Sen D, Chapla A, Walter N, Daniel V, Srivastava A, Jayandharan GR. Nuclear factor (NF)-κB and its associated pathways are major molecular regulators of blood-induced joint damage in a murine model of hemophilia.
J Thromb Haemost 2013;
11:293-306. [PMID:
23231432 DOI:
10.1111/jth.12101]
[Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2012] [Accepted: 11/26/2012] [Indexed: 01/06/2023]
Abstract
BACKGROUND
The present study was designed to investigate the molecular signaling events from onset of bleeding through the development of arthropathy in a murine model of hemophilia A.
METHODS AND RESULTS
A sharp-injury model of hemarthrosis was used. A global gene expression array on joint-specific RNA isolated 3 h post-injury revealed nuclear factor-kappa B (NF-κB) as the major transcription factor triggering inflammation. As a number of genes encoding the cytokines, growth factors and hypoxia regulating factors are known to be activated by NF-κB and many of these are part of the pathogenesis of various joint diseases, we reasoned that NF-κB-associated pathways may play a crucial role in blood-induced joint damage. To further understand its role, we screened NF-κB-associated pathways between 1 h to 90 days after injury. After a single articular bleed, distinct members of the NF-κB family (NF-κB1/NF-κB2/RelA/RelB) and their responsive pro-inflammatory cytokines (IL-1β/IL-6/IFNγ/TNFα) were significantly up-regulated (> 2 fold, P < 0.05) in injured vs. control joints at the various time-points analyzed (1 h/3 h/7 h/24 h). After multiple bleeds (days 30/60/75/90), there was increased expression of NF-κB-associated factors that contribute to hypoxia (HIF-1α, 3.3-6.5 fold), angiogenesis (VEGF-α, 2.5-4.4 fold) and chondrocyte damage (matrix metalloproteinase-13, 2.8-3.8 fold) in the injured joints. Micro RNAs (miR) that are known to regulate NF-κB activation (miRs-9 and 155), inflammation (miRs-16, 155 and 182) and apoptosis (miRs-19a, 155 and 186) were also differentially expressed (-4 to +13-fold) after joint bleeding, indicating that the small RNAs could modulate the arthropathy phenotype.
CONCLUSIONS
These data suggest that NF-κB-associated signaling pathways are involved in the development of hemophilic arthropathy.
Collapse