inhibitory factor in spermatogenesis of a teleost fish, the medaka Oryzias latipes. ZYGOTE 2019; 27:423-431. [PMID: 31617472 DOI: 10.1017/s0967199419000558] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In response to gonadotropins and androgens, testicular cells produce various molecules that control proper proliferation and differentiation of spermatogenic cells through their paracrine and autocrine actions. However, molecules functioning downstream of the hormonal stimulation are poorly understood. Leukaemia inhibitory factor (Lif) is known to maintain the pluripotency of stem cells including embryonic stem cells and primordial germ cells at least in vitro, but its actual roles in vivo remain to be elucidated. To clarify the function of Lif in teleost (medaka) testes, we examined the effects of Lif on spermatogenesis in a newly established cell culture system using a cell line (named Mtp1) derived from medaka testicular somatic cells as feeder cells. We found that addition of baculovirus-produced recombinant medaka Lif to the culture medium or co-culture with Lif-overexpressing Mtp1 cells increased the number of spermatogonia. In situ hybridization and immunohistochemical analyses of the medaka testes showed that mRNAs and proteins of Lif are expressed in spermatogonia and the surrounding Sertoli cells, with higher expression levels in type A (undifferentiated) spermatogonia than in type B (differentiated) spermatogonia. Our findings suggest that Lif regulates spermatogonial cell proliferation in the medaka.
Collapse
|
18
|
Germ plasm-related structures in marine medaka gametogenesis; novel sites of Vasa localization and the unique mechanism of germ plasm granule arising. ZYGOTE 2019; 28:9-23. [PMID: 31590697 DOI: 10.1017/s0967199419000546] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Germ plasm, a cytoplasmic factor of germline cell differentiation, is suggested to be a perspective tool for in vitro meiotic differentiation. To discriminate between the: (1) germ plasm-related structures (GPRS) involved in meiosis triggering; and (2) GPRS involved in the germ plasm storage phase, we investigated gametogenesis in the marine medaka Oryzias melastigma. The GPRS of the mitosis-to-meiosis period are similar in males and females. In both sexes, five events typically occur: (1) turning of the primary Vasa-positive germ plasm granules into the Vasa-positive intermitochondrial cement (IMC); (2) aggregation of some mitochondria by IMC followed by arising of mitochondrial clusters; (3) intramitochondrial localization of IMC-originated Vasa; followed by (4) mitochondrial cluster degradation; and (5) intranuclear localization of Vasa followed by this protein entering the nuclei (gonial cells) and synaptonemal complexes (zygotene-pachytene meiotic cells). In post-zygotene/pachytene gametogenesis, the GPRS are sex specific; the Vasa-positive chromatoid bodies are found during spermatogenesis, but oogenesis is characterized by secondary arising of Vasa-positive germ plasm granules followed by secondary formation and degradation of mitochondrial clusters. A complex type of germ plasm generation, 'the follicle cell assigned germ plasm formation', was found in late oogenesis. The mechanisms discovered are recommended to be taken into account for possible reconstruction of those under in vitro conditions.
Collapse
|
19
|
Xu H, Zhu X, Li W, Tang Z, Zhao Y, Wu X. Isolation and in vitro culture of ovarian stem cells in Chinese soft-shell turtle (Pelodiscus sinensis). J Cell Biochem 2018; 119:7667-7677. [PMID: 29923352 DOI: 10.1002/jcb.27114] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 05/07/2018] [Indexed: 12/21/2022]
Abstract
Gonadal cell lines provide valuable tools for studying gametogenesis, sex differentiation, and manipulating germ cells in reproductive biology. Female germline stem cells have been characterized and isolated from ovaries of mammalian species, including mice and human, but there has been very few studies on female germline stem cells in reptiles. Here, we described an ovarian stem cell-like line isolated and cultured from the Chinese soft-shell turtle (Pelodiscus sinensis), designated as PSO1. The cells showed high alkaline phosphatase activity with a normal diploid karyotype. As shown by reverse transcription-polymerase chain reaction, the cells were positive for the expression of germ cell-specific genes, vasa and dazl, as well as a stem cell marker, nanog, but negative for the expression of the folliculogenesis-specific gene, figla. Likewise, through fluorescent immunostaining analyses, both the Dazl and Vasa proteins were detected abundantly in the cytoplasm of perinuclear region, whereas Nanog and PCNA were dominantly observed in the nuclei in PSO1 cells. Moreover, PSO1 cells transfected with pCS2:h2b-egfp could properly express the fusion protein in the nuclei. Taken together, the findings suggested that the germline stem cells exist in the ovary of juvenile Chinese soft-shell turtle and these cells can be isolated for a long-term in vitro culture under experimental conditions. This study has provided a valuable basis for further investigations on the molecular mechanisms whereby the germline stem cells develop and differentiate into gametes in turtles. Also, it has paved the way for studies on oogenesis in turtles, even in the other reptiles.
Collapse
Affiliation(s)
- Hongyan Xu
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China.,Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Xinping Zhu
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China.,Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Wei Li
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China.,Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Zhoukai Tang
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China.,Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Yanyan Zhao
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China.,Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Xuling Wu
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China.,Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| |
Collapse
|
20
|
Development of a Cytocompatible Scaffold from Pig Immature Testicular Tissue Allowing Human Sertoli Cell Attachment, Proliferation and Functionality. Int J Mol Sci 2018; 19:ijms19010227. [PMID: 29329231 PMCID: PMC5796176 DOI: 10.3390/ijms19010227] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 01/03/2018] [Accepted: 01/04/2018] [Indexed: 02/08/2023] Open
Abstract
Cryopreservation of immature testicular tissue before chemo/radiotherapy is the only option to preserve fertility of cancer-affected prepubertal boys. To avoid reintroduction of malignant cells, development of a transplantable scaffold by decellularization of pig immature testicular tissue (ITT) able to support decontaminated testicular cells could be an option for fertility restoration in these patients. We, therefore, compared decellularization protocols to produce a cytocompatible scaffold. Fragments of ITT from 15 piglets were decellularized using three protocols: sodium dodecyl sulfate (SDS)-Triton (ST), Triton-SDS-Triton (TST) and trypsin 0.05%/ethylenediaminetetraacetic acid (EDTA) 0.02%-Triton (TET) with varying detergent concentrations. All protocols were able to lower DNA levels. Collagen retention was demonstrated in all groups except ST 1%, and a significant decrease in glycosaminoglycans was observed in the TST 1% and TET 1% groups. When Sertoli cells (SCs) were cultured with decellularized tissue, no signs of cytotoxicity were detected. A higher SC proliferation rate and greater stem cell factor secretion were observed than with SCs cultured without scaffold. ST 0.01% and TET 3% conditions offered the best compromise in terms of DNA elimination and extracellular matrix (ECM) preservation, while ensuring good attachment, proliferation and functionality of human SCs. This study demonstrates the potential of using decellularized pig ITT for human testicular tissue engineering purposes.
Collapse
|
21
|
Mulder CL, Catsburg LAE, Zheng Y, de Winter-Korver CM, van Daalen SKM, van Wely M, Pals S, Repping S, van Pelt AMM. Long-term health in recipients of transplanted in vitro propagated spermatogonial stem cells. Hum Reprod 2018; 33:81-90. [PMID: 29165614 PMCID: PMC5850721 DOI: 10.1093/humrep/dex348] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 10/26/2017] [Accepted: 11/01/2017] [Indexed: 12/25/2022] Open
Abstract
STUDY QUESTION Is testicular transplantation of in vitro propagated spermatogonial stem cells associated with increased cancer incidence and decreased survival rates in recipient mice? SUMMARY ANSWER Cancer incidence was not increased and long-term survival rate was not altered after transplantation of in vitro propagated murine spermatogonial stem cells (SSCs) in busulfan-treated recipients as compared to non-transplanted busulfan-treated controls. WHAT IS KNOWN ALREADY Spermatogonial stem cell autotransplantation (SSCT) is a promising experimental reproductive technique currently under development to restore fertility in male childhood cancer survivors. Most preclinical studies have focused on the proof-of-principle of the functionality and efficiency of this technique. The long-term health of recipients of SSCT has not been studied systematically. STUDY DESIGN, SIZE, DURATION This study was designed as a murine equivalent of a clinical prospective study design. Long-term follow-up was performed for mice who received a busulfan treatment followed by either an intratesticular transplantation of in vitro propagated enhanced green fluorescent protein (eGFP) positive SSCs (cases, n = 34) or no transplantation (control, n = 37). Using a power calculation, we estimated that 36 animals per group would be sufficient to provide an 80% power and with a 5% level of significance to demonstrate a 25% increase in cancer incidence in the transplanted group. The survival rate and cancer incidence was investigated until the age of 18 months. PARTICIPANTS/MATERIALS, SETTING, METHODS Neonatal male B6D2F1 actin-eGFP transgenic mouse testis were used to initiate eGFP positive germline stem (GS) cell culture, which harbor SSCs. Six-week old male C57BL/6 J mice received a single dose busulfan treatment to deplete the testis from endogenous spermatogenesis. Half of these mice received a testicular transplantation of cultured eGFP positive GS cells, while the remainder of mice served as a control group. Mice were followed up until the age of 18 months (497-517 days post-busulfan) or sacrificed earlier due to severe discomfort or illness. Survival data were collected. To evaluate cancer incidence a necropsy was performed and tissues were collected. eGFP signal in transplanted testis and in benign and malignant lesions was assessed by standard PCR. MAIN RESULTS AND THE ROLE OF CHANCE We found 9% (95% CI: 2-25%) malignancies in the transplanted busulfan-treated animals compared to 26% (95% CI: 14-45%) in the busulfan-treated control group, indicating no statistically significant difference in incidence of malignant lesions in transplanted and control mice (OR: 0.3, 95% CI: 0.1-1.1). Furthermore, none of the malignancies that arose in the transplanted animals contained eGFP signal, suggesting that they are not derived from the in vitro propagated transplanted SSCs. Mean survival time after busulfan treatment was found to be equal, with a mean survival time for transplanted animals of 478 days and 437 days for control animals (P = 0.076). LARGE SCALE DATA NA. LIMITATIONS, REASONS FOR CAUTION Although we attempted to mimic the future clinical application of SSCT in humans as close as possible, the mouse model that we used might not reflect all aspects of the future clinical setting. WIDER IMPLICATIONS OF THE FINDINGS The absence of an increase in cancer incidence and a decrease in survival of mice that received a testicular transplantation of in vitro propagated SSCs is reassuring in light of the future clinical application of SSCT in humans. STUDY FUNDING/COMPETING INTEREST(S) This study was funded by KiKa (Kika86) and ZonMw (TAS 116003002). The authors report no financial or other conflict of interest relevant to the subject of this article.
Collapse
Affiliation(s)
- Callista L Mulder
- Center for Reproductive Medicine, Amsterdam Research Institute Reproduction and Development, Academic Medical Centre, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Lisa A E Catsburg
- Center for Reproductive Medicine, Amsterdam Research Institute Reproduction and Development, Academic Medical Centre, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Yi Zheng
- Center for Reproductive Medicine, Amsterdam Research Institute Reproduction and Development, Academic Medical Centre, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Cindy M de Winter-Korver
- Center for Reproductive Medicine, Amsterdam Research Institute Reproduction and Development, Academic Medical Centre, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Saskia K M van Daalen
- Center for Reproductive Medicine, Amsterdam Research Institute Reproduction and Development, Academic Medical Centre, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Madelon van Wely
- Center for Reproductive Medicine, Amsterdam Research Institute Reproduction and Development, Academic Medical Centre, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Steven Pals
- Department of Pathology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Sjoerd Repping
- Center for Reproductive Medicine, Amsterdam Research Institute Reproduction and Development, Academic Medical Centre, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Ans M M van Pelt
- Center for Reproductive Medicine, Amsterdam Research Institute Reproduction and Development, Academic Medical Centre, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
22
|
Tonelli FMP, Lacerda SMSN, Tonelli FCP, Costa GMJ, de França LR, Resende RR. Progress and biotechnological prospects in fish transgenesis. Biotechnol Adv 2017; 35:832-844. [PMID: 28602961 DOI: 10.1016/j.biotechadv.2017.06.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 05/04/2017] [Accepted: 06/05/2017] [Indexed: 12/14/2022]
Abstract
The history of transgenesis is marked by milestones such as the development of cellular transdifferentiation, recombinant DNA, genetic modification of target cells, and finally, the generation of simpler genetically modified organisms (e.g. bacteria and mice). The first transgenic fish was developed in 1984, and since then, continuing technological advancements to improve gene transfer have led to more rapid, accurate, and efficient generation of transgenic animals. Among the established methods are microinjection, electroporation, lipofection, viral vectors, and gene targeting. Here, we review the history of animal transgenesis, with an emphasis on fish, in conjunction with major developments in genetic engineering over the past few decades. Importantly, spermatogonial stem cell modification and transplantation are two common techniques capable of revolutionizing the generation of transgenic fish. Furthermore, we discuss recent progress and future biotechnological prospects of fish transgenesis, which has strong applications for the aquaculture industry. Indeed, some transgenic fish are already available in the current market, validating continued efforts to improve economically important species with biotechnological advancements.
Collapse
Affiliation(s)
- Fernanda M P Tonelli
- Laboratório de Sinalização Celular e Nanobiotecnologia, Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Instituto Nanocell, Divinópolis, MG, Brazil
| | - Samyra M S N Lacerda
- Laboratório de Biologia Celular, Departamento de Morfologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Flávia C P Tonelli
- Laboratório de Sinalização Celular e Nanobiotecnologia, Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Guilherme M J Costa
- Laboratório de Biologia Celular, Departamento de Morfologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Luiz Renato de França
- Laboratório de Biologia Celular, Departamento de Morfologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Instituto Nacional de Pesquisas da Amazônia (INPA), Manaus, AM, Brazil.
| | - Rodrigo R Resende
- Laboratório de Sinalização Celular e Nanobiotecnologia, Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Instituto Nanocell, Divinópolis, MG, Brazil.
| |
Collapse
|
23
|
Update on fertility restoration from prepubertal spermatogonial stem cells: How far are we from clinical practice? Stem Cell Res 2017; 21:171-177. [DOI: 10.1016/j.scr.2017.01.009] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 01/09/2017] [Accepted: 01/23/2017] [Indexed: 01/15/2023] Open
|
24
|
Wei J, Liu L, Fan Z, Hong Y, Zhao Y, Zhou L, Wang D. Identification, Prokaryote Expression of Medaka gdnfa/b and Their Biological Activity in a Spermatogonial Cell Line. Stem Cells Dev 2017; 26:197-205. [DOI: 10.1089/scd.2016.0248] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Jing Wei
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Linyan Liu
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Zhenhua Fan
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Yunhan Hong
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Yang Zhao
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Linyan Zhou
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Deshou Wang
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| |
Collapse
|
25
|
Mulder CL, Zheng Y, Jan SZ, Struijk RB, Repping S, Hamer G, van Pelt AMM. Spermatogonial stem cell autotransplantation and germline genomic editing: a future cure for spermatogenic failure and prevention of transmission of genomic diseases. Hum Reprod Update 2016; 22:561-73. [PMID: 27240817 PMCID: PMC5001497 DOI: 10.1093/humupd/dmw017] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 04/28/2016] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Subfertility affects approximately 15% of all couples, and a severe male factor is identified in 17% of these couples. While the etiology of a severe male factor remains largely unknown, prior gonadotoxic treatment and genomic aberrations have been associated with this type of subfertility. Couples with a severe male factor can resort to ICSI, with either ejaculated spermatozoa (in case of oligozoospermia) or surgically retrieved testicular spermatozoa (in case of azoospermia) to generate their own biological children. Currently there is no direct treatment for azoospermia or oligozoospermia. Spermatogonial stem cell (SSC) autotransplantation (SSCT) is a promising novel clinical application currently under development to restore fertility in sterile childhood cancer survivors. Meanwhile, recent advances in genomic editing, especially the clustered regulatory interspaced short palindromic repeats-associated protein 9 (CRISPR-Cas9) system, are likely to enable genomic rectification of human SSCs in the near future. OBJECTIVE AND RATIONALE The objective of this review is to provide insights into the prospects of the potential clinical application of SSCT with or without genomic editing to cure spermatogenic failure and to prevent transmission of genetic diseases. SEARCH METHODS We performed a narrative review using the literature available on PubMed not restricted to any publishing year on topics of subfertility, fertility treatments, (molecular regulation of) spermatogenesis and SSCT, inherited (genetic) disorders, prenatal screening methods, genomic editing and germline editing. For germline editing, we focussed on the novel CRISPR-Cas9 system. We included papers written in English only. OUTCOMES Current techniques allow propagation of human SSCs in vitro, which is indispensable to successful transplantation. This technique is currently being developed in a preclinical setting for childhood cancer survivors who have stored a testis biopsy prior to cancer treatment. Similarly, SSCT could be used to restore fertility in sterile adult cancer survivors. In vitro propagation of SSCs might also be employed to enhance spermatogenesis in oligozoospermic men and in azoospermic men who still have functional SSCs albeit in insufficient numbers. The combination of SSCT with genomic editing techniques could potentially rectify defects in spermatogenesis caused by genomic mutations or, more broadly, prevent transmission of genomic diseases to the offspring. In spite of the promising prospects, SSCT and germline genomic editing are not yet clinically applicable and both techniques require optimization at various levels. WIDER IMPLICATIONS SSCT with or without genomic editing could potentially be used to restore fertility in cancer survivors to treat couples with a severe male factor and to prevent the paternal transmission of diseases. This will potentially allow these couples to have their own biological children. Technical development is progressing rapidly, and ethical reflection and societal debate on the use of SSCT with or without genomic editing is pressing.
Collapse
Affiliation(s)
- Callista L Mulder
- Center for Reproductive Medicine, Amsterdam Research Institute Reproduction and Development, Academic Medical Centre, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Yi Zheng
- Center for Reproductive Medicine, Amsterdam Research Institute Reproduction and Development, Academic Medical Centre, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Sabrina Z Jan
- Center for Reproductive Medicine, Amsterdam Research Institute Reproduction and Development, Academic Medical Centre, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Robert B Struijk
- Center for Reproductive Medicine, Amsterdam Research Institute Reproduction and Development, Academic Medical Centre, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Sjoerd Repping
- Center for Reproductive Medicine, Amsterdam Research Institute Reproduction and Development, Academic Medical Centre, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Geert Hamer
- Center for Reproductive Medicine, Amsterdam Research Institute Reproduction and Development, Academic Medical Centre, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Ans M M van Pelt
- Center for Reproductive Medicine, Amsterdam Research Institute Reproduction and Development, Academic Medical Centre, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
26
|
Aleksejeva E, Houel A, Briolat V, Levraud JP, Langevin C, Boudinot P. Zebrafish Plzf transcription factors enhance early type I IFN response induced by two non-enveloped RNA viruses. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 57:48-56. [PMID: 26719025 DOI: 10.1016/j.dci.2015.12.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 12/18/2015] [Accepted: 12/18/2015] [Indexed: 06/05/2023]
Abstract
The BTB-POZ transcription factor Promyelocytic Leukemia Zinc Finger (PLZF, or ZBTB16) has been recently identified as a major factor regulating the induction of a subset of Interferon stimulated genes in human and mouse. We show that the two co-orthologues of PLZF found in zebrafish show distinct expression patterns, especially in larvae. Although zbtb16a/plzfa and zbtb16b/plzfb are not modulated by IFN produced during viral infection, their over-expression increases the level of the early type I IFN response, at a critical phase in the race between the virus and the host response. The effect of Plzfb on IFN induction was also detectable after cell infection by different non-enveloped RNA viruses, but not after infection by the rhabdovirus SVCV. Our findings indicate that plzf implication in the regulation of type I IFN responses is conserved across vertebrates, but at multiple levels of the pathway and through different mechanisms.
Collapse
Affiliation(s)
- E Aleksejeva
- INRA, Virologie et Immunologie Moléculaires, 78352 Jouy-en-Josas, France
| | - A Houel
- INRA, Virologie et Immunologie Moléculaires, 78352 Jouy-en-Josas, France
| | - V Briolat
- Institut Pasteur, Unité Macrophages et Développement de l'Immunité, 25-28 rue du Docteur Roux, F-75015 Paris, France; CNRS, URA 2578, F-75015 Paris, France
| | - J-P Levraud
- Institut Pasteur, Unité Macrophages et Développement de l'Immunité, 25-28 rue du Docteur Roux, F-75015 Paris, France; CNRS, URA 2578, F-75015 Paris, France
| | - C Langevin
- INRA, Virologie et Immunologie Moléculaires, 78352 Jouy-en-Josas, France
| | - P Boudinot
- INRA, Virologie et Immunologie Moléculaires, 78352 Jouy-en-Josas, France.
| |
Collapse
|
27
|
Kawasaki T, Siegfried KR, Sakai N. Differentiation of zebrafish spermatogonial stem cells to functional sperm in culture. Development 2015; 143:566-74. [PMID: 26718005 DOI: 10.1242/dev.129643] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 12/22/2015] [Indexed: 01/15/2023]
Abstract
Molecular dissection and chemical screening on a complex process such as spermatogenesis could be facilitated by cell culture approaches that allow easy access for experimental manipulation and live imaging of specific molecules; however, technical limitations have thus far prevented the complete reconstruction of spermatogenic events in cell culture. Here, we describe the production of functional sperm from self-renewing spermatogonial stem cells (SSCs) in cell culture conditions, using zebrafish testicular hyperplasia cells that accumulate early stage spermatogonia. By serially transplanting hyperplasias into immunodeficient rag1 mutant zebrafish, we succeeded in long-term maintenance and efficient production of starting material for SSC culture. Through improvements of culture conditions, we achieved efficient propagation of SSCs derived from the hyperplasia. When SSCs that underwent the SSC-propagating step for 1 month were transferred onto Sertoli feeder cells, they differentiated into functional sperm that gave rise to offspring. Oxygen at the concentration of air proved to be detrimental for sperm differentiation from SSCs, but not for propagation of SSCs. These results indicate that the whole spermatogenic process can be represented in cell culture in zebrafish, facilitating analyses of the molecular mechanisms of spermatogenesis in vertebrates.
Collapse
Affiliation(s)
- Toshihiro Kawasaki
- Genetic Strains Research Center, National Institute of Genetics, Mishima 411-8540, Japan
| | - Kellee R Siegfried
- University of Massachusetts Boston, Biology Department, Boston, MA 02125, USA
| | - Noriyoshi Sakai
- Genetic Strains Research Center, National Institute of Genetics, Mishima 411-8540, Japan Department of Genetics, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Mishima 411-8540, Japan
| |
Collapse
|
28
|
Zhao HB, Zhang XY, Feng GQ, Guo MM, Chang P, Qi C, Zhong XP, Zhou QC, Wang JL. Expression of plzfa in embryo and adult of medaka Oryzias latipes. JOURNAL OF FISH BIOLOGY 2015; 87:231-240. [PMID: 26077174 DOI: 10.1111/jfb.12713] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Accepted: 04/22/2015] [Indexed: 06/04/2023]
Abstract
In this study, a homologous gene named plzfa was identified and characterized in medaka Oryzias latipes. Oryzias latipes plzfa was detected in all the tissues including brain, gill, muscle, liver, intestine, kidney, spleen, testis and ovary using reverse transcriptase (RT)-PCR. plzfa was detected in the oocytes of the ovary and in the spermatogonia and somitic cells of the testis by in situ hybridization. plzfa had a maternal origin with continuous and dynamic expression during embryonic development. plzfa was observed in the brain, neural rod and sensor organs including the eyes, ears and nose during embryogenesis. plzfa was also detected in the neural crest, somite, pectoral fin, intestine and skin. These results indicate that plzfa is a pleiotropic gene that may play major roles in various tissues.
Collapse
Affiliation(s)
- H B Zhao
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - X Y Zhang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - G Q Feng
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - M M Guo
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - P Chang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - C Qi
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - X P Zhong
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Q C Zhou
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - J L Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| |
Collapse
|
29
|
Hendriks S, Dancet EA, van Pelt AM, Hamer G, Repping S. Artificial gametes: a systematic review of biological progress towards clinical application. Hum Reprod Update 2015; 21:285-96. [DOI: 10.1093/humupd/dmv001] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 12/29/2014] [Indexed: 01/15/2023] Open
|
30
|
Lacerda SMDSN, Costa GMJ, de França LR. Biology and identity of fish spermatogonial stem cell. Gen Comp Endocrinol 2014; 207:56-65. [PMID: 24967950 DOI: 10.1016/j.ygcen.2014.06.018] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 06/11/2014] [Accepted: 06/15/2014] [Indexed: 12/29/2022]
Abstract
Although present at relatively low number in the testis, spermatogonial stem cells (SSCs) are crucial for the establishment and maintenance of spermatogenesis in eukaryotes and, until recently, those cells were investigated in fish using morphological criteria. The isolation and characterization of these cells in fish have been so far limited by the lack of specific molecular markers, hampering the high SSCs biotechnological potential for aquaculture. However, some highly conserved vertebrate molecular markers, such as Gfra1 and Pou5f1/Oct4, are now available representing important candidates for studies evaluating the regulation of SSCs in fish and even functional investigations using germ cells transplantation. A technique already used to demonstrate that, different from mammals, fish germ stem cells (spermatogonia and oogonia) present high sexual plasticity that is determined by the somatic microenvironment. As relatively well established in mammals, and demonstrated in zebrafish and dogfish, this somatic environment is very important for the preferential location and regulation of SSCs. Importantly, a long-term in vitro culture system for SSCs has been now established for some fish species. Therefore, besides the aforementioned possibilities, such culture system would allow the development of strategies to in vitro investigate key regulatory and functional aspects of germline stem cells (ex: self-renewal and/or differentiation) or to amplify SSCs of rare, endangered, or commercially valuable fish species, representing an important tool for transgenesis and the development of new biotechnologies in fish production.
Collapse
Affiliation(s)
| | - Guilherme Mattos Jardim Costa
- Laboratory of Cellular Biology, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Luiz Renato de França
- Laboratory of Cellular Biology, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil.
| |
Collapse
|
31
|
Wei J, Qi W, Zhou Y, Zhang X, Dong R, Zhou L, Wang D. Establishment and characterization of an ovarian cell line from Southern catfish (Silurus meridionalis). FISH PHYSIOLOGY AND BIOCHEMISTRY 2014; 40:1383-1391. [PMID: 24671650 DOI: 10.1007/s10695-014-9932-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Accepted: 03/18/2014] [Indexed: 06/03/2023]
Abstract
An ovarian cell line was successfully developed from the juvenile ovary of Southern catfish (SCO1) (Silurus meridionalis), which was designated as SCO1. The cell line multiplied preferentially in L-15 medium with 15 % fetal bovine serum at 28 °C for more than 70 passages over a period of 420 days. SCO1 showed fibroblast-like morphology and predominantly retained a diploid karyotype of 58 chromosomes. From the gene expression patterns, SCO1 showed a characteristic of ovarian granulosa cells. After the cells were transfected with the green fluorescent protein expression vector, bright fluorescent signals could be observed in approximately 30 % cells. This cell line may be valuable for the evaluation of endocrine disruptors and studying interactions between somatic cells and germ cells.
Collapse
Affiliation(s)
- Jing Wei
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Southwest University, Chongqing, 400715, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
32
|
Gautier A, Bosseboeuf A, Auvray P, Sourdaine P. Maintenance of potential spermatogonial stem cells in vitro by GDNF treatment in a chondrichthyan model (Scyliorhinus canicula L.). Biol Reprod 2014; 91:91. [PMID: 25143357 DOI: 10.1095/biolreprod.113.116020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Previous work in dogfish, Scyliorhinus canicula, has identified the testicular germinative area as the spermatogonial stem cell niche. In the present study, an in vitro co-culture system of spermatogonia and somatic cells from the germinative area was developed. Long-term maintenance of spermatogonia has been successful, and addition of GDNF has promoted the development of clones of spermatogonia expressing stem cell characteristics such as alkaline phosphatase activity and has allowed maintenance of self-renewal in spermatogonia for at least 5 mo under culture conditions, notably by decreasing cell apoptosis. Furthermore, clones of spermatogonia expressed the receptor of GDNF, GFRalpha1, which is consistent with the effect of GDNF on cells despite the lack of identification of a GDNF sequence in the dogfish's transcriptome. However, a sequence homologous to artemin has been identified, and in silico analysis supports the hypothesis that artemin could replace GDNF in the germinative area in dogfish. This study, as the first report on long-term in vitro maintenance of spermatogonia in a chondrichthyan species, suggests that the GFRalpha1 signaling function in self-renewal of spermatogonial stem cells is probably conserved in gnathostomes.
Collapse
Affiliation(s)
- Aude Gautier
- Normandie University, Caen, France University of Caen Basse-Normandie, BOREA, Caen, France Centre National de la Recherche Scientifique, UMR 7208, Caen, France
| | - Adrien Bosseboeuf
- Normandie University, Caen, France University of Caen Basse-Normandie, BOREA, Caen, France Centre National de la Recherche Scientifique, UMR 7208, Caen, France Kelia, Group Cellis Pharma, Parc Technopolitain Atalante Saint Malo, Saint Malo, France
| | - Pierrick Auvray
- Kelia, Group Cellis Pharma, Parc Technopolitain Atalante Saint Malo, Saint Malo, France
| | - Pascal Sourdaine
- Normandie University, Caen, France University of Caen Basse-Normandie, BOREA, Caen, France Centre National de la Recherche Scientifique, UMR 7208, Caen, France
| |
Collapse
|
33
|
Li Z, Li M, Hong N, Yi M, Hong Y. Formation and cultivation of medaka primordial germ cells. Cell Tissue Res 2014; 357:71-81. [PMID: 24770933 DOI: 10.1007/s00441-014-1867-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 03/06/2014] [Indexed: 12/12/2022]
Abstract
Primordial germ cell (PGC) formation is pivotal for fertility. Mammalian PGCs are epigenetically induced without the need for maternal factors and can also be derived in culture from pluripotent stem cells. In egg-laying animals such as Drosophila and zebrafish, PGCs are specified by maternal germ plasm factors without the need for inducing factors. In these organisms, PGC formation and cultivation in vitro from indeterminate embryonic cells have not been possible. Here, we report PGC formation and cultivation in vitro from blastomeres dissociated from midblastula embryos (MBEs) of the fish medaka (Oryzias latipes). PGCs were identified by using germ-cell-specific green fluorescent protein (GFP) expression from a transgene under the control of the vasa promoter. Embryo perturbation was exploited to study PGC formation in vivo, and dissociated MBE cells were cultivated under various conditions to study PGC formation in vitro. Perturbation of somatic development did not prevent PGC formation in live embryos. Dissociated MBE blastomeres formed PGCs in the absence of normal somatic structures and of known inducing factors. Most importantly, under culture conditions conducive to stem cell derivation, some dissociated MBE blastomeres produced GFP-positive PGC-like cells. These GFP-positive cells contained genuine PGCs, as they expressed PGC markers and migrated into the embryonic gonad to generate germline chimeras. Our data thus provide evidence for PGC preformation in medaka and demonstrate, for the first time, that PGC formation and derivation can be obtained in culture from early embryos of medaka as a lower vertebrate model.
Collapse
Affiliation(s)
- Zhendong Li
- Department of Biological Sciences, National University of Singapore, Science Drive 4, Singapore, 117543, Singapore
| | | | | | | | | |
Collapse
|
34
|
Nakajima S, Hayashi M, Kouguchi T, Yamaguchi K, Miwa M, Yoshizaki G. Expression patterns of gdnf and gfrα1 in rainbow trout testis. Gene Expr Patterns 2014; 14:111-20. [PMID: 24518650 DOI: 10.1016/j.gep.2014.01.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 01/18/2014] [Accepted: 01/23/2014] [Indexed: 01/15/2023]
Abstract
In mice, glial cell line-derived neurotrophic factor (GDNF) is essential for normal spermatogenesis and in vitro culture of spermatogonial stem cells. In murine testes, GDNF acts as paracrine factor; Sertoli cells secrete it to a subset of spermatogonial cells expressing its receptor, GDNF family receptor α1 (GFRα1). However, in fish, it is unclear what types of cells express gdnf and gfrα1. In this study, we isolated the rainbow trout orthologues of these genes and analyzed their expression patterns during spermatogenesis. In rainbow trout testes, gdnf and gfrα1 were expressed in almost all type A spermatogonia (ASG). Noticeably, unlike in mice, the expression of gdnf was not observed in Sertoli cells in rainbow trout. During spermatogenesis, the expression levels of these genes changed synchronously; gdnf and gfrα1 showed high expression in ASG and decreased dramatically in subsequent developmental stages. These results suggested that GDNF most likely acts as an autocrine factor in rainbow trout testes.
Collapse
Affiliation(s)
- Satoshi Nakajima
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo 108-8477, Japan
| | - Makoto Hayashi
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo 108-8477, Japan
| | - Tomomi Kouguchi
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo 108-8477, Japan
| | - Kazuma Yamaguchi
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo 108-8477, Japan
| | - Misako Miwa
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo 108-8477, Japan
| | - Goro Yoshizaki
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo 108-8477, Japan.
| |
Collapse
|
35
|
Hendriks S, Dancet EAF, Meissner A, van der Veen F, Mochtar MH, Repping S. Perspectives of infertile men on future stem cell treatments for nonobstructive azoospermia. Reprod Biomed Online 2014; 28:650-7. [PMID: 24656558 DOI: 10.1016/j.rbmo.2014.01.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 11/14/2013] [Accepted: 01/21/2014] [Indexed: 12/31/2022]
Abstract
Concerns have been expressed about the rapid introduction of new fertility treatments into clinical practice. Patients' perspectives on new treatments and their introduction into clinical practice are unexplored. Two alternative treatments for testicular sperm extraction followed by intracytoplasmic sperm injection in men with nonobstructive azoospermia (NOA), the formation of artificial sperm and autotransplantation of in vitro proliferated spermatogonial stem cells, are in a preclinical phase of development. This study aimed to explore, prior to future clinical introduction, which treatment aspects are valued by NOA patients and would be taken into account in deciding to undergo these future treatment options. In-depth telephone interviews were conducted with 14 men with NOA. Interviews were transcribed, analysed with content analysis and data saturation was reached. Besides the obvious factors, success rates and safety, patients valued 'the intensity of the procedure', 'the treatments' resemblance to natural conception' and 'feeling cured'. Patients supported the development of these treatments and were eager to take part if such treatments would become available in the future. The patient's perspective on innovative treatments can (co)direct reproductive research. More research into the patients' perspectives on innovations and minimal thresholds to be met prior to their introduction into clinical practice is required.
Collapse
Affiliation(s)
- S Hendriks
- Center for Reproductive Medicine, Women's and Children's Hospital, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - E A F Dancet
- Center for Reproductive Medicine, Women's and Children's Hospital, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; Leuven University Fertility Centre, Leuven University Hospital, Leuven, Belgium
| | - A Meissner
- Center for Reproductive Medicine, Women's and Children's Hospital, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - F van der Veen
- Center for Reproductive Medicine, Women's and Children's Hospital, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - M H Mochtar
- Center for Reproductive Medicine, Women's and Children's Hospital, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - S Repping
- Center for Reproductive Medicine, Women's and Children's Hospital, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
36
|
A simple method for isolation, culture, and in vitro maintenance of chicken spermatogonial stem cells. In Vitro Cell Dev Biol Anim 2013; 50:155-61. [DOI: 10.1007/s11626-013-9685-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Accepted: 08/19/2013] [Indexed: 01/15/2023]
|
37
|
Santos Nassif Lacerda SM, Costa GMJ, da Silva MDA, Campos-Junior PHA, Segatelli TM, Peixoto MTD, Resende RR, de França LR. Phenotypic characterization and in vitro propagation and transplantation of the Nile tilapia (Oreochromis niloticus) spermatogonial stem cells. Gen Comp Endocrinol 2013; 192:95-106. [PMID: 23792279 DOI: 10.1016/j.ygcen.2013.06.013] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 06/05/2013] [Accepted: 06/11/2013] [Indexed: 12/23/2022]
Abstract
In association with in vitro culture and transplantation, isolation of spermatogonial stem cells (SSCs) is an excellent approach for investigating spermatogonial physiology in vertebrates. However, in fish, the lack of SSC molecular markers represents a great limitation to identify/purify these cells, rendering it difficult to apply several valuable biotechnologies in fish-farming. Herein, we describe potential molecular markers, which served to phenotypically characterize, cultivate and transplant Nile tilapia SSCs. Immunolocalization revealed that Gfra1 is expressed exclusively in single type A undifferentiated spermatogonia (Aund, presumptive SSCs). Likewise, the expression of Nanos2 protein was observed in Aund cells. However, Nanos2-positive spermatogonia have also been identified in cysts with two to eight germ cells that encompass type A differentiated spermatogonia (Adiff). Moreover, we also established effective primary culture conditions that allowed the Nile tilapia spermatogonia to expand their population for at least one month while conserving their original undifferentiated (stemness) characteristics. The maintenance of Aund spermatogonial phenotype was demonstrated by the expression of early germ cell specific markers and, more convincingly, by their ability to colonize and develop in the busulfan-treated adult Nile tilapia recipient testes after germ cell transplantation. In addition to advancing our knowledge on the identity and physiology of fish SSCs, these findings provide the first step in establishing a system that will allow fish SSCs expansion in vitro, representing an important progress towards the development of new biotechnologies in aquaculture, including the possibility of producing transgenic fish.
Collapse
Affiliation(s)
- Samyra Maria Santos Nassif Lacerda
- Laboratory of Cellular Biology, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Wong TT, Collodi P. Dorsomorphin promotes survival and germline competence of zebrafish spermatogonial stem cells in culture. PLoS One 2013; 8:e71332. [PMID: 23936500 PMCID: PMC3731312 DOI: 10.1371/journal.pone.0071332] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2013] [Accepted: 06/27/2013] [Indexed: 12/31/2022] Open
Abstract
Zebrafish spermatogonial cell cultures were established from Tg(piwil1:neo);Tg(piwil1:DsRed) transgenic fish using a zebrafish ovarian feeder cell line (OFC3) that was engineered to express zebrafish Lif, Fgf2 and Gdnf. Primary cultures, initiated from testes, were treated with G418 to eliminate the somatic cells and select for the piwil1:neo expressing spermatogonia. Addition of dorsomorphin, a Bmp type I receptor inhibitor, prolonged spermatogonial stem cell (SSC) survival in culture and enhanced germline transmission of the SSCs following transplantation into recipient larvae. In contrast, dorsomorphin inhibited the growth and survival of zebrafish female germline stem cells (FGSCs) in culture. In the presence of dorsomorphin, the spermatogonia continued to express the germ-cell markers dazl, dnd, nanos3, vasa and piwil1 and the spermatogonial markers plzf and sox17 for at least six weeks in culture. Transplantation experiments revealed that 6 week-old spermatogonial cell cultures maintained in the presence of dorsomorphin were able to successfully colonize the gonad in 18% of recipient larvae and produce functional gametes in the resulting adult chimeric fish. Germline transmission was not successful when the spermatogonia were cultured 6 weeks in the absence of dorsomorphin before transplantation. The results indicate that Bmp signaling is detrimental to SSCs but required for the survival of zebrafish FGSCs in culture. Manipulation of Bmp signaling could provide a strategy to optimize culture conditions of germline stem cells from other species.
Collapse
Affiliation(s)
- Ten-Tsao Wong
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana, USA.
| | | |
Collapse
|
39
|
Higaki S, Koyama Y, Shirai E, Yokota T, Fujioka Y, Sakai N, Takada T. Establishment of testicular and ovarian cell lines from Honmoroko (Gnathopogon caerulescens). FISH PHYSIOLOGY AND BIOCHEMISTRY 2013; 39:701-711. [PMID: 23076971 DOI: 10.1007/s10695-012-9733-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Accepted: 10/08/2012] [Indexed: 06/01/2023]
Abstract
We succeeded to establish cell lines from endemic fish species Honmoroko Gnathopogon caerulescens, which inhabits Lake Biwa, the third oldest lake in the world. Two cell lines designated as RMT1 and RMO1 were established from testis and ovary of G. caerulescens, respectively. These cell lines were initially cultured in Leibovitz's L-15 medium supplemented with fetal bovine serum (FBS), fish embryo extract, epidermal growth factor, and basic fibroblast growth factor. Further addition of forskolin and β-mercaptoethanol was required to establish and maintain these cell lines for more than 60 passages. RMT1 and RMO1 cells showed fibroblast- and epithelial-like morphology, respectively. From immunocytochemical staining and gene expression patterns, RMT1 cells showed a characteristic of testicular Sertoli cells and RMO1 cells did that of ovarian theca cells. Both RMT1 and RMO1 cells multiplied well in the medium supplemented with 10 % FBS at 28 °C and their minimum population doubling times were 24.4 and 28.8 h, respectively. At the 45th passage, most of the RMT1 and RMO1 cells had a hyperploid set of chromosomes (67.3 and 96.1 %, respectively). Cells with normal diploid chromosome set were not observed. RMT1 cells were transfected with an enhanced green fluorescent protein (EGFP) expression vector and human elongation factor 1 α promoter worked efficiently to express EGFP. In addition, EGFP-expressing cell lines were also established, suggesting that the cell lines could be utilized as an in vitro monitor system (biosensor) for the evaluation of endocrine disruptors which might affect gonadal function.
Collapse
Affiliation(s)
- Shogo Higaki
- Ritsumeikan Global Innovation Research Organization, Ritsumeikan University, Nojihigashi 1-1-1, Kusatsu, Shiga 525-8577, Japan
| | | | | | | | | | | | | |
Collapse
|
40
|
Production of zebrafish offspring from cultured female germline stem cells. PLoS One 2013; 8:e62660. [PMID: 23671620 PMCID: PMC3643964 DOI: 10.1371/journal.pone.0062660] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 03/23/2013] [Indexed: 12/21/2022] Open
Abstract
Zebrafish female germline stem cell (FGSC) cultures were generated from a transgenic line of fish that expresses Neo and DsRed under the control of the germ cell specific promoter, ziwi [Tg(ziwi:neo);Tg(ziwi:DsRed)]. Homogeneous FGSC cultures were established by G418 selection and continued to express ziwi for more than 6 weeks along with the germ cell markers nanos3, dnd, dazl and vasa. A key component of the cell culture system was the use of a feeder cell line that was initiated from ovaries of a transgenic line of fish [Tg(gsdf:neo)] that expresses Neo controlled by the zebrafish gonadal soma derived factor (gsdf) promoter. The feeder cell line was selected in G418 and engineered to express zebrafish leukemia inhibitory factor (Lif), basic fibroblast growth factor (Fgf2) and glial-cell-line derived neurotrophic factor (Gdnf). These factors were shown to significantly enhance FGSC growth, survival and germline competency in culture. Results from cell transplantation experiments revealed that the cultured FGSCs were able to successfully colonize the gonad of sterile recipient fish and generate functional gametes. Up to 20% of surviving recipient fish that were injected with the cultured FGSCs were fertile and generated multiple batches of normal offspring for at least 6 months. The FGSC cultures will provide an in vitro system for studies of zebrafish germ cell growth and differentiation and their high frequency of germline transmission following transplantation could form the basis of a stem cell-mediated strategy for gene transfer and manipulation of the zebrafish genome.
Collapse
|
41
|
Restoring fertility in sterile childhood cancer survivors by autotransplanting spermatogonial stem cells: are we there yet? BIOMED RESEARCH INTERNATIONAL 2013; 2013:903142. [PMID: 23509797 PMCID: PMC3581117 DOI: 10.1155/2013/903142] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 12/11/2012] [Indexed: 12/29/2022]
Abstract
Current cancer treatment regimens do not only target tumor cells, but can also have devastating effects on the spermatogonial stem cell pool, resulting in a lack of functional gametes and hence sterility. In adult men, fertility can be preserved prior to cancer treatment by cryopreservation of ejaculated or surgically retrieved spermatozoa, but this is not an option for prepubertal boys since spermatogenesis does not commence until puberty. Cryopreservation of a testicular biopsy taken before initiation of cancer treatment, followed by in vitro propagation of spermatogonial stem cells and subsequent autotransplantation of these stem cells after cancer treatment, has been suggested as a way to preserve and restore fertility in childhood cancer survivors. This strategy, known as spermatogonial stem cell transplantation, has been successful in mice and other model systems, but has not yet been applied in humans. Although recent progress has brought clinical application of spermatogonial stem cell autotransplantation in closer range, there are still a number of important issues to address. In this paper, we describe the state of the art of spermatogonial stem cell transplantation and outline the hurdles that need to be overcome before clinical implementation.
Collapse
|