1
|
Waheed Y, Mojumdar A, Shafiq M, de Marco A, De March M. The fork remodeler helicase-like transcription factor in cancer development: all at once. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167280. [PMID: 38851303 DOI: 10.1016/j.bbadis.2024.167280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/20/2024] [Accepted: 06/02/2024] [Indexed: 06/10/2024]
Abstract
The Helicase-like Transcription Factor (HLTF) is a member of the SNF2-family of fork remodelers, primarily studied for its capacity to provide DNA Damage Tolerance (DDT) and to induce replication fork reversal (RFR). HLTF is recruited at stalled forks where both its ATPase motor and HIP116 Rad5p N-terminal (HIRAN) domains are necessary for regulating its interaction with DNA. HIRAN bestows specificity to ssDNA 3'-end and imparts branch migration as well as DNA remodeling capabilities facilitating damage repair. Both expression regulation and mutation rate affect HLTF activity. Gene hypermethylation induces loss of HLTF function, in particular in colorectal cancer (CRC), implying a tumour suppressor role. Surprisingly, a correlation between hypermethylation and HLTF mRNA upregulation has also been observed, even within the same cancer type. In many cancers, both complex mutation patterns and the presence of gene Copy Number Variations (CNVs) have been reported. These conditions affect the amount of functional HLTF and question the physiological role of this fork remodeler. This review offers a systematic collection of the presently strewed information regarding HLTF, its structural and functional characteristics, the multiple roles in DDT and the regulation in cancer progression highlighting new research perspectives.
Collapse
Affiliation(s)
- Yossma Waheed
- Department of Environmental and Biological Sciences, University of Nova Gorica, Vipaska Cesta 13, SI-5000 Nova Gorica, Slovenia; National Institute of Science and Technology, Sector H-12, Islamabad Capital Territory, Pakistan
| | - Aditya Mojumdar
- Department of Biochemistry and Microbiology, University of Victoria, BC V8W 2Y2, Victoria, Canada
| | - Mohammad Shafiq
- Department of Environmental and Biological Sciences, University of Nova Gorica, Vipaska Cesta 13, SI-5000 Nova Gorica, Slovenia
| | - Ario de Marco
- Department of Environmental and Biological Sciences, University of Nova Gorica, Vipaska Cesta 13, SI-5000 Nova Gorica, Slovenia
| | - Matteo De March
- Department of Environmental and Biological Sciences, University of Nova Gorica, Vipaska Cesta 13, SI-5000 Nova Gorica, Slovenia.
| |
Collapse
|
2
|
Li R, Chen Y, Yang B, Li Z, Li P, Chen Y, Li J, He J, Wu Y, Sun Y, Wang X, Guo X, Zhang W, Zhao Y, Guo G. DTX2 promotes glioma development via regulation of HLTF. Biol Direct 2024; 19:2. [PMID: 38163902 PMCID: PMC10759338 DOI: 10.1186/s13062-023-00447-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024] Open
Abstract
BACKGROUND Human Deltex 2 (DTX2) is a ubiquitin E3 ligase that functions as an oncogene and has been shown to participate in many human cancers. However, the role of DTX2 in glioma progression has remained obscure. In this study, we explore the mechanism underlying the function of DTX2 in glioma progression. METHODS The associations between DTX2 expression and clinical characteristics of glioma were determined by bioinformatic analysis of data from The Cancer Genome Atlas and Human Protein Atlas. The expression of DTX2 in glioma tissues was detected using immunohistochemistry and western blotting. Lentivirus-mediated gene knockdown and overexpression were used to determine the effects of DTX2 and helicase-like transcription element (HLTF) on glioma cell proliferation and migration with CCK-8, cell colony formation, transwell, and wound healing assays; flow cytometry in vitro; and animal models in vivo. The interaction of the DTX2 and HLTF proteins was verified by immunoprecipitation assay and confocal microscopy. RESULTS DTX2 was highly expressed in glioma samples, and this was correlated with worse overall survival. Silencing of DTX2 suppressed glioma cell viability, colony formation, and migration and induced cell apoptosis. In vitro ubiquitination assays confirmed that DTX2 could downregulate HLTF protein levels by increasing ubiquitination of the HLTF protein. We also observed that HLTF inhibited proliferation and migration of glioma cells. Subcutaneous xenografts with DTX2-overexpressing U87 cells showed significantly increased tumor volumes and weights. CONCLUSIONS We have identified DTX2/HLTF as a new axis in the development of glioma that could serve as a prognostic or therapeutic marker.
Collapse
Affiliation(s)
- Ren Li
- School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Yang Chen
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Biao Yang
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Ziao Li
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Peize Li
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Yu Chen
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Jiayu Li
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Jianhang He
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Yongqiang Wu
- Department of Emergency, First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Yanqi Sun
- Department of Emergency, First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Xiaogang Wang
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Xiaolong Guo
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Wenju Zhang
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Yuanli Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Geng Guo
- Department of Emergency, First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China.
| |
Collapse
|
3
|
Cen X, Lu Y, Lu J, Zhan P, Cheng Y, Luo C, Liu J, Xie C, Wang F. Upregulation of helicase-like transcription factor predicts poor prognosis and facilitates hepatocellular carcinoma progression. Hum Cell 2023:10.1007/s13577-023-00917-3. [PMID: 37227687 DOI: 10.1007/s13577-023-00917-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 05/12/2023] [Indexed: 05/26/2023]
Abstract
Helicase-like transcription factor (HLTF) belongs to the family of SWI/SNF proteins, which has been reported to exert oncogenic function in several human cancers. However, to date, its functional role in hepatocellular carcinoma (HCC) has not been revealed. Here, we found that HLTF was highly expressed in HCC tissues compared to nontumor tissues. Additionally, upregulation of HLTF was significantly associated with poor prognosis of patients with HCC. Functional experiments demonstrated that knockdown of HLTF expression significantly inhibited the proliferation, migration, and invasion of HCC cells in vitro, and suppressed tumor growth in vivo. In conclusion, our results suggest that upregulation of HLTF is associated with the development of HCC, and HLTF may be a potential therapeutic target for HCC treatment.
Collapse
Affiliation(s)
- Xuesong Cen
- Xiamen Translational Medical Key Laboratory of Digestive System Tumor, Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, School of Medicine, Zhongshan Hospital of Xiamen University, Xiamen University, 209 South Hubin Road, Xiamen, 361004, Fujian Province, China
| | - Yuyan Lu
- Xiamen Translational Medical Key Laboratory of Digestive System Tumor, Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, School of Medicine, Zhongshan Hospital of Xiamen University, Xiamen University, 209 South Hubin Road, Xiamen, 361004, Fujian Province, China
| | - Jing Lu
- Xiamen Translational Medical Key Laboratory of Digestive System Tumor, Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, School of Medicine, Zhongshan Hospital of Xiamen University, Xiamen University, 209 South Hubin Road, Xiamen, 361004, Fujian Province, China
| | - Ping Zhan
- Xiamen Translational Medical Key Laboratory of Digestive System Tumor, Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, School of Medicine, Zhongshan Hospital of Xiamen University, Xiamen University, 209 South Hubin Road, Xiamen, 361004, Fujian Province, China
| | - Yizhe Cheng
- Xiamen Translational Medical Key Laboratory of Digestive System Tumor, Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, School of Medicine, Zhongshan Hospital of Xiamen University, Xiamen University, 209 South Hubin Road, Xiamen, 361004, Fujian Province, China
| | - Changhong Luo
- Xiamen Translational Medical Key Laboratory of Digestive System Tumor, Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, School of Medicine, Zhongshan Hospital of Xiamen University, Xiamen University, 209 South Hubin Road, Xiamen, 361004, Fujian Province, China
| | - Jie Liu
- Xiamen Translational Medical Key Laboratory of Digestive System Tumor, Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, School of Medicine, Zhongshan Hospital of Xiamen University, Xiamen University, 209 South Hubin Road, Xiamen, 361004, Fujian Province, China
| | - Chengrong Xie
- Xiamen Translational Medical Key Laboratory of Digestive System Tumor, Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, School of Medicine, Zhongshan Hospital of Xiamen University, Xiamen University, 209 South Hubin Road, Xiamen, 361004, Fujian Province, China.
| | - Fuqiang Wang
- Department of Hepatobiliary Surgery, Xiamen Key Laboratory of Liver Diseases, Xiamen Hospital of Traditional Chinese Medicine, Beijing University of Chinese Medicine, 1739 Xianyue Road, Xiamen, 361001, Fujian Province, China.
| |
Collapse
|
4
|
Xu Y, Ke S, Lu S, Wang C, Li Z, Feng Z, Yu H, Bai M, Qian B, Yin B, Li X, Hua Y, Jiang H, Ma Y. HLTF promotes hepatocellular carcinoma progression by enhancing SRSF1 stability and activating ERK/MAPK pathway. Oncogenesis 2023; 12:2. [PMID: 36670110 PMCID: PMC9859789 DOI: 10.1038/s41389-023-00447-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 01/06/2023] [Accepted: 01/11/2023] [Indexed: 01/22/2023] Open
Abstract
Helicase-like transcription factor (HLTF) has been found to be involved in the progression of several tumors, but the role of HLTF in hepatocellular carcinoma (HCC) progression has not been studied. Here, our study explored the underlying mechanism of HLTF in HCC progression for the first time. Database analysis and clinical sample examination indicated that HLTF was upregulated in HCC tissues and was related to poor clinicopathological features in patients. Upregulation of HLTF accelerated the growth and metastasis of HCC cells both in vitro and in vivo. Bioinformatics analysis and subsequent experiments revealed that ERK/MAPK signaling pathway activation was vital to HLTF-mediated proliferation and metastasis in HCC cells. Moreover, HLTF was demonstrated to interact with SRSF1 and contribute to its protein stability to activate the ERK/MAPK signaling pathway and enhance HCC growth and metastasis. In addition, miR-511-5p was expressed at a low level in HCC tissues, was negatively correlated HLTF, and regulated HLTF expression. Our study shows that HLTF plays an oncogenic role in HCC progression and provides a novel biomarker and therapeutic target for the diagnosis and treatment of HCC.
Collapse
Affiliation(s)
- Yanan Xu
- grid.412596.d0000 0004 1797 9737Key Laboratory of Hepatosplenic Surgery, Ministry of Education, the First Affiliated Hospital of Harbin Medical University, Harbin, China ,grid.412596.d0000 0004 1797 9737Department of Minimal Invasive Hepatic Surgery, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shanjia Ke
- grid.412596.d0000 0004 1797 9737Key Laboratory of Hepatosplenic Surgery, Ministry of Education, the First Affiliated Hospital of Harbin Medical University, Harbin, China ,grid.412596.d0000 0004 1797 9737Department of Minimal Invasive Hepatic Surgery, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shounan Lu
- grid.412596.d0000 0004 1797 9737Key Laboratory of Hepatosplenic Surgery, Ministry of Education, the First Affiliated Hospital of Harbin Medical University, Harbin, China ,grid.412596.d0000 0004 1797 9737Department of Minimal Invasive Hepatic Surgery, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chaoqun Wang
- grid.412596.d0000 0004 1797 9737Key Laboratory of Hepatosplenic Surgery, Ministry of Education, the First Affiliated Hospital of Harbin Medical University, Harbin, China ,grid.412596.d0000 0004 1797 9737Department of Minimal Invasive Hepatic Surgery, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zihao Li
- grid.412596.d0000 0004 1797 9737Key Laboratory of Hepatosplenic Surgery, Ministry of Education, the First Affiliated Hospital of Harbin Medical University, Harbin, China ,grid.412596.d0000 0004 1797 9737Department of Minimal Invasive Hepatic Surgery, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhigang Feng
- grid.412596.d0000 0004 1797 9737Key Laboratory of Hepatosplenic Surgery, Ministry of Education, the First Affiliated Hospital of Harbin Medical University, Harbin, China ,grid.412596.d0000 0004 1797 9737Department of Minimal Invasive Hepatic Surgery, the First Affiliated Hospital of Harbin Medical University, Harbin, China ,The First Department of General Surgery, Affiliated Hospital of Inner Mongolia Minzu University, Tongliao, China
| | - Hongjun Yu
- grid.412596.d0000 0004 1797 9737Key Laboratory of Hepatosplenic Surgery, Ministry of Education, the First Affiliated Hospital of Harbin Medical University, Harbin, China ,grid.412596.d0000 0004 1797 9737Department of Minimal Invasive Hepatic Surgery, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Miaoyu Bai
- grid.412596.d0000 0004 1797 9737Key Laboratory of Hepatosplenic Surgery, Ministry of Education, the First Affiliated Hospital of Harbin Medical University, Harbin, China ,grid.412596.d0000 0004 1797 9737Department of Minimal Invasive Hepatic Surgery, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Baolin Qian
- grid.412596.d0000 0004 1797 9737Key Laboratory of Hepatosplenic Surgery, Ministry of Education, the First Affiliated Hospital of Harbin Medical University, Harbin, China ,grid.412596.d0000 0004 1797 9737Department of Minimal Invasive Hepatic Surgery, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Bing Yin
- grid.412596.d0000 0004 1797 9737Key Laboratory of Hepatosplenic Surgery, Ministry of Education, the First Affiliated Hospital of Harbin Medical University, Harbin, China ,grid.412596.d0000 0004 1797 9737Department of Minimal Invasive Hepatic Surgery, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xinglong Li
- grid.412596.d0000 0004 1797 9737Key Laboratory of Hepatosplenic Surgery, Ministry of Education, the First Affiliated Hospital of Harbin Medical University, Harbin, China ,grid.412596.d0000 0004 1797 9737Department of Minimal Invasive Hepatic Surgery, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yongliang Hua
- grid.412596.d0000 0004 1797 9737Key Laboratory of Hepatosplenic Surgery, Ministry of Education, the First Affiliated Hospital of Harbin Medical University, Harbin, China ,grid.412596.d0000 0004 1797 9737Department of Pediatric Surgery, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hongchi Jiang
- grid.412596.d0000 0004 1797 9737Key Laboratory of Hepatosplenic Surgery, Ministry of Education, the First Affiliated Hospital of Harbin Medical University, Harbin, China ,grid.412596.d0000 0004 1797 9737Department of Minimal Invasive Hepatic Surgery, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yong Ma
- grid.412596.d0000 0004 1797 9737Key Laboratory of Hepatosplenic Surgery, Ministry of Education, the First Affiliated Hospital of Harbin Medical University, Harbin, China ,grid.412596.d0000 0004 1797 9737Department of Minimal Invasive Hepatic Surgery, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
5
|
Ren T, Wang S, Zhang B, Zhou W, Wang C, Zhao X, Feng J. LTA4H extensively associates with mRNAs and lncRNAs indicative of its novel regulatory targets. PeerJ 2023; 11:e14875. [PMID: 36923505 PMCID: PMC10010175 DOI: 10.7717/peerj.14875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 01/19/2023] [Indexed: 03/12/2023] Open
Abstract
The RNA-binding metabolic enzyme LTA4H is a novel target for cancer chemoprevention and chemotherapy. Recent research shows that the increased expression of LTA4H in laryngeal squamous cell carcinoma (LSCC) promotes tumor proliferation, migration, and metastasis. However, its mechanism remains unclear. To investigate the potential role of LTA4H in LSCC, we employed the improved RNA immunoprecipitation and sequencing (iRIP-Seq) experiment to get the expression profile of LTA4H binding RNA in HeLa model cells, a cancer model cell that is frequently used in molecular mechanism research. We found that LTA4H extensively binds with mRNAs/pre-mRNAs and lncRNAs. In the LTA4H binding peak, the frequency of the AAGG motif reported to interact with TRA2β4 was high in both replicates. More notably, LTA4H-binding genes were significantly enriched in the mitotic cell cycle, DNA repair, RNA splicing-related pathways, and RNA metabolism pathways, which means that LTA4H has tumor-related alternative splicing regulatory functions. QRT-PCR validation confirmed that LTA4H specifically binds to mRNAs of carcinogenesis-associated genes, including LTBP3, ROR2, EGFR, HSP90B1, and lncRNAs represented by NEAT1. These results suggest that LTA4H may combine with genes associated with LSCC as an RNA-binding protein to perform a cancer regulatory function. Our study further sheds light on the molecular mechanism of LTA4H as a clinical therapy target for LSCC.
Collapse
Affiliation(s)
- Tianjiao Ren
- Department of Otorhinolaryngology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Song Wang
- Department of Otorhinolaryngology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Bo Zhang
- Department of Otorhinolaryngology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Wei Zhou
- Department of Otorhinolaryngology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Cansi Wang
- Department of Otorhinolaryngology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Xiaorui Zhao
- Department of Otorhinolaryngology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Juan Feng
- Department of Otorhinolaryngology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| |
Collapse
|
6
|
Berglund A, Muenyi C, Siegel EM, Ajidahun A, Eschrich SA, Wong D, Hendrick LE, Putney RM, Kim S, Hayes DN, Shibata D. Characterization of Epigenomic Alterations in HPV16+ Head and Neck Squamous Cell Carcinomas. Cancer Epidemiol Biomarkers Prev 2022; 31:858-869. [PMID: 35064062 PMCID: PMC8983563 DOI: 10.1158/1055-9965.epi-21-0922] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 11/18/2021] [Accepted: 01/12/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Epigenetic changes associated with human papillomavirus (HPV)-driven tumors have been described; however, HPV type-specific alterations are less well understood. We sought to compare HPV16-specific methylation changes with those in virus-unassociated head and neck squamous cell carcinomas (HNSCC). METHODS Within The Cancer Genome Atlas, 59 HPV16+ HNSCC, 238 nonviral HNSCC (no detectable HPV or other viruses), and 50 normal head and neck tissues were evaluated. Significant differentially methylated regions (DMR) were selected, and key associated genes were identified. Partial least squares models were generated to predict HPV16 status in additional independent samples. RESULTS HPV infection in HNSCC is associated with type-specific methylomic profiles. Multiple significant DMRs were identified between HPV16+, nonviral, and normal samples. The most significant differentially methylated genes, SYCP2, MSX2, HLTF, PITX2, and GRAMD4, demonstrated HPV16-associated methylation patterns with corresponding alterations in gene expression. Phylogenetically related HPV types (alpha-9 species; HPV31, HPV33, and HPV35) demonstrated a similar methylation profile to that of HPV16 but differed from those seen in other types, such as HPV18 and 45 (alpha-7). CONCLUSIONS HNSCC linked to HPV16 and types from the same alpha species are associated with a distinct methylation profile. This HPV16-associated methylation pattern is also detected in cervical cancer and testicular germ cell tumors. We present insights into both shared and unique methylation alterations associated with HPV16+ tumors and may have implications for understanding the clinical behavior of HPV-associated HNSCC. IMPACT HPV type-specific methylomic changes may contribute to understanding biologic mechanisms underlying differences in clinical behavior among different HPV+ and HPV- HNSCC.
Collapse
Affiliation(s)
- Anders Berglund
- Departments of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Clarisse Muenyi
- Department of Surgery, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Erin M Siegel
- Departments of Cancer Epidemiology , H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Abidemi Ajidahun
- Department of Surgery, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Steven A. Eschrich
- Departments of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Denise Wong
- Department of Surgery, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Leah E. Hendrick
- Department of Surgery, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Ryan M. Putney
- Departments of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Sungjune Kim
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - D. Neil Hayes
- Division of Hematology and Oncology, University of Tennessee Health Science Center, Memphis TN, USA
| | - David Shibata
- Department of Surgery, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
7
|
Gallo D, Brown GW. Post-replication repair: Rad5/HLTF regulation, activity on undamaged templates, and relationship to cancer. Crit Rev Biochem Mol Biol 2019; 54:301-332. [PMID: 31429594 DOI: 10.1080/10409238.2019.1651817] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/12/2019] [Accepted: 07/31/2019] [Indexed: 12/18/2022]
Abstract
The eukaryotic post-replication repair (PRR) pathway allows completion of DNA replication when replication forks encounter lesions on the DNA template and are mediated by post-translational ubiquitination of the DNA sliding clamp proliferating cell nuclear antigen (PCNA). Monoubiquitinated PCNA recruits translesion synthesis (TLS) polymerases to replicate past DNA lesions in an error-prone manner while addition of K63-linked polyubiquitin chains signals for error-free template switching to the sister chromatid. Central to both branches is the E3 ubiquitin ligase and DNA helicase Rad5/helicase-like transcription factor (HLTF). Mutations in PRR pathway components lead to genomic rearrangements, cancer predisposition, and cancer progression. Recent studies have challenged the notion that the PRR pathway is involved only in DNA lesion tolerance and have shed new light on its roles in cancer progression. Molecular details of Rad5/HLTF recruitment and function at replication forks have emerged. Mounting evidence indicates that PRR is required during lesion-less replication stress, leading to TLS polymerase activity on undamaged templates. Analysis of PRR mutation status in human cancers and PRR function in cancer models indicates that down regulation of PRR activity is a viable strategy to inhibit cancer cell growth and reduce chemoresistance. Here, we review these findings, discuss how they change our views of current PRR models, and look forward to targeting the PRR pathway in the clinic.
Collapse
Affiliation(s)
- David Gallo
- Department of Biochemistry and Donnelly Centre, University of Toronto , Toronto , Canada
| | - Grant W Brown
- Department of Biochemistry and Donnelly Centre, University of Toronto , Toronto , Canada
| |
Collapse
|
8
|
Liu L, Liu H, Zhou Y, He J, Liu Q, Wang J, Zeng M, Yuan D, Tan F, Zhou Y, Pei H, Zhu H. HLTF suppresses the migration and invasion of colorectal cancer cells via TGF‑β/SMAD signaling in vitro. Int J Oncol 2018; 53:2780-2788. [PMID: 30320371 DOI: 10.3892/ijo.2018.4591] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 09/25/2019] [Indexed: 11/06/2022] Open
Abstract
Helicase‑like transcription factor (HLTF) has been identified as a tumor suppressor gene. The hypermethylation of HTLF is frequently observed in various types of cancer, including colorectal cancer (CRC). However, the mechanisms through which HLTF suppresses CRC progression remain unclear. Thus, the aim of the present study was to explore the biological function of HLTF in CRC cells and the underlying mechanisms. CRC tissues and cells were used to detect the expression of HLTF. Wound‑healing and Transwell assays were performed to assess the motility of CRC cells. The results revealed that HLTF expression was significantly associated with the differentiation status, invasion depth, lymph node metastasis and distant metastasis. A low HLTF expression was significantly associated with a poor survival. Furthermore, HTLF knockdown or ectopic overexpression significantly promoted or suppressed the motility of CRC cells, respectively. With regard to the underlying molecular mechanisms, the protein expression of HTLF was upregulated when the CRC cells were stimulated with transforming growth factor (TGF)‑β, and HLTF upregulation induced an increase in SMAD4 and p‑SMAD2/3 expression and a decrease in levels of the TGF‑β/SMAD pathway downstream genes, Vimentin and zinc finger e‑box binding homeobox 1 (ZEB1). On the whole, the findings of this study suggest that HLTF is negatively associated with the progression of CRC, and its overexpression suppresses the migration and invasion of CRC cells by targeting the TGF‑β/SMAD pathway.
Collapse
Affiliation(s)
- Li Liu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Huan Liu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Yangying Zhou
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Jiaofeng He
- Department of Oncology, Hunan Academy of Traditional Chinese Medicine Affiliated Hospital, Changsha, Hunan 410008, P.R. China
| | - Qiong Liu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Jian Wang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Manting Zeng
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Dan Yuan
- Department of Oncology, Zhuzhou No. 2 Hospital, Zhuzhou, Hunan 412005, P.R. China
| | - Fengbo Tan
- Department of Gastrointestinal Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Yuan Zhou
- Department of Gastrointestinal Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Haiping Pei
- Department of Gastrointestinal Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Hong Zhu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
9
|
Kaur G, Helmer RA, Smith LA, Martinez-Zaguilan R, Dufour JM, Chilton BS. Alternative splicing of helicase-like transcription factor (Hltf): Intron retention-dependent activation of immune tolerance at the feto-maternal interface. PLoS One 2018; 13:e0200211. [PMID: 29975766 PMCID: PMC6033450 DOI: 10.1371/journal.pone.0200211] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 06/21/2018] [Indexed: 12/21/2022] Open
Abstract
Hltf is regulated by intron retention, and global Hltf-deletion causes perinatal lethality from hypoglycemia. In heart, full-length Hltf is a transcriptional regulator of Hif-1α that controls transport systems. Thus, we tested the hypothesis that Hltf deletion from placenta caused or exacerbated neonatal hypoglycemia via Hif-1α regulation of nutrient transporters. RNA-seq data analyses identified significant changes in transcript expression and alternative splicing (AS) in E18.5 placentome. iPathwayGuide was used for gene ontology (GO) analysis of biological processes, molecular functions and cellular components. Elim pruning algorithm identified hierarchical relationships. The methylome was interrogated by Methyl-MiniSeq Epiquest analysis. GO analysis identified gene enrichment within biological processes. Protein expression was visualized with immunohistochemistry. Although two Hltf mRNA isoforms are quantifiable in most murine tissues, only the truncated Hltf isoform is expressed in placenta. The responsible intron retention event occurs in the absence of DNA methylation. iPathwayGuide analysis identified 157 target genes of 11,538 total genes with measured expression. These were obtained using a threshold of 0.05 for statistical significance (p-value) and a long fold change of expression with absolute value of at least 0.6. Hltf deletion altered transcription of trophoblast lineage-specific genes, and increased transcription of the Cxcr7 (p = 0.004) gene whose protein product is a co-receptor for human and simian immunodeficiency viruses. Concomitant increased Cxcr7 protein was identified with immunolabeling. Hltf deletion had no effect on transcription or site-specific methylation patterns of Hif-1α, the major glucose transporters, or System A amino acid transporters. There was no measureable evidence of uteroplacental dysfunction or fetal compromise. iPathGuide analysis revealed Hltf suppresses cytolysis (10/21 genes; p-value 1.900e-12; p-value correction: Elim pruning; GO:019835) including the perforin-granzyme pathway in uterine natural killer cells. Our findings 1) prove the truncated Hltf protein isoform is a transcription factor, 2) establish a functional link between AS of Hltf and immunosuppression at the feto-maternal interface, 3) correlate intron retention with the absence of DNA methylation, and 4) underscore the importance of differential splicing analysis to identify Hltf's functional diversity.
Collapse
Affiliation(s)
- Gurvinder Kaur
- Department of Cell Biology & Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas, United States of America
| | - Rebecca A. Helmer
- Department of Cell Biology & Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas, United States of America
| | - Lisa A. Smith
- Department of Pathology, Texas Tech University Health Sciences Center, Lubbock, Texas, United States of America
| | - Raul Martinez-Zaguilan
- Department of Cell Physiology & Molecular Biophysics, Texas Tech University Health Sciences Center, Lubbock, Texas, United States of America
| | - Jannette M. Dufour
- Department of Cell Biology & Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas, United States of America
| | - Beverly S. Chilton
- Department of Cell Biology & Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas, United States of America
| |
Collapse
|
10
|
Dhont L, Pintilie M, Kaufman E, Navab R, Tam S, Burny A, Shepherd F, Belayew A, Tsao MS, Mascaux C. Helicase-like transcription factor expression is associated with a poor prognosis in Non-Small-Cell Lung Cancer (NSCLC). BMC Cancer 2018; 18:429. [PMID: 29661164 PMCID: PMC5902896 DOI: 10.1186/s12885-018-4215-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Accepted: 03/12/2018] [Indexed: 01/09/2023] Open
Abstract
Background The relapse rate in early stage non-small cell lung cancer (NSCLC) after surgical resection is high. Prognostic biomarkers may help identify patients who may benefit from additional therapy. The Helicase-like Transcription Factor (HLTF) is a tumor suppressor, altered in cancer either by gene hypermethylation or mRNA alternative splicing. This study assessed the expression and the clinical relevance of wild-type (WT) and variant forms of HLTF RNAs in NSCLC. Methods We analyzed online databases (TCGA, COSMIC) for HLTF alterations in NSCLC and assessed WT and spliced HLTF mRNAs expression by RT-ddPCR in 39 lung cancer cell lines and 171 patients with resected stage I-II NSCLC. Results In silico analyses identified HLTF gene alterations more frequently in lung squamous cell carcinoma than in adenocarcinoma. In cell lines and in patients, WT and I21R HLTF mRNAs were detected, but the latter at lower level. The subgroup of 25 patients presenting a combined low WT HLTF expression and a high I21R HLTF expression had a significantly worse disease-free survival than the other 146 patients in univariate (HR 1.96, CI 1.17–3.30; p = 0.011) and multivariate analyses (HR 1.98, CI 1.15–3.40; p = 0.014). Conclusion A low WT HLTF expression with a high I21R HLTF expression is associated with a poor DFS.
Collapse
Affiliation(s)
- Ludovic Dhont
- Laboratory of Molecular Biology, Research Institute for Health Sciences and Technology, Université de Mons, Mons, Belgium.,Princess Margaret Research Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada.,Cellular and Molecular Epigenetics, Université de Liège-GIGA, Liège, Belgium
| | - Melania Pintilie
- Biostatistics Department, University of Toronto, Toronto, Canada
| | - Ethan Kaufman
- Princess Margaret Research Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Roya Navab
- Princess Margaret Research Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Shirley Tam
- Princess Margaret Research Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Arsène Burny
- Université Libre de Bruxelles (ULB), Bruxelles, Belgium
| | - Frances Shepherd
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Alexandra Belayew
- Laboratory of Molecular Biology, Research Institute for Health Sciences and Technology, Université de Mons, Mons, Belgium
| | - Ming-Sound Tsao
- Princess Margaret Research Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada.,Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada.,Laboratory of Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Céline Mascaux
- Department of Muldisciplinary Oncology and Therapeutic Innovations, Assistance Publique des Hôpitaux de Marseille (AP-HM), Aix-Marseille University, Chemin des Bourrely, 13195, Marseille, Cedex 20, France. .,Centre de Recherche en Cancérologie de Marseille (CRCM, Cancer Research Center of Marseille), Inserm UMR1068, CNRS UMR7258 and Aix-Marseille University UM105, Marseille, France.
| |
Collapse
|
11
|
Cheng CK, Chan NPH, Wan TSK, Lam LY, Cheung CHY, Wong THY, Ip RKL, Wong RSM, Ng MHL. Helicase-like transcription factor is a RUNX1 target whose downregulation promotes genomic instability and correlates with complex cytogenetic features in acute myeloid leukemia. Haematologica 2016; 101:448-57. [PMID: 26802049 DOI: 10.3324/haematol.2015.137125] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 01/13/2016] [Indexed: 12/27/2022] Open
Abstract
Helicase-like transcription factor is a SWI/SNF chromatin remodeling factor involved in various biological processes. However, little is known about its role in hematopoiesis. In this study, we measured helicase-like transcription factor mRNA expression in the bone marrow of 204 adult patients with de novo acute myeloid leukemia. Patients were dichotomized into low and high expression groups at the median level for clinicopathological correlations. Helicase-like transcription factor levels were dramatically reduced in the low expression patient group compared to those in the normal controls (n=40) (P<0.0001). Low helicase-like transcription factor expression correlated positively with French-American-British M4/M5 subtypes (P<0.0001) and complex cytogenetic abnormalities (P=0.02 for ≥3 abnormalities;P=0.004 for ≥5 abnormalities) but negatively with CEBPA double mutations (P=0.012). Also, low expression correlated with poorer overall (P=0.005) and event-free (P=0.006) survival in the intermediate-risk cytogenetic subgroup. Consistent with the more aggressive disease associated with low expression, helicase-like transcription factor knockdown in leukemic cells promoted proliferation and chromosomal instability that was accompanied by downregulation of mitotic regulators and impaired DNA damage response. The significance of helicase-like transcription factor in genome maintenance was further indicated by its markedly elevated expression in normal human CD34(+)hematopoietic stem cells. We further demonstrated that helicase-like transcription factor was a RUNX1 target and transcriptionally repressed by RUNX1-ETO and site-specific DNA methylation through a duplicated RUNX1 binding site in its promoter. Taken together, our findings provide new mechanistic insights on genomic instability linked to helicase-like transcription factor deregulation, and strongly suggest a tumor suppressor function of the SWI/SNF protein in acute myeloid leukemia.
Collapse
Affiliation(s)
- Chi Keung Cheng
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Cina
| | - Natalie P H Chan
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Cina
| | - Thomas S K Wan
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Cina
| | - Lai Ying Lam
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Cina
| | - Coty H Y Cheung
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Cina
| | - Terry H Y Wong
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Cina
| | - Rosalina K L Ip
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Cina
| | - Raymond S M Wong
- Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Cina Sir Y. K. Pao Centre for Cancer, Prince of Wales Hospital, Hong Kong, Cina
| | - Margaret H L Ng
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Cina State Key Laboratory in Oncology in South China, The Chinese University of Hong Kong, Cina
| |
Collapse
|
12
|
Dhont L, Mascaux C, Belayew A. The helicase-like transcription factor (HLTF) in cancer: loss of function or oncomorphic conversion of a tumor suppressor? Cell Mol Life Sci 2016; 73:129-47. [PMID: 26472339 PMCID: PMC11108516 DOI: 10.1007/s00018-015-2060-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Revised: 09/21/2015] [Accepted: 10/01/2015] [Indexed: 12/21/2022]
Abstract
The Helicase-like Transcription Factor (HLTF) belongs to the SWI/SNF family of proteins involved in chromatin remodeling. In addition to its role in gene transcription, HLTF has been implicated in DNA repair, which suggests that this protein acts as a tumor suppressor. Accumulating evidence indicates that HLTF expression is altered in various cancers via two mechanisms: gene silencing through promoter hypermethylation or alternative mRNA splicing, which leads to the expression of truncated proteins that lack DNA repair domains. In either case, the alteration of HLTF expression in cancer has a poor prognosis. In this review, we gathered published clinical and molecular data on HLTF. Our purposes are (a) to address whether HLTF alterations could be considered as cancer drivers or passengers and (b) to determine whether its different functions (transcription or DNA repair) could be diverted in clonal selection during cancer progression.
Collapse
Affiliation(s)
- Ludovic Dhont
- Laboratory of Molecular Biology, University of Mons, Avenue du Champ de Mars 6, Pentagone 3A, B-7000 Mons, Belgium
- Laboratory of Medicine and Pathobiology, University of Toronto, Toronto Medical Discovery Tower, 101 College Street, 14th floor, Toronto, ON M5G 1L7 Canada
| | - Céline Mascaux
- Laboratory of Medicine and Pathobiology, University of Toronto, Toronto Medical Discovery Tower, 101 College Street, 14th floor, Toronto, ON M5G 1L7 Canada
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, 610 University Avenue, Toronto, ON M5G 2L9 Canada
| | - Alexandra Belayew
- Laboratory of Molecular Biology, University of Mons, Avenue du Champ de Mars 6, Pentagone 3A, B-7000 Mons, Belgium
| |
Collapse
|
13
|
Arcolia V, Paci P, Dhont L, Chantrain G, Sirtaine N, Decaestecker C, Remmelink M, Belayew A, Saussez S. Helicase-like transcription factor: a new marker of well-differentiated thyroid cancers. BMC Cancer 2014; 14:492. [PMID: 25005870 PMCID: PMC4107960 DOI: 10.1186/1471-2407-14-492] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 07/01/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The preoperative characterization of thyroid nodules is a challenge for the clinicians. Fine-needle aspiration (FNA) is the commonly used pre-operative technique for diagnosis of malignant thyroid tumor. However, many benign lesions, with indeterminate diagnosis following FNA, are referred to surgery. There is an urgent need to identify biomarkers that could be used with the FNA to distinguish benign thyroid nodules from malignant tumors. The purpose of the study is to examine the level of expression of the helicase-like transcription factor (HLTF) in relation to neoplastic progression of thyroid carcinomas. METHODS The presence of HLTF was investigated using quantitative and semi-quantitative immunohistochemistry in a series of 149 thyroid lesion specimens. Our first clinical series was composed of 80 patients, including 20 patients presenting thyroid adenoma, 40 patients presenting thyroid papillary carcinoma, 12 patients presenting thyroid follicular carcinoma and 8 patients presenting anaplastic carcinoma. These specimens were assessed quantitatively using computer assisted microscopy. Our initial results were validated on a second clinical series composed of 40 benign thyroid lesions and 29 malignant thyroid lesions using a semi-quantitative approach. Finally, the HLTF protein expression was investigated by Western blotting in four thyroid cancer cell lines. RESULTS The decrease of HLTF staining was statistically significant during thyroid tumor progression in terms of both the percentage of mean optical density (MOD), which corresponds to the mean staining intensity (Kruskall-Wallis: p < 0.0005), and the labelling index (LI), which corresponds to the percentage of immunopositive cells (Kruskall-Wallis: p < 10-6). Adenomas presented very pronounced nuclear HLTF immunostaining, whereas papillary carcinomas exhibited HLTF only in the cytoplasm. The number of HLTF positive nuclei was clearly higher in the adenomas group (30%) than in the papillary carcinomas group (5%).The 115-kDa full size HLTF protein was immunodetected in four studied thyroid cancer cell lines. Moreover, three truncated HLTF forms (95-kDa, 80-kDa and 70-kDa) were also found in these tumor cells. CONCLUSIONS This study reveals an association between HLTF expression level and thyroid neoplastic progression. Nuclear HLTF immunostaining could be used with FNA in an attempt to better distinguish benign thyroid nodules from malignant tumors.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Sven Saussez
- Laboratory of Anatomy and Cell Biology, Faculty of Medicine and Pharmacy, Research Institute for Health Sciences and Technology, University of Mons, 7000 Mons, Belgium.
| |
Collapse
|
14
|
Helmer RA, Martínez-Zaguilán R, Dertien JS, Fulford C, Foreman O, Peiris V, Chilton BS. Helicase-like transcription factor (Hltf) regulates G2/M transition, Wt1/Gata4/Hif-1a cardiac transcription networks, and collagen biogenesis. PLoS One 2013; 8:e80461. [PMID: 24278285 PMCID: PMC3835564 DOI: 10.1371/journal.pone.0080461] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 10/03/2013] [Indexed: 12/22/2022] Open
Abstract
HLTF/Hltf regulates transcription, remodels chromatin, and coordinates DNA damage repair. Hltf is expressed in mouse brain and heart during embryonic and postnatal development. Silencing Hltf is semilethal. Seventy-four percent of congenic C57BL/6J Hltf knockout mice died, 75% within 12-24 hours of birth. Previous studies in neonatal (6-8 hour postpartum) brain revealed silencing Hltf disrupted cell cycle progression, and attenuated DNA damage repair. An RNA-Seq snapshot of neonatal heart transcriptome showed 1,536 of 20,000 total transcripts were altered (p < 0.05) - 10 up- and 1,526 downregulated. Pathway enrichment analysis with MetaCore™ showed Hltf’s regulation of the G2/M transition (p=9.726E-15) of the cell cycle in heart is nearly identical to its role in brain. In addition, Brca1 and 12 members of the Brca1 associated genome surveillance complex are also downregulated. Activation of caspase 3 coincides with transcriptional repression of Bcl-2. Hltf loss caused downregulation of Wt1/Gata4/Hif-1a signaling cascades as well as Myh7b/miR499 transcription. Hltf-specific binding to promoters and/or regulatory regions of these genes was authenticated by ChIP-PCR. Hif-1a targets for prolyl (P4ha1, P4ha2) and lysyl (Plod2) collagen hydroxylation, PPIase enzymes (Ppid, Ppif, Ppil3) for collagen trimerization, and lysyl oxidase (Loxl2) for collagen-elastin crosslinking were downregulated. However, transcription of genes for collagens, fibronectin, Mmps and their inhibitors (Timps) was unaffected. The collective downregulation of genes whose protein products control collagen biogenesis caused disorganization of the interstitial and perivascular myocardial collagen fibrillar network as viewed with picrosirius red-staining, and authenticated with spectral imaging. Wavy collagen bundles in control hearts contrasted with collagen fibers that were thin, short and disorganized in Hltf null hearts. Collagen bundles in Hltf null hearts were tangled and fragmented. Thus, silencing Hltf during heart organogenesis compromised DNA double-strand break repair, and caused aberrant collagen biogenesis altering the structural network that transmits cardiomyocyte force into muscle contraction.
Collapse
Affiliation(s)
- Rebecca A. Helmer
- Department of Cell Biology & Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas, United States of America
| | - Raul Martínez-Zaguilán
- Department of Cell Physiology & Molecular Biophysics, Texas Tech University Health Sciences Center, Lubbock, Texas, United States of America
| | - Janet S. Dertien
- Department of Pharmacology & Neuroscience, Texas Tech University Health Sciences Center, Lubbock, Texas, United States of America
| | - Candra Fulford
- Department of Cell Biology & Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas, United States of America
| | - Oded Foreman
- The Jackson Laboratory, Sacramento, California, United States of America
| | - Vasum Peiris
- Department of Pediatrics, Texas Tech University Health Sciences Center, Lubbock, Texas, United States of America
| | - Beverly S. Chilton
- Department of Cell Biology & Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas, United States of America
- * E-mail:
| |
Collapse
|
15
|
Suzuki M, Takahashi T. Aberrant DNA replication in cancer. Mutat Res 2012; 743-744:111-117. [PMID: 22968031 DOI: 10.1016/j.mrfmmm.2012.07.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Revised: 07/26/2012] [Accepted: 07/31/2012] [Indexed: 12/11/2022]
Abstract
Genomic instability plays an important role in cancer susceptibility, though the mechanics of its development remain unclear. An often-stated hypothesis is that error-prone phenotypes in DNA replication or aberrations in translesion DNA synthesis lead to genomic instability and cancer. Mutations in core DNA replication proteins have been identified in human cancer, although DNA replication is essential for cell proliferation and most mutations eliminating this function are deleterious. With recent developments in this field we review and discuss the possible involvement of DNA replication proteins in carcinogenesis.
Collapse
Affiliation(s)
- Motoshi Suzuki
- Division of Molecular Carcinogenesis, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | - Takashi Takahashi
- Division of Molecular Carcinogenesis, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
16
|
Capouillez A, Noël JC, Arafa M, Arcolia V, Mouallif M, Guenin S, Delvenne P, Belayew A, Saussez S. Expression of the helicase-like transcription factor and its variants during carcinogenesis of the uterine cervix: implications for tumour progression. Histopathology 2011; 58:984-8. [PMID: 21585432 DOI: 10.1111/j.1365-2559.2011.03843.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
17
|
Helmer RA, Dertien JS, Chilton BS. Prolactin induces Jak2 phosphorylation of RUSHY195. Mol Cell Endocrinol 2011; 338:79-83. [PMID: 21457752 DOI: 10.1016/j.mce.2011.03.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2010] [Revised: 02/25/2011] [Accepted: 03/02/2011] [Indexed: 11/28/2022]
Abstract
Jak2/RUSH-mediated prolactin signaling culminates in RUSH-1α-DNA-binding. Heretofore, Jak2-specific phosphorylation residues in RUSH were unknown. Genpathway's discovery approaches correlated RUSH-DNA binding (-126/-121) in uteroglobin's proximal promoter with recruitment of the transcriptional machinery. NetPhos 2.0 server found a single tyrosine phosphorylation site in RUSH's minimal DNA-binding domain. Y195 had identical context and prediction scores (0.52) for rabbit and human (HLTF) orthologs. The mouse ortholog (Hltf) had a higher prediction score (0.897). Affinity purified RUSHY195ph antibodies recognized native tyrosine phosphorylated RUSH protein immunoprecipitated from nuclear extracts. When R5020-treated HRE-H9 cells±the Jak2 inhibitor, Tyrene CR4, were stimulated with prolactin, confocal immunofluorescence images provided conclusive evidence that Jak2 mediated the availability of phosphorylated RUSHY195 in nucleus and cytoplasm. Catalytically active Jak2 is ipso facto a RUSH site-specific tyrosine kinase. Immunoprecipitation/Western blotting revealed both phosphorylation at Y195 and the physical interaction between p-Jak2/RUSH/HLTF/Hltf are evolutionarily conserved across three mammalian (rabbit, human, mouse) orthologs.
Collapse
Affiliation(s)
- Rebecca A Helmer
- Department of Cell Biology & Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, United States
| | | | | |
Collapse
|
18
|
Helicase-like transcription factor confers radiation resistance in cervical cancer through enhancing the DNA damage repair capacity. J Cancer Res Clin Oncol 2010; 137:629-37. [PMID: 20535496 DOI: 10.1007/s00432-010-0925-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2010] [Accepted: 05/22/2010] [Indexed: 10/19/2022]
Abstract
Helicase-like transcription factor (HLTF) is a member of the SWI/SNF (mating type switching/sucrose non-fermenting) family of ATPases/helicases and also has a RING-finger motif characteristic of ubiquitin ligase proteins. These features have led to suggestions that HLTF functions like yeast Rad5, which promotes replication through DNA lesions via a post-replication repair pathway. However, the function of HLTF in higher eukaryotes is still unknown. Herein, we found the overexpression of HLTF in radiation recurrent human uterine cervical carcinoma tissues when compared to disease free survived patients tissues. In this study, we used RNA interference techniques to investigate the potential function of HLTF in cervical cancer cell line HeLa and found that the cell proliferation was reduced by knockdown (KD) of HLTF. A host-cell reactivation assay showed that the capacity for repair to DNA damage induced by X-ray irradiation was reduced in HLTF KD cells. X-rays also increased apoptosis in HLTF KD cells. These results suggest that HLTF is involved in DNA repair and apoptosis in cancer cells, which might represent a target for gene therapies of human cancer.
Collapse
|
19
|
Abstract
In the yeast Saccharomyces cerevisiae, the Rad6-Rad18 DNA damage tolerance pathway constitutes a major defense system against replication fork blocking DNA lesions. The Rad6-Rad18 ubiquitin-conjugating/ligase complex governs error-free and error-prone translesion synthesis by specialized DNA polymerases, as well as an error-free Rad5-dependent postreplicative repair pathway. For facilitating replication through DNA lesions, translesion synthesis polymerases copy directly from the damaged template, while the Rad5-dependent damage tolerance pathway obtains information from the newly synthesized strand of the undamaged sister duplex. Although genetic data demonstrate the importance of the Rad5-dependent pathway in tolerating DNA damages, there has been little understanding of its mechanism. Also, the conservation of the yeast Rad5-dependent pathway in higher order eukaryotic cells remained uncertain for a long time. Here we summarize findings published in recent years regarding the role of Rad5 in promoting error-free replication of damaged DNA, and we also discuss results obtained with its human orthologs, HLTF and SHPRH.
Collapse
|