1
|
Calistri NL, Liby TA, Hu Z, Zhang H, Dane MA, Gross SM, Heiser LM. TNBC response to paclitaxel phenocopies interferon response which reveals cell cycle-associated resistance mechanisms. Sci Rep 2025; 15:4294. [PMID: 39905117 PMCID: PMC11794704 DOI: 10.1038/s41598-024-82218-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 12/03/2024] [Indexed: 02/06/2025] Open
Abstract
Paclitaxel is a standard of care neoadjuvant therapy for patients with triple negative breast cancer (TNBC); however, it shows limited benefit for locally advanced or metastatic disease. Here we used a coordinated experimental-computational approach to explore the influence of paclitaxel on the cellular and molecular responses of TNBC cells. We found that escalating doses of paclitaxel resulted in multinucleation, promotion of senescence, and initiation of DNA damage induced apoptosis. Single-cell RNA sequencing (scRNA-seq) of TNBC cells after paclitaxel treatment revealed upregulation of innate immune programs canonically associated with interferon response and downregulation of cell cycle progression programs. Systematic exploration of transcriptional responses to paclitaxel and cancer-associated microenvironmental factors revealed common gene programs induced by paclitaxel, IFNB, and IFNG. Transcription factor (TF) enrichment analysis identified 13 TFs that were both enriched based on activity of downstream targets and also significantly upregulated after paclitaxel treatment. Functional assessment with siRNA knockdown confirmed that the TFs FOSL1, NFE2L2 and ELF3 mediate cellular proliferation and also regulate nuclear structure. We further explored the influence of these TFs on paclitaxel-induced cell cycle behavior via live cell imaging, which revealed altered progression rates through G1, S/G2 and M phases. We found that ELF3 knockdown synergized with paclitaxel treatment to lock cells in a G1 state and prevent cell cycle progression. Analysis of publicly available breast cancer patient data showed that high ELF3 expression was associated with poor prognosis and enrichment in programs associated with cell cycle progression. Together these analyses disentangle the diverse aspects of paclitaxel response and identify ELF3 upregulation as a putative biomarker of paclitaxel resistance in TNBC.
Collapse
Affiliation(s)
- Nicholas L Calistri
- Biomedical Engineering Department, Oregon Health & Science University, Portland, OR, USA
| | - Tiera A Liby
- Biomedical Engineering Department, Oregon Health & Science University, Portland, OR, USA
| | - Zhi Hu
- Biomedical Engineering Department, Oregon Health & Science University, Portland, OR, USA
| | - Hongmei Zhang
- Biomedical Engineering Department, Oregon Health & Science University, Portland, OR, USA
| | - Mark A Dane
- Biomedical Engineering Department, Oregon Health & Science University, Portland, OR, USA
| | - Sean M Gross
- Biomedical Engineering Department, Oregon Health & Science University, Portland, OR, USA
| | - Laura M Heiser
- Biomedical Engineering Department, Oregon Health & Science University, Portland, OR, USA.
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
2
|
Calistri NL, Liby TA, Hu Z, Zhang H, Dane M, Gross SM, Heiser LM. TNBC response to paclitaxel phenocopies interferon response which reveals cell cycle-associated resistance mechanisms. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.04.596911. [PMID: 38895265 PMCID: PMC11185620 DOI: 10.1101/2024.06.04.596911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Paclitaxel is a standard of care neoadjuvant therapy for patients with triple negative breast cancer (TNBC); however, it shows limited benefit for locally advanced or metastatic disease. Here we used a coordinated experimental-computational approach to explore the influence of paclitaxel on the cellular and molecular responses of TNBC cells. We found that escalating doses of paclitaxel resulted in multinucleation, promotion of senescence, and initiation of DNA damage induced apoptosis. Single-cell RNA sequencing (scRNA-seq) of TNBC cells after paclitaxel treatment revealed upregulation of innate immune programs canonically associated with interferon response and downregulation of cell cycle progression programs. Systematic exploration of transcriptional responses to paclitaxel and cancer-associated microenvironmental factors revealed common gene programs induced by paclitaxel, IFNB, and IFNG. Transcription factor (TF) enrichment analysis identified 13 TFs that were both enriched based on activity of downstream targets and also significantly upregulated after paclitaxel treatment. Functional assessment with siRNA knockdown confirmed that the TFs FOSL1, NFE2L2 and ELF3 mediate cellular proliferation and also regulate nuclear structure. We further explored the influence of these TFs on paclitaxel-induced cell cycle behavior via live cell imaging, which revealed altered progression rates through G1, S/G2 and M phases. We found that ELF3 knockdown synergized with paclitaxel treatment to lock cells in a G1 state and prevent cell cycle progression. Analysis of publicly available breast cancer patient data showed that high ELF3 expression was associated with poor prognosis and enrichment programs associated with cell cycle progression. Together these analyses disentangle the diverse aspects of paclitaxel response and identify ELF3 upregulation as a putative biomarker of paclitaxel resistance in TNBC.
Collapse
Affiliation(s)
- Nicholas L Calistri
- Biomedical Engineering Department, Oregon Health & Science University, Portland Oregon
| | - Tiera A. Liby
- Biomedical Engineering Department, Oregon Health & Science University, Portland Oregon
| | - Zhi Hu
- Biomedical Engineering Department, Oregon Health & Science University, Portland Oregon
| | - Hongmei Zhang
- Biomedical Engineering Department, Oregon Health & Science University, Portland Oregon
| | - Mark Dane
- Biomedical Engineering Department, Oregon Health & Science University, Portland Oregon
| | - Sean M. Gross
- Biomedical Engineering Department, Oregon Health & Science University, Portland Oregon
| | - Laura M. Heiser
- Biomedical Engineering Department, Oregon Health & Science University, Portland Oregon
- Knight Cancer Institute, Oregon Health & Science University, Portland Oregon
| |
Collapse
|
3
|
Sahin TK, Isik A, Guven DC, Ceylan F, Babaoglu B, Akyol A, Yalcin S, Dizdar O. The prognostic and predictive role of class III β-Tubulin and hENT1 expression in patients with advanced pancreatic ductal adenocarcinoma. Pancreatology 2024; 24:279-288. [PMID: 38272717 DOI: 10.1016/j.pan.2024.01.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/14/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024]
Abstract
BACKGROUND FOLFIRINOX and gemcitabine-nabpaclitaxel (GnP) are standard first-line treatment regimens for advanced pancreatic ductal adenocarcinoma (PDAC). However, currently, there is a lack of predictive biomarkers to aid in the treatment selection. We aimed to explore the prognostic and predictive value of class III β-Tubulin (TUBB3) and human equilibrative nucleoside transporter 1 (hENT1) expression, which have previously been shown to be associated with taxane and gemcitabine resistance in advanced PDAC. METHODS We conducted a retrospective analysis of 106 patients with advanced PDAC treated with GnP and/or FOLFIRINOX at our institution. TUBB3 and hENT1 immunohistochemical staining was performed on tumor specimens and subsequently evaluated based on the intensity and percentage of expression. RESULTS In patients who received the GnP regimen, a high combined score (TUBB3low/hENT1high) was associated with a higher DCR and longer PFS compared to those with intermediate (TUBB3high/hENT1high or TUBB3low/hENT1low) and low score (TUBB3high/hENT1low). In the multivariate analysis, a high combined score was an independent predictor of higher DCR (OR:11.96; 95 % CI:2.61-54.82; p = 0.001) and longer PFS (HR:0.33; 95%CI:0.18-0.60; p < 0.001). However, there was no difference in response rates or PFS based on TUBB3 and hENT1 expression among patients receiving the FOLFIRINOX regimen. CONCLUSION Our findings indicate that tumor TUBB3 and hENT1 expression may predict the efficacy of the GnP regimen, and low TUBB3 and high hENT1 expression (TUBB3low/hENT1high) are associated with a higher DCR and longer PFS in patients treated with GnP. Evaluating TUBB3 and hENT1 jointly can identify the patients most (as well as least) likely to benefit from GnP chemotherapy.
Collapse
Affiliation(s)
- T K Sahin
- Department of Internal Medicine, Faculty of Medicine, Hacettepe University, Ankara, Turkey.
| | - A Isik
- Hacettepe University Transgenic Animal Technologies Research and Application Center, Sıhhiye, Ankara, Turkey
| | - D C Guven
- Department of Medical Oncology, Hacettepe University Cancer Institute, Ankara, Turkey
| | - F Ceylan
- Department of Medical Oncology, Ankara City Hospital, Ankara, Turkey
| | - B Babaoglu
- Department of Pathology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - A Akyol
- Hacettepe University Transgenic Animal Technologies Research and Application Center, Sıhhiye, Ankara, Turkey; Department of Pathology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - S Yalcin
- Department of Medical Oncology, Hacettepe University Cancer Institute, Ankara, Turkey
| | - O Dizdar
- Department of Medical Oncology, Hacettepe University Cancer Institute, Ankara, Turkey.
| |
Collapse
|
4
|
Baba K, Uemura K, Nakazato R, Ijaz F, Takahashi S, Ikegami K. Δ3-tubulin impairs mitotic spindle morphology and increases nuclear size in pancreatic cancer cells. Med Mol Morphol 2024; 57:59-67. [PMID: 37930423 DOI: 10.1007/s00795-023-00373-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/14/2023] [Indexed: 11/07/2023]
Abstract
Cancer cell proliferation is affected by post-translational modifications of tubulin. Especially, overexpression or depletion of enzymes for modifications on the tubulin C-terminal region perturbs dynamic instability of the spindle body. Those modifications include processing of C-terminal amino acids of α-tubulin; detyrosination, and a removal of penultimate glutamic acid (Δ2). We previously found a further removal of the third last glutamic acid, which generates so-called Δ3-tubulin. The effects of Δ3-tubulin on spindle integrities and cell proliferation remain to be elucidated. In this study, we investigated the impacts of forced expression of Δ3-tubulin on the structure of spindle bodies and cell division in a pancreatic cancer cell line, PANC-1. Overexpression of HA-tagged Δ3-tubulin impaired the morphology and orientation of spindle bodies during cell division in PANC-1 cells. In particular, spindle bending was most significantly increased. Expression of EGFP-tagged Δ3-tubulin driven by the endogenous promoter of human TUBA1B also deformed and misoriented spindle bodies. Spindle bending and condensation defects were significantly observed by EGFP-Δ3-tubulin expression. Furthermore, EGFP-Δ3-tubulin expression increased the nuclear size in a dose-dependent manner of EGFP-Δ3-tubulin expression. The expression of EGFP-Δ3-tubulin tended to slow down cell proliferation. Taken together, our results demonstrate that Δ3-tubulin affects the spindle integrity and cell division.
Collapse
Affiliation(s)
- Kenta Baba
- Department of Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
- Department of Anatomy and Developmental Biology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Kenichiro Uemura
- Department of Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Ryota Nakazato
- Department of Anatomy and Developmental Biology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Faryal Ijaz
- Department of Anatomy and Developmental Biology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Shinya Takahashi
- Department of Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Koji Ikegami
- Department of Anatomy and Developmental Biology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan.
| |
Collapse
|
5
|
Omics Analysis of Chemoresistant Triple Negative Breast Cancer Cells Reveals Novel Metabolic Vulnerabilities. Cells 2022; 11:cells11172719. [PMID: 36078127 PMCID: PMC9454761 DOI: 10.3390/cells11172719] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022] Open
Abstract
The emergence of drug resistance in cancer poses the greatest hurdle for successful therapeutic results and is associated with most cancer deaths. In triple negative breast cancer (TNBC), due to the lack of specific therapeutic targets, systemic chemotherapy is at the forefront of treatments, but it only benefits a fraction of patients because of the development of resistance. Cancer cells may possess an innate resistance to chemotherapeutic agents or develop new mechanisms of acquired resistance after long-term drug exposure. Such mechanisms involve an interplay between genetic, epigenetic and metabolic alterations that enable cancer cells to evade therapy. In this work, we generated and characterized a chemoresistant TNBC cell line to be used for the investigation of mechanisms that drive resistance to paclitaxel. Transcriptomic analysis highlighted the important role of metabolic-associated pathways in the resistant cells, prompting us to employ 1H-NMR to explore the metabolome and lipidome of these cells. We identified and described herein numerous metabolites and lipids that were significantly altered in the resistant cells. Integrated analysis of our omics data revealed MSMO1, an intermediate enzyme of cholesterol biosynthesis, as a novel mediator of chemoresistance in TNBC. Overall, our data provide a critical insight into the metabolic adaptations that accompany acquired resistance in TNBC and pinpoint potential new targets.
Collapse
|
6
|
Oya K, Kondo Y, Fukuda Y, Kishino M, Toyosawa S. TUBB3 immunostaining improves the diagnostic accuracy of oral liquid-based cytology in squamous cell carcinoma. Cytopathology 2022; 33:374-379. [PMID: 34995373 DOI: 10.1111/cyt.13096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/27/2021] [Accepted: 01/03/2022] [Indexed: 11/27/2022]
Abstract
OBJECTIVE Although class III beta-tubulin (TUBB3) is not expressed in normal epithelium, its expression in cancers of some organs has been reported. Herein, we investigated TUBB3 expression pattern and level in oral squamous cell carcinoma (SCC), and assessed whether TUBB3 immunostaining could improve the diagnostic accuracy of oral scraping liquid-based cytology (LBC). METHODS Paraffin sections of biopsies from 107 patients with primary SCC and 30 patients with squamous papilloma occurred in tongue and gingiva were immunostained for TUBB3. Moreover, 15 LBC samples obtained from the study participants with SCC were also immunostained for TUBB3. Seven LBC samples were false-negative. TUBB3 expression level in each sample was evaluated and classified as 3+, 2+, 1+, and 0. RESULTS TUBB3 expression was confirmed in 91.6% of paraffin-embedded SCC specimens. Clear and diffuse positivity (above 2+) was observed in 77.6% of the total cases. In the well-differentiated type, tumour cells in the middle layer of the parenchyma specifically expressed TUBB3. In almost LBC samples, cancerous intermediate cells showed immunopositivity similarly to that of paraffin samples, even if cellular atypia was not clear in Papanicolaou staining. CONCLUSIONS TUBB3 immunostaining is useful for diagnosing oral SCC in scraping LBC, especially when samples consist of intermediate cells with little morphological change. Moreover, TUBB3 immunostaining could improve the diagnostic accuracy of oral scraping LBC by reducing false-negative.
Collapse
Affiliation(s)
- Kaori Oya
- Division of Clinical Laboratory, Osaka University Dental Hospital, Suita, Osaka, Japan
| | - Yuko Kondo
- Division of Clinical Laboratory, Osaka University Dental Hospital, Suita, Osaka, Japan
| | - Yasuo Fukuda
- Division of Clinical Laboratory, Osaka University Dental Hospital, Suita, Osaka, Japan
| | - Mitsunobu Kishino
- Division of Clinical Laboratory, Osaka University Dental Hospital, Suita, Osaka, Japan
| | - Satoru Toyosawa
- Division of Clinical Laboratory, Osaka University Dental Hospital, Suita, Osaka, Japan.,Department of Oral Pathology, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| |
Collapse
|
7
|
Ciszewski WM, Wawro ME, Sacewicz-Hofman I, Sobierajska K. Cytoskeleton Reorganization in EndMT-The Role in Cancer and Fibrotic Diseases. Int J Mol Sci 2021; 22:ijms222111607. [PMID: 34769036 PMCID: PMC8583721 DOI: 10.3390/ijms222111607] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/21/2021] [Accepted: 10/26/2021] [Indexed: 12/11/2022] Open
Abstract
Chronic inflammation promotes endothelial plasticity, leading to the development of several diseases, including fibrosis and cancer in numerous organs. The basis of those processes is a phenomenon called the endothelial–mesenchymal transition (EndMT), which results in the delamination of tightly connected endothelial cells that acquire a mesenchymal phenotype. EndMT-derived cells, known as the myofibroblasts or cancer-associated fibroblasts (CAFs), are characterized by the loss of cell–cell junctions, loss of endothelial markers, and gain in mesenchymal ones. As a result, the endothelium ceases its primary ability to maintain patent and functional capillaries and induce new blood vessels. At the same time, it acquires the migration and invasion potential typical of mesenchymal cells. The observed modulation of cell shape, increasedcell movement, and invasion abilities are connected with cytoskeleton reorganization. This paper focuses on the review of current knowledge about the molecular pathways involved in the modulation of each cytoskeleton element (microfilaments, microtubule, and intermediate filaments) during EndMT and their role as the potential targets for cancer and fibrosis treatment.
Collapse
|
8
|
Waters AM, Khatib TO, Papke B, Goodwin CM, Hobbs GA, Diehl JN, Yang R, Edwards AC, Walsh KH, Sulahian R, McFarland JM, Kapner KS, Gilbert TSK, Stalnecker CA, Javaid S, Barkovskaya A, Grover KR, Hibshman PS, Blake DR, Schaefer A, Nowak KM, Klomp JE, Hayes TK, Kassner M, Tang N, Tanaseichuk O, Chen K, Zhou Y, Kalkat M, Herring LE, Graves LM, Penn LZ, Yin HH, Aguirre AJ, Hahn WC, Cox AD, Der CJ. Targeting p130Cas- and microtubule-dependent MYC regulation sensitizes pancreatic cancer to ERK MAPK inhibition. Cell Rep 2021; 35:109291. [PMID: 34192548 PMCID: PMC8340308 DOI: 10.1016/j.celrep.2021.109291] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 01/31/2021] [Accepted: 06/03/2021] [Indexed: 12/28/2022] Open
Abstract
To identify therapeutic targets for KRAS mutant pancreatic cancer, we conduct a druggable genome small interfering RNA (siRNA) screen and determine that suppression of BCAR1 sensitizes pancreatic cancer cells to ERK inhibition. Integrative analysis of genome-scale CRISPR-Cas9 screens also identify BCAR1 as a top synthetic lethal interactor with mutant KRAS. BCAR1 encodes the SRC substrate p130Cas. We determine that SRC-inhibitor-mediated suppression of p130Cas phosphorylation impairs MYC transcription through a DOCK1-RAC1-β-catenin-dependent mechanism. Additionally, genetic suppression of TUBB3, encoding the βIII-tubulin subunit of microtubules, or pharmacological inhibition of microtubule function decreases levels of MYC protein in a calpain-dependent manner and potently sensitizes pancreatic cancer cells to ERK inhibition. Accordingly, the combination of a dual SRC/tubulin inhibitor with an ERK inhibitor cooperates to reduce MYC protein and synergistically suppress the growth of KRAS mutant pancreatic cancer. Thus, we demonstrate that mechanistically diverse combinations with ERK inhibition suppress MYC to impair pancreatic cancer proliferation.
Collapse
Affiliation(s)
- Andrew M Waters
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Tala O Khatib
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Bjoern Papke
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Craig M Goodwin
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - G Aaron Hobbs
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - J Nathaniel Diehl
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Runying Yang
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - A Cole Edwards
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | - Rita Sulahian
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Kevin S Kapner
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Thomas S K Gilbert
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; UNC Michael Hooker Proteomics Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Clint A Stalnecker
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Sehrish Javaid
- Oral and Craniofacial Biomedicine PhD Program, School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Anna Barkovskaya
- Institute for Cancer Research, Oslo University Hospital, Oslo 0379, Norway
| | - Kajal R Grover
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Priya S Hibshman
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Devon R Blake
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Antje Schaefer
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Katherine M Nowak
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jennifer E Klomp
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Tikvah K Hayes
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Michelle Kassner
- Cancer and Cell Biology Division, Translational Genomic Research Institute, Phoenix, AZ 85004, USA
| | - Nanyun Tang
- Cancer and Cell Biology Division, Translational Genomic Research Institute, Phoenix, AZ 85004, USA
| | - Olga Tanaseichuk
- Genomics Institute of the Novartis Research Foundation, San Diego, CA 92121, USA
| | - Kaisheng Chen
- Genomics Institute of the Novartis Research Foundation, San Diego, CA 92121, USA
| | - Yingyao Zhou
- Genomics Institute of the Novartis Research Foundation, San Diego, CA 92121, USA
| | - Manpreet Kalkat
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5S, Canada
| | - Laura E Herring
- UNC Michael Hooker Proteomics Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Lee M Graves
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Linda Z Penn
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5S, Canada
| | - Hongwei H Yin
- Cancer and Cell Biology Division, Translational Genomic Research Institute, Phoenix, AZ 85004, USA
| | - Andrew J Aguirre
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Harvard Medical School, Boston, MA 02215, USA; Brigham and Women's Hospital, Boston, MA 02215, USA
| | - William C Hahn
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Harvard Medical School, Boston, MA 02215, USA; Brigham and Women's Hospital, Boston, MA 02215, USA
| | - Adrienne D Cox
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Oral and Craniofacial Biomedicine PhD Program, School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Radiation Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Channing J Der
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Oral and Craniofacial Biomedicine PhD Program, School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
9
|
Albahde MAH, Abdrakhimov B, Li GQ, Zhou X, Zhou D, Xu H, Qian H, Wang W. The Role of Microtubules in Pancreatic Cancer: Therapeutic Progress. Front Oncol 2021; 11:640863. [PMID: 34094924 PMCID: PMC8176010 DOI: 10.3389/fonc.2021.640863] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 03/26/2021] [Indexed: 12/14/2022] Open
Abstract
Pancreatic cancer has an extremely low prognosis, which is attributable to its high aggressiveness, invasiveness, late diagnosis, and lack of effective therapies. Among all the drugs joining the fight against this type of cancer, microtubule-targeting agents are considered to be the most promising. They inhibit cancer cells although through different mechanisms such as blocking cell division, apoptosis induction, etc. Hereby, we review the functions of microtubule cytoskeletal proteins in tumor cells and comprehensively examine the effects of microtubule-targeting agents on pancreatic carcinoma.
Collapse
Affiliation(s)
- Mugahed Abdullah Hasan Albahde
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, China
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, China
- Clinical Medicine Innovation Center of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Disease of Zhejiang University, Hangzhou, China
| | - Bulat Abdrakhimov
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Guo-Qi Li
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, China
| | - Xiaohu Zhou
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, China
| | - Dongkai Zhou
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, China
| | - Hao Xu
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, China
| | - Huixiao Qian
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, China
| | - Weilin Wang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, China
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, China
- Clinical Medicine Innovation Center of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Disease of Zhejiang University, Hangzhou, China
- Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, China
| |
Collapse
|
10
|
From Proteomic Mapping to Invasion-Metastasis-Cascade Systemic Biomarkering and Targeted Drugging of Mutant BRAF-Dependent Human Cutaneous Melanomagenesis. Cancers (Basel) 2021; 13:cancers13092024. [PMID: 33922182 PMCID: PMC8122743 DOI: 10.3390/cancers13092024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/09/2021] [Accepted: 04/20/2021] [Indexed: 12/18/2022] Open
Abstract
Simple Summary Despite the recent advances in human malignancy therapy, metastasis and chemoresistance remain the principal causes of cancer-derived deaths. Given the fatal forms of cutaneous metastatic melanoma, we herein employed primary (WM115) and metastatic (WM266-4) melanoma cells, both obtained from the same patient, to identify novel biomarkers and therapeutic agents. Through state-of-the-art technologies including deep proteome landscaping, immunofluorescence phenotyping, and drug toxicity screening, we were able to describe new molecular programs, oncogenic drivers, and drug regimens, controlling the invasion-metastasis cascade during BRAFV600D-dependent melanomagenesis. It proved that proteomic navigation could foster the development of systemic biomarkering and targeted drugging for successful treatment of advanced disease. Abstract Melanoma is classified among the most notoriously aggressive human cancers. Despite the recent progress, due to its propensity for metastasis and resistance to therapy, novel biomarkers and oncogenic molecular drivers need to be promptly identified for metastatic melanoma. Hence, by employing nano liquid chromatography-tandem mass spectrometry deep proteomics technology, advanced bioinformatics algorithms, immunofluorescence, western blotting, wound healing protocols, molecular modeling programs, and MTT assays, we comparatively examined the respective proteomic contents of WM115 primary (n = 3955 proteins) and WM266-4 metastatic (n = 6681 proteins) melanoma cells. It proved that WM115 and WM266-4 cells have engaged hybrid epithelial-to-mesenchymal transition/mesenchymal-to-epithelial transition states, with TGF-β controlling their motility in vitro. They are characterized by different signatures of SOX-dependent neural crest-like stemness and distinct architectures of the cytoskeleton network. Multiple signaling pathways have already been activated from the primary melanoma stage, whereas HIF1α, the major hypoxia-inducible factor, can be exclusively observed in metastatic melanoma cells. Invasion-metastasis cascade-specific sub-routines of activated Caspase-3-triggered apoptosis and LC3B-II-dependent constitutive autophagy were also unveiled. Importantly, WM115 and WM266-4 cells exhibited diverse drug response profiles, with epirubicin holding considerable promise as a beneficial drug for metastatic melanoma clinical management. It is the proteome navigation that enables systemic biomarkering and targeted drugging to open new therapeutic windows for advanced disease.
Collapse
|
11
|
Das T, Anand U, Pandey SK, Ashby CR, Assaraf YG, Chen ZS, Dey A. Therapeutic strategies to overcome taxane resistance in cancer. Drug Resist Updat 2021; 55:100754. [PMID: 33691261 DOI: 10.1016/j.drup.2021.100754] [Citation(s) in RCA: 134] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 02/22/2021] [Accepted: 02/25/2021] [Indexed: 12/17/2022]
Abstract
One of the primary causes of attenuated or loss of efficacy of cancer chemotherapy is the emergence of multidrug resistance (MDR). Numerous studies have been published regarding potential approaches to reverse resistance to taxanes, including paclitaxel (PTX) and docetaxel, which represent one of the most important classes of anticancer drugs. Since 1984, following the FDA approval of paclitaxel for the treatment of advanced ovarian carcinoma, taxanes have been extensively used as drugs that target tumor microtubules. Taxanes, have been shown to affect an array of oncogenic signaling pathways and have potent cytotoxic efficacy. However, the clinical success of these drugs has been restricted by the emergence of cancer cell resistance, primarily caused by the overexpression of MDR efflux transporters or by microtubule alterations. In vitro and in vivo studies indicate that the mechanisms underlying the resistance to PTX and docetaxel are primarily due to alterations in α-tubulin and β-tubulin. Moreover, resistance to PTX and docetaxel results from: 1) alterations in microtubule-protein interactions, including microtubule-associated protein 4, stathmin, centriole, cilia, spindle-associated protein, and kinesins; 2) alterations in the expression and activity of multidrug efflux transporters of the ABC superfamily including P-glycoprotein (P-gp/ABCB1); 3) overexpression of anti-apoptotic proteins or inhibition of apoptotic proteins and tumor-suppressor proteins, as well as 4) modulation of signal transduction pathways associated with the activity of several cytokines, chemokines and transcription factors. In this review, we discuss the abovementioned molecular mechanisms and their role in mediating cancer chemoresistance to PTX and docetaxel. We provide a detailed analysis of both in vitro and in vivo experimental data and describe the application of these findings to therapeutic practice. The current review also discusses the efficacy of different pharmacological modulations to achieve reversal of PTX resistance. The therapeutic roles of several novel compounds, as well as herbal formulations, are also discussed. Among them, many structural derivatives had efficacy against the MDR phenotype by either suppressing MDR or increasing the cytotoxic efficacy compared to the parental drugs, or both. Natural products functioning as MDR chemosensitizers offer novel treatment strategies in patients with chemoresistant cancers by attenuating MDR and increasing chemotherapy efficacy. We broadly discuss the roles of inhibitors of P-gp and other efflux pumps, in the reversal of PTX and docetaxel resistance in cancer cells and the significance of using a nanomedicine delivery system in this context. Thus, a better understanding of the molecular mechanisms mediating the reversal of drug resistance, combined with drug efficacy and the application of target-based inhibition or specific drug delivery, could signal a new era in modern medicine that would limit the pathological consequences of MDR in cancer patients.
Collapse
Affiliation(s)
- Tuyelee Das
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, West Bengal, India
| | - Uttpal Anand
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Swaroop Kumar Pandey
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Charles R Ashby
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA.
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, West Bengal, India.
| |
Collapse
|
12
|
Bhattarai RS, Kumar V, Romanova S, Bariwal J, Chen H, Deng S, Bhatt VR, Bronich T, Li W, Mahato RI. Nanoformulation design and therapeutic potential of a novel tubulin inhibitor in pancreatic cancer. J Control Release 2021; 329:585-597. [PMID: 33010334 DOI: 10.1016/j.jconrel.2020.09.052] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/22/2020] [Accepted: 09/28/2020] [Indexed: 10/23/2022]
Abstract
Successful treatment of pancreatic cancer remains a challenge due to desmoplasia, development of chemoresistance, and systemic toxicity. Herein, we synthesized (6-(3-hydroxy-4-methoxylphenyl)pyridin-2-yl) (3,4,5-trimethoxyphenyl)methanone (CH-3-8), a novel microtubule polymerization inhibitor with little susceptible to transporter-mediated chemoresistance. CH-3-8 binding to the colchicine-binding site in tubulin protein was confirmed by tubulin polymerization assay and molecular modeling. CH-3-8 disrupted microtubule dynamics at the nanomolar concentration in MIA PaCa-2 and PANC-1 pancreatic cancer cell lines. CH-3-8 significantly inhibited the proliferation of these cells, induced G2/M cell cycle arrest, and led to apoptosis. CH-3-8 is hydrophobic with an aqueous solubility of 0.97 ± 0.16 μg/mL at pH 7.4. We further conjugated it with dodecanol through diglycolate linker to increase hydrophobicity and thus loading in lipid-based delivery systems. Hence, we encapsulated CH-3-8 lipid conjugate (LDC) into methoxy poly(ethylene glycol)-block-poly(2-methyl-2-carboxyl-propylene carbonate-graft-dodecanol) (mPEG-b-PCC-g-DC) polymeric nanoparticles (NPs) by solvent evaporation, resulting in a mean particle size of 125.6 ± 2.3 nm and drug loading of 10 ± 1.0% (w/w) while the same polymer could only load 1.6 ± 0.4 (w/w) CH-3-8 using the same method. Systemic administration of 6 doses of CH-3-8 and LDC loaded NPs at the dose of 20 mg/kg into orthotopic pancreatic tumor-bearing NSG mice every alternate day resulted in significant tumor regression. Systemic toxicity was negligible, as evidenced by histological evaluations. In conclusion, CH-3-8 LDC loaded NPs have the potential to improve outcomes of pancreatic cancer by overcoming transporter-mediated chemoresistance and reducing systemic toxicity.
Collapse
Affiliation(s)
- Rajan Sharma Bhattarai
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Virender Kumar
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Svetlana Romanova
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Jitender Bariwal
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Hao Chen
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Shanshan Deng
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Vijaya R Bhatt
- Division of Internal Medicine, Division of Hematology-Oncology Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Tatiana Bronich
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Wei Li
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| | - Ram I Mahato
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
13
|
Mosca L, Ilari A, Fazi F, Assaraf YG, Colotti G. Taxanes in cancer treatment: Activity, chemoresistance and its overcoming. Drug Resist Updat 2021; 54:100742. [PMID: 33429249 DOI: 10.1016/j.drup.2020.100742] [Citation(s) in RCA: 175] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/12/2020] [Accepted: 11/16/2020] [Indexed: 02/07/2023]
Abstract
Since 1984, when paclitaxel was approved by the FDA for the treatment of advanced ovarian carcinoma, taxanes have been widely used as microtubule-targeting antitumor agents. However, their historic classification as antimitotics does not describe all their functions. Indeed, taxanes act in a complex manner, altering multiple cellular oncogenic processes including mitosis, angiogenesis, apoptosis, inflammatory response, and ROS production. On the one hand, identification of the diverse effects of taxanes on oncogenic signaling pathways provides opportunities to apply these cytotoxic drugs in a more rational manner. On the other hand, this may facilitate the development of novel treatment modalities to surmount anticancer drug resistance. In the latter respect, chemoresistance remains a major impediment which limits the efficacy of antitumor chemotherapy. Taxanes have shown impact on key molecular mechanisms including disruption of mitotic spindle, mitosis slippage and inhibition of angiogenesis. Furthermore, there is an emerging contribution of cellular processes including autophagy, oxidative stress, epigenetic alterations and microRNAs deregulation to the acquisition of taxane resistance. Hence, these two lines of findings are currently promoting a more rational and efficacious taxane application as well as development of novel molecular strategies to enhance the efficacy of taxane-based cancer treatment while overcoming drug resistance. This review provides a general and comprehensive picture on the use of taxanes in cancer treatment. In particular, we describe the history of application of taxanes in anticancer therapeutics, the synthesis of the different drugs belonging to this class of cytotoxic compounds, their features and the differences between them. We further dissect the molecular mechanisms of action of taxanes and the molecular basis underlying the onset of taxane resistance. We further delineate the possible modalities to overcome chemoresistance to taxanes, such as increasing drug solubility, delivery and pharmacokinetics, overcoming microtubule alterations or mitotic slippage, inhibiting drug efflux pumps or drug metabolism, targeting redox metabolism, immune response, and other cellular functions.
Collapse
Affiliation(s)
- Luciana Mosca
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, P. le A. Moro 5, 00185 Rome, Italy
| | - Andrea Ilari
- Institute of Molecular Biology and Pathology, Italian National Research Council (IBPM-CNR), c/o Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy.
| | - Francesco Fazi
- Dept. Anatomical, Histological, Forensic & Orthopedic Sciences, Section of Histology and Medical Embryology, Sapienza University, Via A. Scarpa 14-16, 00161 Rome, Italy
| | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Lab, Faculty of Biology, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Gianni Colotti
- Institute of Molecular Biology and Pathology, Italian National Research Council (IBPM-CNR), c/o Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy.
| |
Collapse
|
14
|
Expression of Class III Beta-Tubulin Is Associated with Invasive Potential and Poor Prognosis in Thyroid Carcinoma. J Clin Med 2020; 9:jcm9123830. [PMID: 33256003 PMCID: PMC7760790 DOI: 10.3390/jcm9123830] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/20/2020] [Accepted: 11/25/2020] [Indexed: 12/12/2022] Open
Abstract
Although American Thyroid Association guidelines offer a risk stratification scheme for thyroid cancer patients, there is a continuous need for more sophisticated biomarkers that can predict disease progression. In this study, we aim to evaluate the prognostic value of class III beta-tubulin (TUBB3) and uncover the relationship between TUBB3 and invasive potential in thyroid carcinoma. Immunohistochemistry (IHC) for TUBB3 and E-cadherin was performed on a total of 254 cases of thyroid cancer specimens. Tumor budding at the invasive margin was evaluated. In vitro functional studies were also performed; the protein and mRNA levels of TUBB3 were compared among the five cell types at baseline, with transwell invasion and after blocking of TUBB3 by shRNA. IHC revealed that the levels of TUBB3 were higher in conventional papillary carcinomas (cPTCs) and anaplastic thyroid carcinomas (ATCs). In univariate analysis, high tumor budding and TUBB3 expression were associated with inferior progression-free survival in cPTC. The results of a Western blot and RT-PCR agreed with the IHC finding. The results were further validated through data from The Cancer Genome Atlas database. Our results suggest that high expression of TUBB3 in thyroid carcinoma could predict invasive potential and possibly be linked with epithelial–mesenchymal transition.
Collapse
|
15
|
Influence of paclitaxel therapy on expression of ßIII-Tubulin and Carbonic anhydrase IX proteins in chemically-induced rat mammary tumors. Biologia (Bratisl) 2020. [DOI: 10.2478/s11756-020-00496-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
16
|
Lopes D, Maiato H. The Tubulin Code in Mitosis and Cancer. Cells 2020; 9:cells9112356. [PMID: 33114575 PMCID: PMC7692294 DOI: 10.3390/cells9112356] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/20/2020] [Accepted: 10/24/2020] [Indexed: 12/23/2022] Open
Abstract
The “tubulin code” combines different α/β-tubulin isotypes with several post-translational modifications (PTMs) to generate microtubule diversity in cells. During cell division, specific microtubule populations in the mitotic spindle are differentially modified, but only recently, the functional significance of the tubulin code, with particular emphasis on the role specified by tubulin PTMs, started to be elucidated. This is the case of α-tubulin detyrosination, which was shown to guide chromosomes during congression to the metaphase plate and allow the discrimination of mitotic errors, whose correction is required to prevent chromosomal instability—a hallmark of human cancers implicated in tumor evolution and metastasis. Although alterations in the expression of certain tubulin isotypes and associated PTMs have been reported in human cancers, it remains unclear whether and how the tubulin code has any functional implications for cancer cell properties. Here, we review the role of the tubulin code in chromosome segregation during mitosis and how it impacts cancer cell properties. In this context, we discuss the existence of an emerging “cancer tubulin code” and the respective implications for diagnostic, prognostic and therapeutic purposes.
Collapse
Affiliation(s)
- Danilo Lopes
- Chromosome Instability & Dynamics Group, i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal;
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Helder Maiato
- Chromosome Instability & Dynamics Group, i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal;
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- Cell Division Group, Experimental Biology Unit, Department of Biomedicine, Faculdade de Medicina, Universidade do Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
- Correspondence: ; Tel.: +351-22-040-8800
| |
Collapse
|
17
|
Saddozai UAK, Wang F, Cheng Y, Lu Z, Akbar MU, Zhu W, Li Y, Ji X, Guo X. Gene expression profile identifies distinct molecular subtypes and potential therapeutic genes in Merkel cell carcinoma. Transl Oncol 2020; 13:100816. [PMID: 32771971 PMCID: PMC7412862 DOI: 10.1016/j.tranon.2020.100816] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/01/2020] [Accepted: 06/01/2020] [Indexed: 12/17/2022] Open
Abstract
Merkel cell carcinoma (MCC) is a rare primary cutaneous neoplasm of neuroendocrine carcinoma of the skin. About 80% of the MCC occurs due to Merkel cell polyomavirus (MCPyV) and 20% of the tumors usually occur due to severe UV exposure which is a more aggressive type of MCC. It tends to have an increased incidence rate among elderly and immunosuppressed individuals. On therapeutic level, sub-classification of MCC through molecular subtyping has emerged as a promising technique for MCC prognosis. In current study, two consistent distinct molecular subtypes of MCCs were identified using gene expression profiling data. Subtypes I MCCs were associated with spliceosome, DNA replication and cellular pathways. On the other hand, genes overexpressed in subtype II were found active in TNF signalling pathway and MAPK signalling pathway. We proposed different therapeutic targets based on subtype specificity, such as PTCH1, CDKN2A, AURKA in case of subtype I and MCL1, FGFR2 for subtype II. Such findings may provide fruitful knowledge to understand the intrinsic subtypes of MCCs and the pathways involved in distinct subtype oncogenesis, and will further advance the knowledge in developing a specific therapeutic strategy for these MCC subtypes. Merkel cell carcinoma (MCC) a rare and highly aggressive neuroendocrine carcinoma of the skin Sub-classification of MCC through molecular subtyping Identification of two distinct molecular subtypes of MCCs using gene expression profiling data Classification of different therapeutic targets based on subtype specificity
Collapse
Affiliation(s)
- Umair Ali Khan Saddozai
- Department of Preventive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Fengling Wang
- Department of Preventive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Yu Cheng
- Pharmacy Department, Luoyang maternal and Child Health Hospital, Luoyang 471023, China
| | - Zhang Lu
- Department of Preventive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Muhammad Usman Akbar
- Gomal Center of Biochemistry and Biotechnology, Gomal University, Dera Ismail Khan 29050, Pakistan
| | - Wan Zhu
- Department of Anesthesia, Stanford University, 300 Pasteur Drive, Stanford, CA 94305, USA
| | - Yongqiang Li
- Department of Preventive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China.
| | - Xinying Ji
- Department of Preventive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China.
| | - Xiangqian Guo
- Department of Preventive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China.
| |
Collapse
|
18
|
Maahs L, Sanchez BE, Gupta N, Van Harn M, Barrack ER, Reddy PV, Hwang C. Class III β-tubulin expression as a predictor of docetaxel-resistance in metastatic castration-resistant prostate cancer. PLoS One 2019; 14:e0222510. [PMID: 31658275 PMCID: PMC6816559 DOI: 10.1371/journal.pone.0222510] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 08/30/2019] [Indexed: 01/27/2023] Open
Abstract
About half of the patients treated with docetaxel in the setting of metastatic castration-resistant prostate cancer (CRPC) are non-responders. Therefore, a marker of response would be beneficial for clinical decision-making. We evaluated class III β-tubulin (βIII-tubulin) expression as a predictor of resistance in this setting, which previously has been correlated with lack of response to taxanes in other cancers. Patients with CRPC were included if they were treated with at least 3 cycles of docetaxel between 1990 and 2011. βIII-tubulin expression was assessed by immunostaining, which was performed in tissue samples obtained either via biopsy or prostatectomy at the time of diagnosis. Rates of prostate-specific antigen (PSA) response and overall survival (OS) following docetaxel treatment were compared between patients with high (2+ or 3+ staining) vs. low (0 or 1+ staining) βIII-tubulin expression. Of 73 patients, 26 (35%) had a high expression of βIII-tubulin. A PSA decline of 10% or greater occurred in 65% of patients with a high βIII-tubulin expression vs. 89% with a low βIII-tubulin expression (p = 0.0267). The median OS for patients with a high βIII-tubulin expression was 17.4 (95% CI 8.7–21.0) months vs. 19.8 (95% CI 16.6–23.6) months for patients with a low expression (p = 0.039). Our results show that a high βIII-tubulin expression is a negative prognostic factor in metastatic CRPC patients treated with docetaxel.
Collapse
Affiliation(s)
- Lucas Maahs
- Department of Internal Medicine, Henry Ford Health System, Detroit, MI, United States of America
| | - Bertha E. Sanchez
- Department of Internal Medicine, Henry Ford Health System, Detroit, MI, United States of America
| | - Nilesh Gupta
- Department of Pathology, Henry Ford Health System, Detroit, MI, United States of America
| | - Meredith Van Harn
- Department of Public Health Sciences, Henry Ford Health System, Detroit, MI, United States of America
| | - Evelyn R. Barrack
- Vattikuti Urology Institute, Henry Ford Hospital, Detroit, MI, United States of America
| | - Prem-veer Reddy
- Vattikuti Urology Institute, Henry Ford Hospital, Detroit, MI, United States of America
| | - Clara Hwang
- Division of Hematology/Oncology, Henry Ford Health System, Detroit, MI, United States of America
- * E-mail:
| |
Collapse
|
19
|
Abstract
This review work is done to show a significance of tubulin in cancer development. Within last decades there are a lot of studies have performed in this area. Now it is clear that there are an enormous number of functions in cell performing by microtubules, a structure unit of which is tubulin. Now it used widely as a predictive factor of tumor aggressiveness, but increasingly it becomes a target for studying and treatment elaboration, since it is well-known that to nowadays tubulin-targeted medicines, such as taxanes or vinca-alkaloids, resistance develops rather quickly, so it consists a large problem in oncology. This work reveals basic microtubule functions, violations that it may undergo and consequences of these. Also it is described here the main modern tendencies in creation of remedy which will make it possible breakthrough treatment resistance barrier.
Collapse
Affiliation(s)
- Dolhyi V
- State Establishment “Dnipropetrovsk Medical Academy“, of Health Ministry of Ukraine
| | - Avierin D
- State Establishment “Dnipropetrovsk Medical Academy“, of Health Ministry of Ukraine
| | - Hojouj M
- State Establishment “Dnipropetrovsk Medical Academy“, of Health Ministry of Ukraine
| | - Bondarenko I
- State Establishment “Dnipropetrovsk Medical Academy“, of Health Ministry of Ukraine
| |
Collapse
|
20
|
Yu X, Zhang Y, Wu B, Kurie JM, Pertsemlidis A. The miR-195 Axis Regulates Chemoresistance through TUBB and Lung Cancer Progression through BIRC5. MOLECULAR THERAPY-ONCOLYTICS 2019; 14:288-298. [PMID: 31508486 PMCID: PMC6727248 DOI: 10.1016/j.omto.2019.07.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 07/24/2019] [Indexed: 02/07/2023]
Abstract
Chemoresistance and metastasis are the major reasons for non-small cell lung cancer (NSCLC) treatment failure and patient deaths. We and others have shown that miR-195 regulates the sensitivity of NSCLC to microtubule-targeting agents (MTAs) in vitro and in vivo and that miR-195 represses the migration and invasion of NSCLC cells in vitro. However, the relationship between miR-195 and microtubule structure and function and whether miR-195 represses NSCLC metastasis in vivo remain unknown. We assessed the correlation between tumor levels of TUBB and patient survival, the effect of TUBB on drug response, and the effect of miR-195 on migration, invasion, and metastasis in vitro and in vivo. We found that miR-195 directly targets TUBB; knockdown of TUBB sensitizes cells to MTAs, while overexpression confers resistance; high expression of TUBB is correlated with worse survival of lung adenocarcinoma; TUBB is also regulated by CHEK1, which has been shown to regulate chemoresistance; and miR-195 targets BIRC5 to repress migration and invasion in vitro and metastasis in vivo. Our findings highlight the relevance of the miR-195/TUBB axis in regulating the response of NSCLC to MTAs and the importance of the miR-195/BIRC5 axis in regulating NSCLC metastasis.
Collapse
Affiliation(s)
- Xiaojie Yu
- Greehey Children's Cancer Research Institute, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229 USA.,Department of Cell Systems and Anatomy, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229 USA
| | - Yiqiang Zhang
- Greehey Children's Cancer Research Institute, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229 USA
| | - Binggen Wu
- Greehey Children's Cancer Research Institute, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229 USA.,Xiangya School of Medicine, Central South University, Changsha, Hunan 410000, China
| | - Jonathan M Kurie
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
| | - Alexander Pertsemlidis
- Greehey Children's Cancer Research Institute, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229 USA.,Department of Cell Systems and Anatomy, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229 USA.,Department of Pediatrics, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229 USA
| |
Collapse
|
21
|
Kashyap VK, Wang Q, Setua S, Nagesh PKB, Chauhan N, Kumari S, Chowdhury P, Miller DD, Yallapu MM, Li W, Jaggi M, Hafeez BB, Chauhan SC. Therapeutic efficacy of a novel βIII/βIV-tubulin inhibitor (VERU-111) in pancreatic cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:29. [PMID: 30674344 PMCID: PMC6343279 DOI: 10.1186/s13046-018-1009-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 12/17/2018] [Indexed: 12/15/2022]
Abstract
Background The management of pancreatic cancer (PanCa) is exceptionally difficult due to poor response to available therapeutic modalities. Tubulins play a major role in cell dynamics, thus are important molecular targets for cancer therapy. Among various tubulins, βIII and βIV-tubulin isoforms have been primarily implicated in PanCa progression, metastasis and chemo-resistance. However, specific inhibitors of these isoforms that have potent anti-cancer activity with low toxicity are not readily available. Methods We determined anti-cancer molecular mechanisms and therapeutic efficacy of a novel small molecule inhibitor (VERU-111) using in vitro (MTS, wound healing, Boyden chamber and real-time xCELLigence assays) and in vivo (xenograft studies) models of PanCa. The effects of VERU-111 treatment on the expression of β-tubulin isoforms, apoptosis, cancer markers and microRNAs were determined by Western blot, immunohistochemistry (IHC), confocal microscopy, qRT-PCR and in situ hybridization (ISH) analyses. Results We have identified a novel small molecule inhibitor (VERU-111), which preferentially represses clinically important, βIII and βIV tubulin isoforms via restoring the expression of miR-200c. As a result, VERU-111 efficiently inhibited tumorigenic and metastatic characteristics of PanCa cells. VERU-111 arrested the cell cycle in the G2/M phase and induced apoptosis in PanCa cell lines via modulation of cell cycle regulatory (Cdc2, Cdc25c, and Cyclin B1) and apoptosis - associated (Bax, Bad, Bcl-2, and Bcl-xl) proteins. VERU-111 treatment also inhibited tumor growth (P < 0.01) in a PanCa xenograft mouse model. Conclusions This study has identified an inhibitor of βIII/βIV tubulins, which appears to have excellent potential as monotherapy or in combination with conventional therapeutic regimens for PanCa treatment. Electronic supplementary material The online version of this article (10.1186/s13046-018-1009-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Vivek K Kashyap
- Department of Pharmaceutical Sciences, Institute of Biomarker and Molecular Therapeutics (IBMT), College of Pharmacy, University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, TN, 38163, USA
| | - Qinghui Wang
- Department of Pharmaceutical Sciences, Institute of Biomarker and Molecular Therapeutics (IBMT), College of Pharmacy, University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, TN, 38163, USA
| | - Saini Setua
- Department of Pharmaceutical Sciences, Institute of Biomarker and Molecular Therapeutics (IBMT), College of Pharmacy, University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, TN, 38163, USA
| | - Prashanth K B Nagesh
- Department of Pharmaceutical Sciences, Institute of Biomarker and Molecular Therapeutics (IBMT), College of Pharmacy, University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, TN, 38163, USA
| | - Neeraj Chauhan
- Department of Pharmaceutical Sciences, Institute of Biomarker and Molecular Therapeutics (IBMT), College of Pharmacy, University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, TN, 38163, USA
| | - Sonam Kumari
- Department of Pharmaceutical Sciences, Institute of Biomarker and Molecular Therapeutics (IBMT), College of Pharmacy, University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, TN, 38163, USA
| | - Pallabita Chowdhury
- Department of Pharmaceutical Sciences, Institute of Biomarker and Molecular Therapeutics (IBMT), College of Pharmacy, University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, TN, 38163, USA
| | - Duane D Miller
- Department of Pharmaceutical Sciences, Institute of Biomarker and Molecular Therapeutics (IBMT), College of Pharmacy, University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, TN, 38163, USA
| | - Murali M Yallapu
- Department of Pharmaceutical Sciences, Institute of Biomarker and Molecular Therapeutics (IBMT), College of Pharmacy, University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, TN, 38163, USA
| | - Wei Li
- Department of Pharmaceutical Sciences, Institute of Biomarker and Molecular Therapeutics (IBMT), College of Pharmacy, University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, TN, 38163, USA
| | - Meena Jaggi
- Department of Pharmaceutical Sciences, Institute of Biomarker and Molecular Therapeutics (IBMT), College of Pharmacy, University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, TN, 38163, USA.
| | - Bilal Bin Hafeez
- Department of Pharmaceutical Sciences, Institute of Biomarker and Molecular Therapeutics (IBMT), College of Pharmacy, University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, TN, 38163, USA.
| | - Subhash C Chauhan
- Department of Pharmaceutical Sciences, Institute of Biomarker and Molecular Therapeutics (IBMT), College of Pharmacy, University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, TN, 38163, USA.
| |
Collapse
|
22
|
McCarroll JA, Sharbeen G, Kavallaris M, Phillips PA. The Use of Star Polymer Nanoparticles for the Delivery of siRNA to Mouse Orthotopic Pancreatic Tumor Models. Methods Mol Biol 2019; 1974:329-353. [PMID: 31099013 DOI: 10.1007/978-1-4939-9220-1_23] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Pancreatic cancer is a lethal malignancy which is refractory to most chemotherapy drugs. Recent landmark studies have shed new light on the complex genetic heterogeneity of pancreatic cancer and provide an opportunity to utilize "precision-based medicines" to target genes based on the genetic profile of an individual's tumor to increase the efficiency of chemotherapy and decrease tumor growth and metastases. Gene-silencing drugs in the form of short-interfering RNA (siRNA) have the potential to play an important role in precision medicine for pancreatic cancer by silencing the expression of genes including those considered difficult to inhibit (undruggable) using chemical agents. However, before siRNA can reach its clinical potential a delivery vehicle is needed to carry siRNA across the cell membrane and into the cytoplasm of the cell. Herein, we detail the methods required to use star polymer nanoparticles to deliver siRNA to pancreatic tumors in an orthotopic pancreatic cancer mouse model to silence the expression of an "undruggable" gene (βIII-tubulin) that regulates pancreatic cancer growth and chemosensitivity.
Collapse
Affiliation(s)
- Joshua A McCarroll
- Tumour Biology and Targeting Program, Lowy Cancer Research Centre, Children's Cancer Institute, UNSW Sydney, Sydney, NSW, Australia.,Australian Centre for Nanomedicine, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, UNSW Sydney, Sydney, NSW, Australia
| | - George Sharbeen
- Pancreatic Cancer Translational Research Group, Lowy Cancer Research Centre, School of Medical Sciences, UNSW Sydney, Sydney, NSW, Australia
| | - Maria Kavallaris
- Tumour Biology and Targeting Program, Lowy Cancer Research Centre, Children's Cancer Institute, UNSW Sydney, Sydney, NSW, Australia.,Australian Centre for Nanomedicine, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, UNSW Sydney, Sydney, NSW, Australia
| | - Phoebe A Phillips
- Australian Centre for Nanomedicine, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, UNSW Sydney, Sydney, NSW, Australia. .,Pancreatic Cancer Translational Research Group, Lowy Cancer Research Centre, School of Medical Sciences, UNSW Sydney, Sydney, NSW, Australia.
| |
Collapse
|
23
|
Wawro ME, Chojnacka K, Wieczorek-Szukała K, Sobierajska K, Niewiarowska J. Invasive Colon Cancer Cells Induce Transdifferentiation of Endothelium to Cancer-Associated Fibroblasts through Microtubules Enriched in Tubulin-β3. Int J Mol Sci 2018; 20:ijms20010053. [PMID: 30583584 PMCID: PMC6337286 DOI: 10.3390/ijms20010053] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 12/08/2018] [Accepted: 12/21/2018] [Indexed: 12/24/2022] Open
Abstract
Colon cancer, the second leading cause of cancer-related deaths in the world, is usually diagnosed in invasive stages. The interactions between cancer cells and cells located in their niche remain the crucial mechanism inducing tumor metastasis. The most important among those cells are cancer-associated fibroblasts (CAFs), the heterogeneous group of myofibroblasts transdifferentiated from numerous cells of different origin, including endothelium. The endothelial-to-mesenchymal transition (EndMT) is associated with modulation of cellular morphology, polarization and migration ability as a result of microtubule cytoskeleton reorganization. Here we reveal, for the first time, that invasive colon cancer cells regulate EndMT of endothelium via tubulin-β3 upregulation and its phosphorylation. Thus, we concluded that therapies based on inhibition of tubulin-β3 expression or phosphorylation, or blocking tubulin-β3's recruitment to the microtubules, together with anti-inflammatory chemotherapeutics, are promising means to treat advanced stages of colon cancer.
Collapse
Affiliation(s)
- Marta Ewelina Wawro
- Department of Molecular Cell Mechanisms, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland.
| | - Katarzyna Chojnacka
- Department of Molecular Cell Mechanisms, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland.
- Department of Biochemistry, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland.
| | - Katarzyna Wieczorek-Szukała
- Department of Molecular Cell Mechanisms, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland.
- Department of Endocrinology and Metabolic Diseases, Medical University of Lodz, Rzgowska 281/289, 93-338 Lodz, Poland.
| | - Katarzyna Sobierajska
- Department of Molecular Cell Mechanisms, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland.
| | - Jolanta Niewiarowska
- Department of Molecular Cell Mechanisms, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland.
| |
Collapse
|
24
|
Casadonte R, Kriegsmann M, Perren A, Baretton G, Deininger S, Kriegsmann K, Welsch T, Pilarsky C, Kriegsmann J. Development of a Class Prediction Model to Discriminate Pancreatic Ductal Adenocarcinoma from Pancreatic Neuroendocrine Tumor by MALDI Mass Spectrometry Imaging. Proteomics Clin Appl 2018; 13:e1800046. [DOI: 10.1002/prca.201800046] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 11/05/2018] [Indexed: 12/13/2022]
Affiliation(s)
| | - Mark Kriegsmann
- Institute of PathologyUniversity of Heidelberg Heidelberg 69120 Germany
| | - Aurel Perren
- Institute of PathologyUniversity of Bern Bern 3012 Switzerland
| | - Gustavo Baretton
- Institute of PathologyUniversity Hospital Carl Gustav Carus at the Technical University of Dresden Dresden 01307 Germany
| | | | - Katharina Kriegsmann
- Department of HematologyOncology and RheumatologyUniversity of Heidelberg Heidelberg 69120 Germany
| | - Thilo Welsch
- Institute of PathologyUniversity Hospital Carl Gustav Carus at the Technical University of Dresden Dresden 01307 Germany
| | - Christian Pilarsky
- Institute of PathologyUniversity Hospital Carl Gustav Carus at the Technical University of Dresden Dresden 01307 Germany
| | - Jörg Kriegsmann
- Proteopath GmbH Trier 54296 Germany
- MVZ for HistologyCytology and Molecular Diagnostics Trier 54296 Germany
| |
Collapse
|
25
|
Bumbaca B, Li W. Taxane resistance in castration-resistant prostate cancer: mechanisms and therapeutic strategies. Acta Pharm Sin B 2018; 8:518-529. [PMID: 30109177 PMCID: PMC6089846 DOI: 10.1016/j.apsb.2018.04.007] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 04/06/2018] [Accepted: 04/12/2018] [Indexed: 12/19/2022] Open
Abstract
Despite its good initial response and significant survival benefit in patients with castration-resistant prostate cancer (CRPC), taxane therapy inevitably encounters drug resistance in all patients. Deep understandings of taxane resistant mechanisms can significantly facilitate the development of new therapeutic strategies to overcome taxane resistance and improve CRPC patient survival. Multiple pathways of resistance have been identified as potentially crucial areas of intervention. First, taxane resistant tumor cells typically have mutated microtubule binding sites, varying tubulin isotype expression, and upregulation of efflux transporters. These mechanisms contribute to reducing binding affinity and availability of taxanes. Second, taxane resistant tumors have increased stem cell like characteristics, indicating higher potential for further mutation in response to therapy. Third, the androgen receptor pathway is instrumental in the proliferation of CRPC and multiple hypotheses leading to this pathway reactivation have been reported. The connection of this pathway to the AKT pathway has received significant attention due to the upregulation of phosphorylated AKT in CRPC. This review highlights recent advances in elucidating taxane resistant mechanisms and summarizes potential therapeutic strategies for improved treatment of CRPC.
Collapse
|
26
|
Person F, Wilczak W, Hube-Magg C, Burdelski C, Möller-Koop C, Simon R, Noriega M, Sauter G, Steurer S, Burdak-Rothkamm S, Jacobsen F. Prevalence of βIII-tubulin (TUBB3) expression in human normal tissues and cancers. Tumour Biol 2017; 39:1010428317712166. [PMID: 29022485 DOI: 10.1177/1010428317712166] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Microtubules are multifunctional cytoskeletal proteins that are involved in crucial cellular roles including maintenance of cell shape, intracellular transport, meiosis, and mitosis. Class III beta-tubulin (βIII-tubulin, also known as TUBB3) is a microtubule protein, normally expressed in cells of neuronal origin. Its expression was also reported in various other tumor types, such as several types of lung cancer, ovarian cancer, and esophageal cancer. TUBB3 is of clinical relevance as overexpression has been linked to poor response to microtubule-targeting anti-cancer drugs such as taxanes. To systematically investigate the epidemiology of TUBB3 expression in normal and neoplastic tissues, we used tissue microarrays for analyzing the immunohistochemically detectable expression of TUBB3 in 3911 tissue samples from 100 different tumor categories and 76 different normal tissue types. At least 1 tumor with weak expression could be found in 93 of 100 (93%) different tumor types, and all these 93 entities also had at least 1 tumor with strong positivity. In normal tissues, a particularly strong expression was found in neurons of the brain, endothelium of blood vessels, fibroblasts, spermatogenic cells, stroma cells, endocrine cells, and acidophilic cells of the pituitary gland. In tumors, strong TUBB3 expression was most frequently found in various brain tumors (85%-100%), lung cancer (35%-80%), pancreatic adenocarcinoma (50%), renal cell carcinoma (15%-80%), and malignant melanoma (77%). In summary, these results identify a broad spectrum of cancers that can at least sporadically express TUBB3. Testing of TUBB3 in cancer types eligible for taxane-based therapies could be helpful to identify patients who might best benefit from this treatment.
Collapse
Affiliation(s)
- Fermín Person
- 1 Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Waldemar Wilczak
- 1 Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Claudia Hube-Magg
- 1 Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christoph Burdelski
- 2 General, Visceral and Thoracic Surgery Department and Clinic, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christina Möller-Koop
- 1 Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ronald Simon
- 1 Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Mercedes Noriega
- 1 Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Guido Sauter
- 1 Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan Steurer
- 1 Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Frank Jacobsen
- 1 Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
27
|
Parker AL, Teo WS, McCarroll JA, Kavallaris M. An Emerging Role for Tubulin Isotypes in Modulating Cancer Biology and Chemotherapy Resistance. Int J Mol Sci 2017; 18:ijms18071434. [PMID: 28677634 PMCID: PMC5535925 DOI: 10.3390/ijms18071434] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 06/24/2017] [Accepted: 06/27/2017] [Indexed: 12/19/2022] Open
Abstract
Tubulin proteins, as components of the microtubule cytoskeleton perform critical cellular functions throughout all phases of the cell cycle. Altered tubulin isotype composition of microtubules is emerging as a feature of aggressive and treatment refractory cancers. Emerging evidence highlighting a role for tubulin isotypes in differentially influencing microtubule behaviour and broader functional networks within cells is illuminating a complex role for tubulin isotypes regulating cancer biology and chemotherapy resistance. This review focuses on the role of different tubulin isotypes in microtubule dynamics as well as in oncogenic changes that provide a survival or proliferative advantage to cancer cells within the tumour microenvironment and during metastatic processes. Consideration of the role of tubulin isotypes beyond their structural function will be essential to improving the current clinical use of tubulin-targeted chemotherapy agents and informing the development of more effective cancer therapies.
Collapse
Affiliation(s)
- Amelia L Parker
- Tumour Biology and Targeting, Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW 2031, Australia.
- Australian Centre for NanoMedicine, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Wee Siang Teo
- Tumour Biology and Targeting, Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW 2031, Australia.
- Australian Centre for NanoMedicine, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Joshua A McCarroll
- Tumour Biology and Targeting, Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW 2031, Australia.
- Australian Centre for NanoMedicine, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Maria Kavallaris
- Tumour Biology and Targeting, Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW 2031, Australia.
- Australian Centre for NanoMedicine, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
28
|
Kasai S, Sasaki T, Watanabe A, Nishiya M, Yasuhira S, Shibazaki M, Maesawa C. Bcl-2/Bcl-x L inhibitor ABT-737 sensitizes pancreatic ductal adenocarcinoma to paclitaxel-induced cell death. Oncol Lett 2017; 14:903-908. [PMID: 28693250 DOI: 10.3892/ol.2017.6211] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 03/30/2017] [Indexed: 02/07/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDA) is an aggressive malignant disease that is resistant to various chemotherapeutic agents and commonly relapses. Efficient elimination of metastasized PDA is critical for a positive post-surgical treatment outcome. The present study analyzed the effect of the B-cell lymphoma-2 (Bcl-2)/B-cell lymphoma extra-large (Bcl-xL) inhibitor, ABT-737, on paclitaxel-induced PDA cell death. A total of 8 PDA cell lines were subjected to immunoblotting to compare the expression of Bcl-2/Bcl-xL and other factors associated with taxane resistance, including myeloid cell leukemia 1 and βIII-tubulin (TUBB3). The viability of PDA cells was analyzed following treatment with paclitaxel alone or a combination treatment with ABT-737 and paclitaxel. Treatment with the ABT-737/paclitaxel combination induced PDA cell death at a lower concentration of paclitaxel compared with paclitaxel alone. In addition, the viable cell population at the saturation point of paclitaxel was also decreased by co-treatment with ABT-737. ABT-737 lowered the half maximal inhibitory concentration (IC50) by >2-fold in PDA cells with high Bcl-2/Bcl-xL expression, but not in PDA cells with low Bcl-2/Bcl-xL expression and high TUBB3 expression. Knockdown of Bcl-xL lowered the IC50 of paclitaxel, but knockdown of TUBB3 did not. ABT-737 sensitized PDA to paclitaxel-induced cell death, and Bcl-xL expression was a key determinant of its sensitivity. ABT-737 is potential candidate for combination chemotherapy of PDA with high Bcl-xL expression levels.
Collapse
Affiliation(s)
- Shuya Kasai
- Department of Tumor Biology, Institute of Biomedical Science, Iwate Medical University, Yahaba, Iwate 028-3694, Japan
| | - Takuya Sasaki
- Department of Tumor Biology, Institute of Biomedical Science, Iwate Medical University, Yahaba, Iwate 028-3694, Japan.,Department of Pharmacy, Iwate Medical University Hospital, Morioka, Iwate 020-0029, Japan
| | - Ayano Watanabe
- Department of Tumor Biology, Institute of Biomedical Science, Iwate Medical University, Yahaba, Iwate 028-3694, Japan
| | - Masao Nishiya
- Department of Tumor Biology, Institute of Biomedical Science, Iwate Medical University, Yahaba, Iwate 028-3694, Japan
| | - Shinji Yasuhira
- Department of Tumor Biology, Institute of Biomedical Science, Iwate Medical University, Yahaba, Iwate 028-3694, Japan
| | - Masahiko Shibazaki
- Department of Tumor Biology, Institute of Biomedical Science, Iwate Medical University, Yahaba, Iwate 028-3694, Japan
| | - Chihaya Maesawa
- Department of Tumor Biology, Institute of Biomedical Science, Iwate Medical University, Yahaba, Iwate 028-3694, Japan
| |
Collapse
|
29
|
Sharbeen G, McCarroll J, Liu J, Youkhana J, Limbri LF, Biankin AV, Johns A, Kavallaris M, Goldstein D, Phillips PA. Delineating the Role of βIV-Tubulins in Pancreatic Cancer: βIVb-Tubulin Inhibition Sensitizes Pancreatic Cancer Cells to Vinca Alkaloids. Neoplasia 2016; 18:753-764. [PMID: 27889644 PMCID: PMC5126129 DOI: 10.1016/j.neo.2016.10.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 10/27/2016] [Accepted: 10/31/2016] [Indexed: 01/05/2023]
Abstract
Pancreatic cancer (PC) is a lethal disease which is characterized by chemoresistance. Components of the cell cytoskeleton are therapeutic targets in cancer. βIV-tubulin is one such component that has two isotypes-βIVa and βIVb. βIVa and βIVb isotypes only differ in two amino acids at their C-terminus. Studies have implicated βIVa-tubulin or βIVb-tubulin expression with chemoresistance in prostate, breast, ovarian and lung cancer. However, no studies have examined the role of βIV-tubulin in PC or attempted to identify isotype specific roles in regulating cancer cell growth and chemosensitivity. We aimed to determine the role of βIVa- or βIVb-tubulin on PC growth and chemosensitivity. PC cells (MiaPaCa-2, HPAF-II, AsPC1) were treated with siRNA (control, βIVa-tubulin or βIVb-tubulin). The ability of PC cells to form colonies in the presence or absence of chemotherapy was measured by clonogenic assays. Inhibition of βIVa-tubulin in PC cells had no effect chemosensitivity. In contrast, inhibition of βIVb-tubulin in PC cells sensitized to vinca alkaloids (Vincristine, Vinorelbine and Vinblastine), which was accompanied by increased apoptosis and enhanced cell cycle arrest. We show for the first time that βIVb-tubulin, but not βIVa-tubulin, plays a role in regulating vinca alkaloid chemosensitivity in PC cells. The results from this study suggest βIVb-tubulin may be a novel therapeutic target and predictor of vinca alkaloid sensitivity for PC and warrants further investigation.
Collapse
Affiliation(s)
- G Sharbeen
- Pancreatic Cancer Translational Research Group, Lowy Cancer Research Centre, Prince of Wales Clinical School, University of New South Wales (UNSW), Sydney, Australia, 2052
| | - J McCarroll
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW, Sydney, Australia, 2031; Australian Centre for NanoMedicine, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, UNSW, Australia
| | - J Liu
- Pancreatic Cancer Translational Research Group, Lowy Cancer Research Centre, Prince of Wales Clinical School, University of New South Wales (UNSW), Sydney, Australia, 2052
| | - J Youkhana
- Pancreatic Cancer Translational Research Group, Lowy Cancer Research Centre, Prince of Wales Clinical School, University of New South Wales (UNSW), Sydney, Australia, 2052
| | - L F Limbri
- Pancreatic Cancer Translational Research Group, Lowy Cancer Research Centre, Prince of Wales Clinical School, University of New South Wales (UNSW), Sydney, Australia, 2052
| | - A V Biankin
- The Kinghorn Cancer Centre, Cancer Program, Garvan Institute of Medical Research, Darlinghurst, Sydney, Australia; Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Bearsden, Glasgow, Scotland G61 1BD, United Kingdom
| | - A Johns
- The Kinghorn Cancer Centre, Cancer Program, Garvan Institute of Medical Research, Darlinghurst, Sydney, Australia
| | - M Kavallaris
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW, Sydney, Australia, 2031; Australian Centre for NanoMedicine, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, UNSW, Australia
| | - D Goldstein
- Pancreatic Cancer Translational Research Group, Lowy Cancer Research Centre, Prince of Wales Clinical School, University of New South Wales (UNSW), Sydney, Australia, 2052
| | - P A Phillips
- Pancreatic Cancer Translational Research Group, Lowy Cancer Research Centre, Prince of Wales Clinical School, University of New South Wales (UNSW), Sydney, Australia, 2052; Australian Centre for NanoMedicine, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, UNSW, Australia.
| |
Collapse
|
30
|
Fujioka H, Sakai A, Tanaka S, Kimura K, Miyamoto A, Iwamoto M, Uchiyama K. Comparative proteomic analysis of paclitaxel resistance-related proteins in human breast cancer cell lines. Oncol Lett 2016; 13:289-295. [PMID: 28123557 DOI: 10.3892/ol.2016.5455] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 10/06/2016] [Indexed: 11/06/2022] Open
Abstract
Paclitaxel is widely used to treat various cancers; however, resistance to this drug is a major obstacle to breast cancer chemotherapy. To identify the proteins involved in paclitaxel resistance, the present study compared the proteomes of MCF-7 human breast cancer cells and its paclitaxel-resistant subclone MCF-7/PTX. Using two-dimensional gel electrophoresis and matrix-assisted laser desorption/ionization time of flight mass spectrometry, 11 upregulated and 12 downregulated proteins were identified in MCF-7/PTX cells compared with the parental cell line. These 23 proteins were functionally classified as stress-induced chaperones, metabolic enzymes and cytoskeletal proteins. The anti-apoptotic proteins, stress-70 protein, 78-kD glucose-regulated protein, peptidyl-prolyl cis-trans isomerase A (PPIA) and heterogeneous nuclear ribonucleoprotein H3, were also upregulated in MCF-7/PTX cells. Notably, knockdown of the stress-response chaperone PPIA using small interfering RNA in MCF-7/PTX cells restored their sensitivity to paclitaxel. These findings indicated that PPIA may have an important role in paclitaxel resistance in MCF-7/PTX cells.
Collapse
Affiliation(s)
- Hiroya Fujioka
- Section of Breast and Endocrine Surgery, Department of General and Gastroenterological Surgery, Osaka Medical College, Takatsuki, Osaka 569-8686, Japan
| | - Akiko Sakai
- Department of Chemistry, Osaka Medical College, Takatsuki, Osaka 569-8686, Japan
| | - Satoru Tanaka
- Section of Breast and Endocrine Surgery, Department of General and Gastroenterological Surgery, Osaka Medical College, Takatsuki, Osaka 569-8686, Japan
| | - Kosei Kimura
- Section of Breast and Endocrine Surgery, Department of General and Gastroenterological Surgery, Osaka Medical College, Takatsuki, Osaka 569-8686, Japan
| | - Akiko Miyamoto
- Section of Breast and Endocrine Surgery, Department of General and Gastroenterological Surgery, Osaka Medical College, Takatsuki, Osaka 569-8686, Japan
| | - Mitsuhiko Iwamoto
- Section of Breast and Endocrine Surgery, Department of General and Gastroenterological Surgery, Osaka Medical College, Takatsuki, Osaka 569-8686, Japan
| | - Kazuhisa Uchiyama
- Section of Breast and Endocrine Surgery, Department of General and Gastroenterological Surgery, Osaka Medical College, Takatsuki, Osaka 569-8686, Japan
| |
Collapse
|
31
|
Teo J, McCarroll JA, Boyer C, Youkhana J, Sagnella SM, Duong HTT, Liu J, Sharbeen G, Goldstein D, Davis TP, Kavallaris M, Phillips PA. A Rationally Optimized Nanoparticle System for the Delivery of RNA Interference Therapeutics into Pancreatic Tumors in Vivo. Biomacromolecules 2016; 17:2337-51. [DOI: 10.1021/acs.biomac.6b00185] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Joann Teo
- Tumour
Biology and Targeting Program, Children’s Cancer Institute,
Lowy Cancer Research Centre, UNSW Australia, Sydney, New South Wales 2052, Australia
- Australian
Centre for NanoMedicine, UNSW Australia, Sydney, New South Wales 2052, Australia
| | - Joshua A. McCarroll
- Tumour
Biology and Targeting Program, Children’s Cancer Institute,
Lowy Cancer Research Centre, UNSW Australia, Sydney, New South Wales 2052, Australia
- Australian
Centre for NanoMedicine, UNSW Australia, Sydney, New South Wales 2052, Australia
| | - Cyrille Boyer
- Australian
Centre for NanoMedicine, UNSW Australia, Sydney, New South Wales 2052, Australia
- Centre
for Advanced Macromolecular Design, School of Chemical Engineering, UNSW Australia, Sydney, New South Wales 2052, Australia
| | - Janet Youkhana
- Pancreatic
Cancer Translational Research Group, Lowy Cancer Research Centre,
Prince of Wales Clinical School, UNSW Australia, Sydney, New South Wales 2052, Australia
| | - Sharon M. Sagnella
- Tumour
Biology and Targeting Program, Children’s Cancer Institute,
Lowy Cancer Research Centre, UNSW Australia, Sydney, New South Wales 2052, Australia
- Australian
Centre for NanoMedicine, UNSW Australia, Sydney, New South Wales 2052, Australia
| | - Hien T. T. Duong
- Australian
Centre for NanoMedicine, UNSW Australia, Sydney, New South Wales 2052, Australia
- Centre
for Advanced Macromolecular Design, School of Chemical Engineering, UNSW Australia, Sydney, New South Wales 2052, Australia
| | - Jie Liu
- Pancreatic
Cancer Translational Research Group, Lowy Cancer Research Centre,
Prince of Wales Clinical School, UNSW Australia, Sydney, New South Wales 2052, Australia
| | - George Sharbeen
- Pancreatic
Cancer Translational Research Group, Lowy Cancer Research Centre,
Prince of Wales Clinical School, UNSW Australia, Sydney, New South Wales 2052, Australia
| | - David Goldstein
- Pancreatic
Cancer Translational Research Group, Lowy Cancer Research Centre,
Prince of Wales Clinical School, UNSW Australia, Sydney, New South Wales 2052, Australia
- Prince
of Wales Hospital, Prince of Wales Clinical School, Sydney, New South Wales 2052, Australia
| | - Thomas P. Davis
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology
Monash Institute of Pharmaceutical Sciences, Monash University, Clayton, Victoria 3800, Australia
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Maria Kavallaris
- Tumour
Biology and Targeting Program, Children’s Cancer Institute,
Lowy Cancer Research Centre, UNSW Australia, Sydney, New South Wales 2052, Australia
- Australian
Centre for NanoMedicine, UNSW Australia, Sydney, New South Wales 2052, Australia
- ARC Centre
of Excellence in Convergent Bio-Nano Science and Technology UNSW Australia, Sydney, New South Wales 2052, Australia
| | - Phoebe A. Phillips
- Australian
Centre for NanoMedicine, UNSW Australia, Sydney, New South Wales 2052, Australia
- Pancreatic
Cancer Translational Research Group, Lowy Cancer Research Centre,
Prince of Wales Clinical School, UNSW Australia, Sydney, New South Wales 2052, Australia
| |
Collapse
|
32
|
Sobierajska K, Wieczorek K, Ciszewski WM, Sacewicz-Hofman I, Wawro ME, Wiktorska M, Boncela J, Papiewska-Pajak I, Kwasniak P, Wyroba E, Cierniewski CS, Niewiarowska J. β-III tubulin modulates the behavior of Snail overexpressed during the epithelial-to-mesenchymal transition in colon cancer cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:2221-33. [PMID: 27188792 DOI: 10.1016/j.bbamcr.2016.05.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 04/22/2016] [Accepted: 05/11/2016] [Indexed: 12/17/2022]
Abstract
Class III β-tubulin (TUBB3) is a marker of drug resistance expressed in a variety of solid tumors. Originally, it was described as an important element of chemoresistance to taxanes. Recent studies have revealed that TUBB3 is also involved in an adaptive response to a microenvironmental stressor, e.g. low oxygen levels and poor nutrient supply in some solid tumors, independently of the microtubule targeting agent. Furthermore, it has been demonstrated that TUBB3 is a marker of biological aggressiveness associated with modulation of metastatic abilities in colon cancer. The epithelial-to-mesenchymal transition (EMT) is a basic cellular process by which epithelial cells lose their epithelial behavior and become invasive cells involved in cancer metastasis. Snail is a zinc-finger transcription factor which is able to induce EMT through the repression of E-cadherin expression. In the presented studies we focused on the analysis of the TUBB3 role in EMT-induced colon adenocarcinoma cell lines HT-29 and LS180. We observed a positive correlation between Snail presence and TUBB3 upregulation in tested adenocarcinoma cell lines. The cellular and behavioral analysis revealed for the first time that elevated TUBB3 level is functionally linked to increased cell migration and invasive capability of EMT induced cells. Additionally, the post-transcriptional modifications (phosphorylation, glycosylation) appear to regulate the cellular localization of TUBB3 and its phosphorylation, observed in cytoskeleton, is probably involved in cell motility modulation.
Collapse
Affiliation(s)
- Katarzyna Sobierajska
- Department of Molecular Cell Mechanisms, Medical University of Lodz, Mazowiecka 6/8, 92-215, Lodz, Poland
| | - Katarzyna Wieczorek
- Department of Molecular Cell Mechanisms, Medical University of Lodz, Mazowiecka 6/8, 92-215, Lodz, Poland,; Department of Endocrinology and Metabolic Diseases, Medical University of Lodz, Rzgowska 281/289, 93-338, Lodz, Poland
| | - Wojciech M Ciszewski
- Department of Molecular Cell Mechanisms, Medical University of Lodz, Mazowiecka 6/8, 92-215, Lodz, Poland
| | - Izabela Sacewicz-Hofman
- Department of Molecular Cell Mechanisms, Medical University of Lodz, Mazowiecka 6/8, 92-215, Lodz, Poland
| | - Marta E Wawro
- Department of Molecular Cell Mechanisms, Medical University of Lodz, Mazowiecka 6/8, 92-215, Lodz, Poland
| | - Magdalena Wiktorska
- Department of Molecular Cell Mechanisms, Medical University of Lodz, Mazowiecka 6/8, 92-215, Lodz, Poland
| | - Joanna Boncela
- Institute of Medical Biology, PAS, Lodowa 106, 93-232, Lodz, Poland
| | | | - Pawel Kwasniak
- Nencki Institute of Experimental Biology, PAS, Pasteura 3, 02-093, Warsaw, Poland, Institute of Medical Biology, PAS, Lodowa 106, 93-232, Lodz, Poland
| | - Elzbieta Wyroba
- Nencki Institute of Experimental Biology, PAS, Pasteura 3, 02-093, Warsaw, Poland, Institute of Medical Biology, PAS, Lodowa 106, 93-232, Lodz, Poland
| | - Czeslaw S Cierniewski
- Institute of Medical Biology, PAS, Lodowa 106, 93-232, Lodz, Poland; Department of Molecular and Medical Biophysics, Medical University of Lodz, Mazowiecka 6/8, 92-215, Lodz, Poland
| | - Jolanta Niewiarowska
- Department of Molecular Cell Mechanisms, Medical University of Lodz, Mazowiecka 6/8, 92-215, Lodz, Poland,.
| |
Collapse
|
33
|
Chao CC, Kan D, Lo TH, Lu KS, Chien CL. Induction of neural differentiation in rat C6 glioma cells with taxol. Brain Behav 2015; 5:e00414. [PMID: 26665000 PMCID: PMC4667627 DOI: 10.1002/brb3.414] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 09/14/2015] [Accepted: 09/21/2015] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Glioblastoma is a common and aggressive type of primary brain tumor. Several anticancer drugs affect GBM (glioblastoma multiforme) cells on cell growth and morphology. Taxol is one of the widely used antineoplastic drugs against many types of solid tumors, such as breast, ovarian, and prostate cancers. However, the effect of taxol on GBM cells remains unclear and requires further investigation. METHODS Survival rate of C6 glioma cells under different taxol concentrations was quantified. To clarify the differentiation patterns of rat C6 glioma cells under taxol challenge, survived glioma cells were characterized by immunocytochemical, molecular biological, and cell biological approaches. RESULTS After taxol treatment, not only cell death but also morphological changes, including cell elongation, cellular processes thinning, irregular shapes, and fragmented nucleation or micronuclei, occurred in the survived C6 cells. Neural differentiation markers NFL (for neurons), β III-tubulin (for neurons), GFAP (for astrocytes), and CNPase (for oligodendrocytes) were detected in the taxol-treated C6 cells. Quantitative analysis suggested a significant increase in the percentage of neural differentiated cells. The results exhibited that taxol may trigger neural differentiation in C6 glioma cells. Increased expression of neural differentiation markers in C6 cells after taxol treatment suggest that some anticancer drugs could be applied to elimination of the malignant cancer cells as well as changing proliferation and differentiation status of tumor cells.
Collapse
Affiliation(s)
- Chuan-Chuan Chao
- Department of Anatomy and Cell Biology College of Medicine National Taiwan University Taipei Taiwan
| | - Daphne Kan
- Center of Genomic Medicine National Taiwan University Taipei Taiwan
| | - Ta-Hsuan Lo
- Center of Genomic Medicine National Taiwan University Taipei Taiwan
| | - Kuo-Shyan Lu
- Department of Anatomy and Cell Biology College of Medicine National Taiwan University Taipei Taiwan
| | - Chung-Liang Chien
- Department of Anatomy and Cell Biology College of Medicine National Taiwan University Taipei Taiwan; Center of Genomic Medicine National Taiwan University Taipei Taiwan
| |
Collapse
|
34
|
Dai X, Jiang Y, Tan C. Let-7 Sensitizes KRAS Mutant Tumor Cells to Chemotherapy. PLoS One 2015; 10:e0126653. [PMID: 25946136 PMCID: PMC4422443 DOI: 10.1371/journal.pone.0126653] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 04/04/2015] [Indexed: 12/30/2022] Open
Abstract
KRAS is the most commonly mutated oncogene in human cancers and is associated with poor prognosis and drug resistance. Let-7 is a family of tumor suppressor microRNAs that are frequently suppressed in solid tumors, where KRAS mutations are highly prevalent. In this study, we investigated the potential use of let-7 as a chemosensitizer. We found that let-7b repletion selectively sensitized KRAS mutant tumor cells to the cytotoxicity of paclitaxel and gemcitabine. Transfection of let-7b mimic downregulated the expression of mutant but not wild-type KRAS. Combination of let-7b mimic with paclitaxel or gemcitabine diminished MEK/ERK and PI3K/AKT signaling concurrently, triggered the onset of apoptosis, and reverted the epithelial-mesenchymal transition in KRAS mutant tumor cells. In addition, let-7b repletion downregulated the expression of β-tubulin III and ribonucleotide reductase subunit M2, two proteins known to mediate tumor resistance to paclitaxel and gemcitabine, respectively. Let-7 may represent a new class of chemosensitizer for the treatment of KRAS mutant tumors.
Collapse
Affiliation(s)
- Xin Dai
- Department of Pharmaceutical Sciences, Mercer University, Atlanta, Georgia, United States of America
| | - Ying Jiang
- Department of Pharmaceutical Sciences, Mercer University, Atlanta, Georgia, United States of America
| | - Chalet Tan
- Department of Pharmaceutical Sciences, Mercer University, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
35
|
Katsetos CD, Reginato MJ, Baas PW, D'Agostino L, Legido A, Tuszyn Ski JA, Dráberová E, Dráber P. Emerging microtubule targets in glioma therapy. Semin Pediatr Neurol 2015; 22:49-72. [PMID: 25976261 DOI: 10.1016/j.spen.2015.03.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Major advances in the genomics and epigenomics of diffuse gliomas and glioblastoma to date have not been translated into effective therapy, necessitating pursuit of alternative treatment approaches for these therapeutically challenging tumors. Current knowledge of microtubules in cancer and the development of new microtubule-based treatment strategies for high-grade gliomas are the topic in this review article. Discussed are cellular, molecular, and pharmacologic aspects of the microtubule cytoskeleton underlying mitosis and interactions with other cellular partners involved in cell cycle progression, directional cell migration, and tumor invasion. Special focus is placed on (1) the aberrant overexpression of βIII-tubulin, a survival factor associated with hypoxic tumor microenvironment and dynamic instability of microtubules; (2) the ectopic overexpression of γ-tubulin, which in addition to its conventional role as a microtubule-nucleating protein has recently emerged as a transcription factor interacting with oncogenes and kinases; (3) the microtubule-severing ATPase spastin and its emerging role in cell motility of glioblastoma cells; and (4) the modulating role of posttranslational modifications of tubulin in the context of interaction of microtubules with motor proteins. Specific antineoplastic strategies discussed include downregulation of targeted molecules aimed at achieving a sensitization effect on currently used mainstay therapies. The potential role of new classes of tubulin-binding agents and ATPase inhibitors is also examined. Understanding the cellular and molecular mechanisms underpinning the distinct behaviors of microtubules in glioma tumorigenesis and drug resistance is key to the discovery of novel molecular targets that will fundamentally change the prognostic outlook of patients with diffuse high-grade gliomas.
Collapse
Affiliation(s)
- Christos D Katsetos
- Department of Pediatrics, Drexel University College of Medicine, Section of Neurology and Pediatric Neuro-oncology Program, St Christopher's Hospital for Children, Philadelphia, PA; Department of Pathology and Laboratory Medicine, Drexel University College of Medicine, Philadelphia, PA.
| | - Mauricio J Reginato
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA
| | - Peter W Baas
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA
| | - Luca D'Agostino
- Department of Pediatrics, Drexel University College of Medicine, Section of Neurology and Pediatric Neuro-oncology Program, St Christopher's Hospital for Children, Philadelphia, PA
| | - Agustin Legido
- Department of Pediatrics, Drexel University College of Medicine, Section of Neurology and Pediatric Neuro-oncology Program, St Christopher's Hospital for Children, Philadelphia, PA
| | - Jack A Tuszyn Ski
- Department of Oncology, University of Alberta, Cross Cancer Institute, Edmonton, Alberta, Canada; Department of Physics, University of Alberta, Edmonton, Alberta, Canada
| | - Eduarda Dráberová
- Department of Biology of Cytoskeleton, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Pavel Dráber
- Department of Biology of Cytoskeleton, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| |
Collapse
|
36
|
McCarroll JA, Sharbeen G, Liu J, Youkhana J, Goldstein D, McCarthy N, Limbri LF, Dischl D, Ceyhan GO, Erkan M, Johns AL, Biankin AV, Kavallaris M, Phillips PA. βIII-tubulin: a novel mediator of chemoresistance and metastases in pancreatic cancer. Oncotarget 2015; 6:2235-49. [PMID: 25544769 PMCID: PMC4385848 DOI: 10.18632/oncotarget.2946] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 12/09/2014] [Indexed: 12/20/2022] Open
Abstract
Pancreatic cancer is a leading cause of cancer-related deaths in Western societies. This poor prognosis is due to chemotherapeutic drug resistance and metastatic spread. Evidence suggests that microtubule proteins namely, β-tubulins are dysregulated in tumor cells and are involved in regulating chemosensitivity. However, the role of β-tubulins in pancreatic cancer are unknown. We measured the expression of different β-tubulin isotypes in pancreatic adenocarcinoma tissue and pancreatic cancer cells. Next, we used RNAi to silence βIII-tubulin expression in pancreatic cancer cells, and measured cell growth in the absence and presence of chemotherapeutic drugs. Finally, we assessed the role of βIII-tubulin in regulating tumor growth and metastases using an orthotopic pancreatic cancer mouse model. We found that βIII-tubulin is highly expressed in pancreatic adenocarcinoma tissue and pancreatic cancer cells. Further, we demonstrated that silencing βIII-tubulin expression reduced pancreatic cancer cell growth and tumorigenic potential in the absence and presence of chemotherapeutic drugs. Finally, we demonstrated that suppression of βIII-tubulin reduced tumor growth and metastases in vivo. Our novel data demonstrate that βIII-tubulin is a key player in promoting pancreatic cancer growth and survival, and silencing its expression may be a potential therapeutic strategy to increase the long-term survival of pancreatic cancer patients.
Collapse
Affiliation(s)
- Joshua A. McCarroll
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Australia, Sydney, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Australian Centre for NanoMedicine, UNSW, Australia
| | - George Sharbeen
- Pancreatic Cancer Translational Research Group, Lowy Cancer Research Centre, Prince of Wales Clinical School, University of New South Wales (UNSW Australia), Sydney, Australia
| | - Jie Liu
- Pancreatic Cancer Translational Research Group, Lowy Cancer Research Centre, Prince of Wales Clinical School, University of New South Wales (UNSW Australia), Sydney, Australia
| | - Janet Youkhana
- Pancreatic Cancer Translational Research Group, Lowy Cancer Research Centre, Prince of Wales Clinical School, University of New South Wales (UNSW Australia), Sydney, Australia
| | - David Goldstein
- Pancreatic Cancer Translational Research Group, Lowy Cancer Research Centre, Prince of Wales Clinical School, University of New South Wales (UNSW Australia), Sydney, Australia
- Prince of Wales Hospital, Prince of Wales Clinical School, Sydney, NSW, Australia
| | - Nigel McCarthy
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Australia, Sydney, Australia
| | - Lydia F. Limbri
- Pancreatic Cancer Translational Research Group, Lowy Cancer Research Centre, Prince of Wales Clinical School, University of New South Wales (UNSW Australia), Sydney, Australia
| | - Dominic Dischl
- Department of Surgery, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | - Güralp O. Ceyhan
- Department of Surgery, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | - Mert Erkan
- Department of Surgery Koc University School of Medicine, Istanbul, Turkey
| | - Amber L. Johns
- The Kinghorn Cancer Centre, Cancer Program, Garvan Institute of Medical Research, Darlinghurst, Sydney, Australia
| | - Andrew V. Biankin
- The Kinghorn Cancer Centre, Cancer Program, Garvan Institute of Medical Research, Darlinghurst, Sydney, Australia
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Bearsden, Glasgow, Scotland G61 1BD, United Kingdom
| | - Maria Kavallaris
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Australia, Sydney, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Australian Centre for NanoMedicine, UNSW, Australia
| | - Phoebe A. Phillips
- Pancreatic Cancer Translational Research Group, Lowy Cancer Research Centre, Prince of Wales Clinical School, University of New South Wales (UNSW Australia), Sydney, Australia
| |
Collapse
|
37
|
Glycaemic regulation and insulin secretion are abnormal in cystic fibrosis pigs despite sparing of islet cell mass. Clin Sci (Lond) 2014; 128:131-42. [PMID: 25142104 DOI: 10.1042/cs20140059] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Diabetes is a common and significant co-morbidity in cystic fibrosis (CF). The pathogenesis of cystic fibrosis related diabetes (CFRD) is incompletely understood. Because exocrine pancreatic disease is similar between humans and pigs with CF, the CF pig model has the potential to contribute significantly to the understanding of CFRD pathogenesis. We determined the structure of the endocrine pancreas in fetal, newborn and older CF and non-CF pigs and assessed endocrine pancreas function by intravenous glucose tolerance test (IV-GTT). In fetal pigs, pancreatic insulin and glucagon density was similar between CF and non-CF. In newborn and older pigs, the insulin and glucagon density was unchanged between CF and non-CF per total pancreatic area, but increased per remnant lobular tissue in CF reflecting exocrine pancreatic loss. Although fasting glucose levels were not different between CF and non-CF newborns, CF newborns demonstrated impaired glucose tolerance and increased glucose area under the curve during IV-GTT. Second phase insulin secretion responsiveness was impaired in CF newborn pigs and significantly lower than that observed in non-CF newborns. Older CF pigs had elevated random blood glucose levels compared with non-CF. In summary, glycaemic abnormalities and insulin secretion defects were present in newborn CF pigs and spontaneous hyperglycaemia developed over time. Functional changes in CF pig pancreas were not associated with a decline in islet cell mass. Our results suggest that functional islet abnormalities, independent of structural islet loss, contribute to the early pathogenesis of CFRD.
Collapse
|
38
|
Parker AL, Kavallaris M, McCarroll JA. Microtubules and their role in cellular stress in cancer. Front Oncol 2014; 4:153. [PMID: 24995158 PMCID: PMC4061531 DOI: 10.3389/fonc.2014.00153] [Citation(s) in RCA: 299] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 06/03/2014] [Indexed: 01/08/2023] Open
Abstract
Microtubules are highly dynamic structures, which consist of α- and β-tubulin heterodimers, and are involved in cell movement, intracellular trafficking, and mitosis. In the context of cancer, the tubulin family of proteins is recognized as the target of the tubulin-binding chemotherapeutics, which suppress the dynamics of the mitotic spindle to cause mitotic arrest and cell death. Importantly, changes in microtubule stability and the expression of different tubulin isotypes as well as altered post-translational modifications have been reported for a range of cancers. These changes have been correlated with poor prognosis and chemotherapy resistance in solid and hematological cancers. However, the mechanisms underlying these observations have remained poorly understood. Emerging evidence suggests that tubulins and microtubule-associated proteins may play a role in a range of cellular stress responses, thus conferring survival advantage to cancer cells. This review will focus on the importance of the microtubule-protein network in regulating critical cellular processes in response to stress. Understanding the role of microtubules in this context may offer novel therapeutic approaches for the treatment of cancer.
Collapse
Affiliation(s)
- Amelia L Parker
- Tumour Biology and Targeting Program, Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales , Sydney, NSW , Australia
| | - Maria Kavallaris
- Tumour Biology and Targeting Program, Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales , Sydney, NSW , Australia ; Australian Centre for NanoMedicine, University of New South Wales , Sydney, NSW , Australia
| | - Joshua A McCarroll
- Tumour Biology and Targeting Program, Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales , Sydney, NSW , Australia ; Australian Centre for NanoMedicine, University of New South Wales , Sydney, NSW , Australia
| |
Collapse
|
39
|
Cui SY, Wang R, Chen LB. MicroRNAs: key players of taxane resistance and their therapeutic potential in human cancers. J Cell Mol Med 2013; 17:1207-17. [PMID: 24106980 PMCID: PMC4159023 DOI: 10.1111/jcmm.12131] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2013] [Accepted: 08/15/2013] [Indexed: 01/01/2023] Open
Abstract
The successful long-term use of taxane for cancer therapy is often prevented by the development of drug resistance in clinic. Thus, exploring the mechanisms involved is a first step towards rational strategies to overcome taxane resistance. Taxane resistance-related microRNA (miRNAs) are under investigation and miRNAs could induce the taxane resistance of tumour cells by regulating cell cycle distribution, survival and/or apoptosis pathways, drug transports, epithelial–mesenchymal transition and cancer stem cell. This article summarizes current research involving miRNAs as regulators of key target genes for tanxanxe chemoresistance and discusses the complex regulatory networks of miRNAs. Also, the authors will envisage future developments towards the potential use of targeting miRNAs as a novel strategy for improving response of tumour patients to taxane. miRNAs play critical roles in taxane chemoresistance and the miRNA-based therapies will be helpful for overcoming drug resistance and developing more effective personalized anti-cancer treatment strategies. Further research studies should be performed to promote therapeutic–clinical use of taxane resistance-related miRNAs in cancer patients, especially in those patients with taxane-resistant cancers.
Collapse
Affiliation(s)
- Shi-Yun Cui
- Department of Medical Oncology, School of Medicine, Jinling Hospital, Nanjing University, Nanjing, Jiangsu, China
| | | | | |
Collapse
|
40
|
Du F, Wu X, Liu Y, Wang T, Qi X, Mao Y, Jiang L, Zhu Y, Chen Y, Zhu R, Han X, Jin J, Ma X, Hua D. Acquisition of paclitaxel resistance via PI3K‑dependent epithelial‑mesenchymal transition in A2780 human ovarian cancer cells. Oncol Rep 2013; 30:1113-8. [PMID: 23807572 DOI: 10.3892/or.2013.2567] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Accepted: 04/10/2013] [Indexed: 11/05/2022] Open
Abstract
Epithelial ovarian cancer is a major cause of mortality among women with gynecological malignancies. Paclitaxel is commonly used for chemotherapy of ovarian cancer, yet its efficacy is limited by chemoresistance. Generally, drug resistance is associated with acquisition of the epithelial-mesenchymal transition (EMT) in cancer. The aim of the present study was to determine whether the EMT is involved in acquired resistance to paclitaxel in A2780 human ovarian cancer cells. Using the paclitaxel-resistant A2780/PTX cell line, we examined the cellular morphology, molecular changes, migration and proliferation consistent with the EMT. Furthermore, we found that inhibition of phosphatidylinositol 3-kinase (PI3K) activity reduced the proliferation and migration and restored their sensitivity to paclitaxel. Our study provides new insights into EMT-like phenotypic changes that are linked to paclitaxel resistance in A2780 cells. We believe that inhibition of the PI3K signaling pathway could provide a novel therapeutic approach to overcome chemoresistance and prevent metastasis during paclitaxel chemotherapy.
Collapse
Affiliation(s)
- Fangfang Du
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi, Jiangsu, P.R. China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Wang J, Guo Y, Chu H, Guan Y, Bi J, Wang B. Multiple functions of the RNA-binding protein HuR in cancer progression, treatment responses and prognosis. Int J Mol Sci 2013; 14:10015-41. [PMID: 23665903 PMCID: PMC3676826 DOI: 10.3390/ijms140510015] [Citation(s) in RCA: 219] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 04/22/2013] [Accepted: 04/25/2013] [Indexed: 12/16/2022] Open
Abstract
The human embryonic lethal abnormal vision-like protein, HuR, is a member of the Hu family of RNA-binding proteins. Over the past decade, this ubiquitously expressed protein has been extensively investigated in cancer research because it is involved in the regulation of mRNA stability and translation in many cell types. HuR activity and function is associated with its subcellular distribution, transcriptional regulation, translational and post-translational modifications. HuR regulation of target mRNAs is based on the interaction between the three specific domains of HuR protein and one or several U- or AU-rich elements (AREs) in the untranslated region of target mRNAs. A number of cancer-related transcripts containing AREs, including mRNAs for proto-oncogenes, cytokines, growth factors, and invasion factors, have been characterized as HuR targets. It has been proposed that HuR has a central tumorigenic activity by enabling multiple cancer phenotypes. In this review, we comprehensively survey the existing evidence with regard to the diverse functions of HuR in caner development and progression. The current data also suggest that HuR might be a novel and promising therapeutic target and a marker for treatment response and prognostic evaluation.
Collapse
Affiliation(s)
- Jun Wang
- Department of Oncology, General Hospital, Jinan Command of the People’s Liberation Army, Jinan 250031, China; E-Mails: (H.C.); (Y.G.); (J.B.); (B.W.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +86-531-5166-5336; Fax: +86-531-5166-6649
| | - Yan Guo
- Department of Outpatient, Military Command of Shandong Province, Jinan 250013, China; E-Mail:
| | - Huili Chu
- Department of Oncology, General Hospital, Jinan Command of the People’s Liberation Army, Jinan 250031, China; E-Mails: (H.C.); (Y.G.); (J.B.); (B.W.)
| | - Yaping Guan
- Department of Oncology, General Hospital, Jinan Command of the People’s Liberation Army, Jinan 250031, China; E-Mails: (H.C.); (Y.G.); (J.B.); (B.W.)
| | - Jingwang Bi
- Department of Oncology, General Hospital, Jinan Command of the People’s Liberation Army, Jinan 250031, China; E-Mails: (H.C.); (Y.G.); (J.B.); (B.W.)
| | - Baocheng Wang
- Department of Oncology, General Hospital, Jinan Command of the People’s Liberation Army, Jinan 250031, China; E-Mails: (H.C.); (Y.G.); (J.B.); (B.W.)
| |
Collapse
|
42
|
Ludueña RF. A Hypothesis on the Origin and Evolution of Tubulin. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 302:41-185. [DOI: 10.1016/b978-0-12-407699-0.00002-9] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
43
|
High expression of class III β-tubulin predicts good response to neoadjuvant taxane and doxorubicin/cyclophosphamide-based chemotherapy in estrogen receptor-negative breast cancer. Clin Breast Cancer 2012; 13:103-8. [PMID: 23218766 DOI: 10.1016/j.clbc.2012.11.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Revised: 11/08/2012] [Accepted: 11/08/2012] [Indexed: 11/24/2022]
Abstract
BACKGROUND Expression of class ΙΙΙ β-tubulin (βΙΙΙ-tubulin) correlates with tumor progression and resistance to taxane-based therapies for several human malignancies including breast cancer. However its predictive value in a neoadjuvant setting in breast cancer remains unexplored. The objective of this explorative study was to determine whether βΙΙΙ-tubulin expression in breast cancer correlated with pathologic characteristics and whether its expression was predictive of response to neoadjuvant chemotherapy. PATIENTS AND METHODS We determined βΙΙΙ-tubulin expression in 85 breast cancers, including 41 localized breast cancers treated with primary surgery and 44 treated with neoadjuvant chemotherapy before surgery. βΙΙΙ-tubulin expression was evaluated by immunohistochemical methods and was correlated with pathologic characteristics and response to neoadjuvant chemotherapy using residual cancer burden (RCB) score. RESULTS High βΙΙΙ-tubulin expression was significantly associated with poorly differentiated high-grade breast cancers (P = .003) but not with tumor size, estrogen receptor (ER) status, or human epidermal growth factor receptor 2 (HER2)/neu overexpression. In ER(-) tumors treated with neoadjuvant chemotherapy, high βΙΙΙ-tubulin expression was associated with a significantly greater likelihood of achieving a good pathologic response to chemotherapy as reflected by lower RCB scores (P = .021). CONCLUSION This study reveals differential βΙΙΙ-tubulin expression in breast cancers of different histologic grades, hormone receptors, and HER2/neu status. It also suggests a potential role for βΙΙΙ-tubulin as a predictive biomarker for response in neoadjuvant chemotherapy for ER(-) breast cancer, which has not been previously reported. These data provide a strong rationale for considering βΙΙΙ-tubulin status and further validation of this marker in a large study.
Collapse
|
44
|
Docetaxel maintains its cytotoxic activity under hypoxic conditions in prostate cancer cells. Urol Oncol 2012; 30:912-9. [DOI: 10.1016/j.urolonc.2010.08.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Revised: 08/17/2010] [Accepted: 08/18/2010] [Indexed: 01/20/2023]
|
45
|
Chao SK, Wang Y, Verdier-Pinard P, Yang CPH, Liu L, Rodriguez-Gabin A, McDaid HM, Horwitz SB. Characterization of a human βV-tubulin antibody and expression of this isotype in normal and malignant human tissue. Cytoskeleton (Hoboken) 2012; 69:566-76. [PMID: 22903939 DOI: 10.1002/cm.21043] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Revised: 05/17/2012] [Accepted: 05/21/2012] [Indexed: 11/07/2022]
Abstract
There are seven distinct β-tubulin isotypes and eight α-tubulin isotypes in mammals that are hypothesized to have tissue- and cell-specific functions. There is an interest in the use of tubulin isotypes as prognostic markers of malignancy. βV-tubulin, like βIII-tubulin, has been implicated in malignant transformation and drug resistance, however little is known about its localization and function. Thus, we generated for the first time, a rabbit polyclonal antibody specific for human βV-tubulin. The antibody did not cross-react with mouse βV-tubulin or other human β-tubulin isotypes and specifically labeled βV-tubulin by immunoblotting, immunofluorescence and immunohistochemistry. Immunohistochemistry of various human normal tissues revealed that βV-tubulin was expressed in endothelial cells, myocytes and cells with muscle differentiation, structures with transport and/or secretory function such as renal tubules, pancreatic ducts and bile ducts, and epithelium with secretory function such as prostate. βV-tubulin was also specifically expressed in pancreatic islets and intratubular germ cell neoplasia, where it may have diagnostic utility. Initial studies in breast, lung and ovarian cancers indicated aberrant expression of βV-tubulin, suggesting that this isoform may be associated with tumorigenesis. Thus, βV-tubulin expression is a potentially promising prognostic marker of malignancy.
Collapse
Affiliation(s)
- Suzan K Chao
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Levallet G, Bergot E, Antoine M, Creveuil C, Santos AO, Beau-Faller M, de Fraipont F, Brambilla E, Levallet J, Morin F, Westeel V, Wislez M, Quoix E, Debieuvre D, Dubois F, Rouquette I, Pujol JL, Moro-Sibilot D, Camonis J, Zalcman G. High TUBB3 expression, an independent prognostic marker in patients with early non-small cell lung cancer treated by preoperative chemotherapy, is regulated by K-Ras signaling pathway. Mol Cancer Ther 2012; 11:1203-13. [PMID: 22411898 DOI: 10.1158/1535-7163.mct-11-0899] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We assessed the prognostic and predictive value of β-tubulin III (TUBB3) expression, as determined by immunohistochemistry, in 412 non-small cell lung cancer (NSCLC) specimens from early-stage patients who received neoadjuvant chemotherapy (paclitaxel- or gemcitabine-based) in a phase III trial (IFCT-0002). We also correlated TUBB3 expression with K-Ras and EGF receptor (EGFR) mutations in a subset of 208 cryopreserved specimens. High TUBB3 protein expression was associated with nonsquamous cell carcinomas (P < 0.001) and K-Ras mutation (P < 0.001). The 127 (30.8%) TUBB3-negative patients derived more than 1 year of overall survival advantage, with more than 84 months median overall survival versus 71.7 months for TUBB3-positive patients [HR, 1.58; 95% confidence interval (CI), 1.11-2.25)]. This prognostic value was confirmed in multivariate analysis (adjusted HR for death, 1.51; 95% CI, 1.04-2.21; P = 0.031) with a bootstrapping validation procedure. TUBB3 expression was associated with nonresponse to chemotherapy (adjusted HR, 1.31; 95% CI, 1.01-1.70; P = 0.044) but had no predictive value (taxane vs. gemcitabine). Taking account of these clinical findings, we further investigated TUBB3 expression in isogenic human bronchial cell lines only differing by K-Ras gene status and assessed the effect of K-Ras short interfering RNA (siRNA) mediated depletion, cell hypoxia, or pharmacologic inhibitors of K-Ras downstream effectors, on TUBB3 protein cell content. siRNA K-Ras knockdown, inhibition of RAF/MEK (MAP-ERK kinase) and phosphoinositide 3-kinase (PI3K)/AKT signaling, and hypoxia were shown to downregulate TUBB3 expression in bronchial cells. This study is the first one to identify K-Ras mutations as determinant of TUBB3 expression, a chemoresistance marker. Our in vitro data deserve studies combining standard chemotherapy with anti-MEK or anti-PI3K drugs in patients with TUBB3-overexpressing tumors.
Collapse
|
47
|
Khrapunovich-Baine M, Menon V, Yang CPH, Northcote PT, Miller JH, Angeletti RH, Fiser A, Horwitz SB, Xiao H. Hallmarks of molecular action of microtubule stabilizing agents: effects of epothilone B, ixabepilone, peloruside A, and laulimalide on microtubule conformation. J Biol Chem 2011; 286:11765-78. [PMID: 21245138 PMCID: PMC3064228 DOI: 10.1074/jbc.m110.162214] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Revised: 01/11/2011] [Indexed: 02/03/2023] Open
Abstract
Microtubule stabilizing agents (MSAs) comprise a class of drugs that bind to microtubule (MT) polymers and stabilize them against disassembly. Several of these agents are currently in clinical use as anticancer drugs, whereas others are in various stages of development. Nonetheless, there is insufficient knowledge about the molecular modes of their action. Recent studies from our laboratory utilizing hydrogen-deuterium exchange in combination with mass spectrometry (MS) provide new information on the conformational effects of Taxol and discodermolide on microtubules isolated from chicken erythrocytes (CET). We report here a comprehensive analysis of the effects of epothilone B, ixabepilone (IXEMPRA(TM)), laulimalide, and peloruside A on CET conformation. The results of our comparative hydrogen-deuterium exchange MS studies indicate that all MSAs have significant conformational effects on the C-terminal H12 helix of α-tubulin, which is a likely molecular mechanism for the previously observed modulations of MT interactions with microtubule-associated and motor proteins. More importantly, the major mode of MT stabilization by MSAs is the tightening of the longitudinal interactions between two adjacent αβ-tubulin heterodimers at the interdimer interface. In contrast to previous observations reported with bovine brain tubulin, the lateral interactions between the adjacent protofilaments in CET are particularly strongly stabilized by peloruside A and laulimalide, drugs that bind outside the taxane site. This not only highlights the significance of tubulin isotype composition in modulating drug effects on MT conformation and stability but also provides a potential explanation for the synergy observed when combinations of taxane and alternative site binding drugs are used.
Collapse
Affiliation(s)
| | - Vilas Menon
- the Department of Systems and Computational Biology, and
| | | | - Peter T. Northcote
- the Centre for Biodiscovery, Victoria University of Wellington, Wellington 6012, New Zealand
| | - John H. Miller
- the Centre for Biodiscovery, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Ruth Hogue Angeletti
- the Laboratory of Macromolecular Analysis and Proteomics, Albert Einstein College of Medicine, Bronx, New York 10461 and
| | - Andras Fiser
- the Department of Systems and Computational Biology, and
| | | | - Hui Xiao
- the Laboratory of Macromolecular Analysis and Proteomics, Albert Einstein College of Medicine, Bronx, New York 10461 and
| |
Collapse
|
48
|
Chakraborty S, Baine MJ, Sasson AR, Batra SK. Current status of molecular markers for early detection of sporadic pancreatic cancer. BIOCHIMICA ET BIOPHYSICA ACTA 2011; 1815:44-64. [PMID: 20888394 PMCID: PMC3014374 DOI: 10.1016/j.bbcan.2010.09.002] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Revised: 09/23/2010] [Accepted: 09/24/2010] [Indexed: 12/12/2022]
Abstract
Pancreatic cancer (PC) is a highly lethal malignancy with near 100% mortality. This is in part due to the fact that most patients present with metastatic or locally advanced disease at the time of diagnosis. Significantly, in nearly 95% of PC patients there is neither an associated family history of PC nor of diseases known to be associated with an increased risk of PC. These groups of patients who comprise the bulk of PC cases are termed as "sporadic PC" in contrast to the familial PC cases that comprise only about 5% of all PCs. Given the insidious onset of the malignancy and its extreme resistance to chemo and radiotherapy, an abundance of research in recent years has focused on identifying biomarkers for the early detection of PC, specifically aiming at the sporadic PC cohort. However, while several studies have established that asymptomatic individuals with a positive family history of PC and those with certain heritable syndromes are candidates for PC screening, the role of screening in identifying sporadic PC is still an unsettled question. The present review attempts to assess this critical question by investigating the recent advances made in molecular markers with potential use in the early diagnosis of sporadic PC - the largest cohort of PC cases worldwide. It also outlines a novel yet simple risk factor based stratification system that could be potentially employed by clinicians to identify those individuals who are at an elevated risk for the development of sporadic PC and therefore candidates for screening.
Collapse
Affiliation(s)
- Subhankar Chakraborty
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | | | | | | |
Collapse
|
49
|
Raspaglio G, De Maria I, Filippetti F, Martinelli E, Zannoni GF, Prislei S, Ferrandina G, Shahabi S, Scambia G, Ferlini C. HuR regulates beta-tubulin isotype expression in ovarian cancer. Cancer Res 2010; 70:5891-900. [PMID: 20587520 DOI: 10.1158/0008-5472.can-09-4656] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The supply of oxygen and nutrients to solid tumors is inefficient because cancer tissues have an inadequate number of microvessels, thus inducing the selective growth of the most aggressive cancer cells. This explains why many of the factors underlying a poor prognosis are induced in hypoxic/hypoglycemic conditions. Among these factors, a prominent role in several solid tumors is played by the class III beta-tubulin gene (TUBB3). The study described here reveals that glucose deprivation enhances TUBB3 expression at both the gene and protein levels in A2780 ovarian cancer cells. In silico analysis of TUBB3 mRNA sequence predicted a putative binding site for the RNA-binding protein Hu antigen (HuR) in the 3' flanking untranslated region. A hypoglycemic-dependent engagement of this site was shown using RNA pull-down and ribonucleoimmunoprecipitation techniques. Thereafter, HuR gene silencing revealed that TUBB3 translation is HuR dependent in hypoglycemia because HuR silencing inhibited the entry of TUBB3 mRNA into cytoskeletal and free polysomes. Finally, the clinical value of this finding was assessed in a clinical cohort of 46 ovarian cancer patients in whom it was found that HuR cytoplasmic staining was associated with high levels of TUBB3 and poor survival.
Collapse
Affiliation(s)
- Giuseppina Raspaglio
- Laboratory of Antineoplastic Pharmacology, Department of Obstetrics and Gynecology, Catholic University of the Sacred Heart, Rome, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Ryu JK, Hong SM, Karikari CA, Hruban RH, Goggins MG, Maitra A. Aberrant MicroRNA-155 expression is an early event in the multistep progression of pancreatic adenocarcinoma. Pancreatology 2010; 10:66-73. [PMID: 20332664 PMCID: PMC2865485 DOI: 10.1159/000231984] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Accepted: 07/14/2009] [Indexed: 12/11/2022]
Abstract
BACKGROUND/AIMS Pancreatic intraepithelial neoplasia (PanIN) is the most common noninvasive precursor to invasive pancreatic adenocarcinoma. Misexpression of microRNAs (miRNAs) is commonly encountered in invasive neoplasia; however, miRNA abnormalities in PanIN lesions have not been documented. METHODS Three candidate miRNAs (miR-21, miR-155, and miR-221) previously reported as overexpressed in pancreatic cancers were assessed in 31 microdissected PanINs (14 PanIN-1, 9 PanIN-2, 8 PanIN-3) using quantitative reverse transcription PCR (qRT-PCR). Subsequently, miR-155 was evaluated by locked nucleic acid in situ hybridization (LNA-ISH) in PanIN tissue microarrays. RESULTS Relative to microdissected non-neoplastic ductal epithelium, significant overexpression of miR-155 was observed in both PanIN-2 (2.6-fold, p = 0.02) and in PanIN-3 (7.4-fold, p = 0.014), while borderline significant overexpression of miR-21 (2.5-fold, p = 0.049) was observed in PanIN-3 only. In contrast, no significant differences in miR-221 levels were observed between ductal epithelium and PanIN lesions by qRT-PCR. LNA-ISH confirmed the aberrant expression of miR-155 in PanIN-2 (9 of 20, 45%) and in PanIN-3 (8 of 13, 62%), respectively, when compared with normal ductal epithelium (0 of 10) (p < 0.01). CONCLUSIONS Abnormalities of miRNA expression are observed in the multistep progression of pancreatic cancer, with miR-155 aberrations demonstrable at the stage of PanIN-2, and miR-21 abnormalities at the stage of PanIN-3 lesions. and IAP.
Collapse
Affiliation(s)
- Ji Kon Ryu
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Md., USA,Department of Internal Medicine, Seoul National University School of Medicine, Seoul, Korea
| | - Seung-Mo Hong
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Md., USA,*Seung-Mo Hong, MD, Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Room 316, CRB II, 1550 Orleans Street, Baltimore, MD 21231 (USA), Tel. +1 410 955 3511, Fax +1 410 614 0671, E-Mail
| | - Collins A. Karikari
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Md., USA
| | - Ralph H. Hruban
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Md., USA,Department of Oncology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Md., USA
| | - Michael G. Goggins
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Md., USA,Department of Oncology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Md., USA,Department of Medicine, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Md., USA
| | - Anirban Maitra
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Md., USA,Department of Oncology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Md., USA,McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Md., USA
| |
Collapse
|