1
|
Wang N, Yuan Y, Hu T, Xu H, Piao H. Metabolism: an important player in glioma survival and development. Discov Oncol 2024; 15:577. [PMID: 39436434 PMCID: PMC11496451 DOI: 10.1007/s12672-024-01402-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/26/2024] [Indexed: 10/23/2024] Open
Abstract
Gliomas are malignant tumors originating from both neuroglial cells and neural stem cells. The involvement of neural stem cells contributes to the tumor's heterogeneity, affecting its metabolic features, development, and response to therapy. This review provides a brief introduction to the importance of metabolism in gliomas before systematically categorizing them into specific groups based on their histological and molecular genetic markers. Metabolism plays a critical role in glioma biology, as tumor cells rely heavily on altered metabolic pathways to support their rapid growth, survival, and progression. Dysregulated metabolic processes, involving carbohydrates, lipids, and amino acids not only fuel tumor development but also contribute to therapy resistance and metastatic potential. By understanding these metabolic changes, key intervention points, such as mutations in genes like RTK, EGFR, RAS, and IDH can be identified, paving the way for novel therapeutic strategies. This review emphasizes the connection between metabolic pathways and clinical challenges, offering actionable insights for future research and therapeutic development in gliomas.
Collapse
Affiliation(s)
- Ning Wang
- Institute of Cancer Medicine, Dalian University of Technology, No.2 Linggong Road, Ganjingzi, Dalian, Dalian, Liaoning, 116024, People's Republic of China
- Department of Medicine, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Cancer Hospital of China Medical University, No.44 Xiaoheyan Road, Dadong, Shenyang, Liaoning, 110042, People's Republic of China
| | - Yiru Yuan
- Institute of Cancer Medicine, Dalian University of Technology, No.2 Linggong Road, Ganjingzi, Dalian, Dalian, Liaoning, 116024, People's Republic of China
- Department of Medicine, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Cancer Hospital of China Medical University, No.44 Xiaoheyan Road, Dadong, Shenyang, Liaoning, 110042, People's Republic of China
| | - Tianhao Hu
- Institute of Cancer Medicine, Dalian University of Technology, No.2 Linggong Road, Ganjingzi, Dalian, Dalian, Liaoning, 116024, People's Republic of China
- Department of Medicine, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Cancer Hospital of China Medical University, No.44 Xiaoheyan Road, Dadong, Shenyang, Liaoning, 110042, People's Republic of China
| | - Huizhe Xu
- Institute of Cancer Medicine, Dalian University of Technology, No.2 Linggong Road, Ganjingzi, Dalian, Dalian, Liaoning, 116024, People's Republic of China.
- Department of Medicine, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Cancer Hospital of China Medical University, No.44 Xiaoheyan Road, Dadong, Shenyang, Liaoning, 110042, People's Republic of China.
| | - Haozhe Piao
- Institute of Cancer Medicine, Dalian University of Technology, No.2 Linggong Road, Ganjingzi, Dalian, Dalian, Liaoning, 116024, People's Republic of China.
- Department of Medicine, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Cancer Hospital of China Medical University, No.44 Xiaoheyan Road, Dadong, Shenyang, Liaoning, 110042, People's Republic of China.
| |
Collapse
|
2
|
Xuan X, Li Y, Huang C, Zhang Y. Regorafenib promotes antitumor progression in melanoma by reducing RRM2. iScience 2024; 27:110993. [PMID: 39435141 PMCID: PMC11492136 DOI: 10.1016/j.isci.2024.110993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/30/2024] [Accepted: 09/16/2024] [Indexed: 10/23/2024] Open
Abstract
Melanoma is a malignant tumor with a terrible prognosis. Although so many therapies are used for melanoma, the overall survival rate is still poor globally. Novel therapies are still required. In our study, the role and potential mechanism of regorafenib in melanoma are explored. Regorafenib has the ability to limit the growth, invasion, and metastasis of melanoma cells but to upregulate apoptosis-prompting markers (cleaved-PARP and Bax). RRM2 is identified to be the downstream target of regorafenib by RNA sequencing. In addition, we discovered that RRM2 inhibition and regorafenib have comparable effects on melanoma cells. Rescue experiments showed that RRM2 is crucial in regulating regorafenib's anti-melanoma progression. Moreover, ERK/E2F3 signaling influences regorafenib's ability to suppress melanoma cell growth. Ultimately, regorafenib significantly inhibits tumor growth in vivo. In conclusion, our finding demonstrated that regorafenib promotes antitumor progression in melanoma by reducing RRM2.
Collapse
Affiliation(s)
- Xiuyun Xuan
- Department of Dermatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, China
| | - Yanqiu Li
- Department of Dermatology, Hubei NO.3 People’s Hospital of Jianghan University, Wuhan 430033, Hubei, China
| | - Changzheng Huang
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, China
| | - Yong Zhang
- Department of Dermatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, China
| |
Collapse
|
3
|
Yagüe-Capilla M, Rudd SG. Understanding the interplay between dNTP metabolism and genome stability in cancer. Dis Model Mech 2024; 17:dmm050775. [PMID: 39206868 PMCID: PMC11381932 DOI: 10.1242/dmm.050775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
The size and composition of the intracellular DNA precursor pool is integral to the maintenance of genome stability, and this relationship is fundamental to our understanding of cancer. Key aspects of carcinogenesis, including elevated mutation rates and induction of certain types of DNA damage in cancer cells, can be linked to disturbances in deoxynucleoside triphosphate (dNTP) pools. Furthermore, our approaches to treat cancer heavily exploit the metabolic interplay between the DNA and the dNTP pool, with a long-standing example being the use of antimetabolite-based cancer therapies, and this strategy continues to show promise with the development of new targeted therapies. In this Review, we compile the current knowledge on both the causes and consequences of dNTP pool perturbations in cancer cells, together with their impact on genome stability. We outline several outstanding questions remaining in the field, such as the role of dNTP catabolism in genome stability and the consequences of dNTP pool expansion. Importantly, we detail how our mechanistic understanding of these processes can be utilised with the aim of providing better informed treatment options to patients with cancer.
Collapse
Affiliation(s)
- Miriam Yagüe-Capilla
- Science For Life Laboratory (SciLifeLab), Department of Oncology-Pathology, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Sean G Rudd
- Science For Life Laboratory (SciLifeLab), Department of Oncology-Pathology, Karolinska Institutet, 171 65 Stockholm, Sweden
| |
Collapse
|
4
|
Jin X, Yu W, Wang A, Qiu Y. Serum Ribonucleotide Reductase Subunit M2 in Patients with Chronic Liver Diseases and Hepatocellular Carcinoma. Lab Med 2023; 54:626-632. [PMID: 36944169 DOI: 10.1093/labmed/lmad013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND Ribonucleotide reductase subunit M2 (RRM2) plays a key role in cell and hepatitis B virus (HBV) replication. Nevertheless, its clinical implications for managing liver diseases have been inadequately studied. METHODS A total of 412 participants were enrolled, including 60 healthy control individuals, 55 patients with chronic hepatitis B (CHB), 173 patients with cirrhosis, and 124 patients with hepatocellular carcinoma (HCC). Serum RRM2 was measured via ELISA. RESULTS The level of serum RRM2 in patients with CHB, cirrhosis, and HCC was higher than that in healthy controls (P < .05). A large difference in serum RRM2 was found between HBV-related and non-HBV-related patients in the cirrhosis group (P < .001), compared with the difference between HBV-related HCC and non-HBV-related HCC (P = .86). In the HBV-related cirrhosis group, the serum RRM2 level showed significant positive correlations with HBV DNA, hepatitis B surface antigen, hepatitis B e antigen, Child-Pugh scores, and MELD scores and played a strong role in diagnosing HBV-related cirrhosis in CHB, compared with fibrosis-4 score and aspartate aminotransferase-to-platelet ratio index. CONCLUSIONS Serum RRM2 is a reliable biomarker for accurate HBV-related cirrhosis diagnosis and evaluation. Also, serum RRM2 could reflect the expression state of HBV replication in patients with HBV-related cirrhosis.
Collapse
Affiliation(s)
- Xuehang Jin
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang Provincial Key Laboratory for Drug Clinical Research and Evaluation, The First Affiliated Hospital
| | - Wei Yu
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang Provincial Key Laboratory for Drug Clinical Research and Evaluation, The First Affiliated Hospital
| | - Ange Wang
- Department of Geriatrics, School of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Yunqing Qiu
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang Provincial Key Laboratory for Drug Clinical Research and Evaluation, The First Affiliated Hospital
| |
Collapse
|
5
|
Corrales-Guerrero S, Cui T, Castro-Aceituno V, Yang L, Nair S, Feng H, Venere M, Yoon S, DeWees T, Shen C, Williams TM. Inhibition of RRM2 radiosensitizes glioblastoma and uncovers synthetic lethality in combination with targeting CHK1. Cancer Lett 2023; 570:216308. [PMID: 37482342 DOI: 10.1016/j.canlet.2023.216308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/29/2023] [Accepted: 07/11/2023] [Indexed: 07/25/2023]
Abstract
Glioblastoma (GBM) is an aggressive malignant primary brain tumor. Radioresistance largely contributes to poor clinical outcomes in GBM patients. We targeted ribonucleotide reductase subunit 2 (RRM2) with triapine to radiosensitize GBM. We found RRM2 is associated with increasing tumor grade, is overexpressed in GBM over lower grade gliomas and normal tissue, and is associated with worse survival. We found silencing or inhibition of RRM2 by siRNA or triapine sensitized GBM cells to ionizing radiation (IR) and delayed resolution of IR-induced γ-H2AX nuclear foci. In vivo, triapine and IR reduced tumor growth and increased mouse survival. Intriguingly, triapine led to RRM2 upregulation and CHK1 activation, suggesting a CHK1-dependent RRM2 upregulation following RRM2 inhibition. Consistently, silencing or inhibition of CHK1 with rabusertib abolished the triapine-induced RRM2 upregulation. Accordingly, combining rabusertib and triapine resulted in synthetic lethality in GBM cells. Collectively, our results suggest RRM2 is a promising therapeutic target for GBM, and targeting RRM2 with triapine sensitizes GBM cells to radiation and independently induces synthetic lethality of GBM cells with CHK1 inhibition. Our findings suggest combining triapine with radiation or rabusertib may improve therapeutic outcomes in GBM.
Collapse
Affiliation(s)
- Sergio Corrales-Guerrero
- Biomedical Sciences Graduate Program, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Tiantian Cui
- Department of Radiation Oncology, City of Hope, Duarte, CA, USA
| | | | - Linlin Yang
- Department of Radiation Oncology, City of Hope, Duarte, CA, USA
| | - Sindhu Nair
- Department of Radiation Oncology, City of Hope, Duarte, CA, USA
| | - Haihua Feng
- Department of Radiation Oncology, City of Hope, Duarte, CA, USA
| | - Monica Venere
- Department of Radiation Oncology, The Ohio State University Wexner Medical Center, Arthur G. James Comprehensive Cancer Center and Richard J. Solove Research Institute, Columbus, OH, USA
| | - Stephanie Yoon
- Department of Radiation Oncology, City of Hope, Duarte, CA, USA
| | - Todd DeWees
- Division of Biostatistics, City of Hope, Duarte, CA, USA
| | - Changxian Shen
- Department of Radiation Oncology, City of Hope, Duarte, CA, USA
| | | |
Collapse
|
6
|
Jiang W, Wang L, Zhang Y, Li H. Identification and verification of novel immune-related ferroptosis signature with excellent prognostic predictive and clinical guidance value in hepatocellular carcinoma. Front Genet 2023; 14:1112744. [PMID: 37671041 PMCID: PMC10475594 DOI: 10.3389/fgene.2023.1112744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 05/25/2023] [Indexed: 09/07/2023] Open
Abstract
Background: Immunity and ferroptosis often play a synergistic role in the progression and treatment of hepatocellular carcinoma (HCC). However, few studies have focused on identifying immune-related ferroptosis gene biomarkers. Methods: We performed weighted gene co-expression network analysis (WGCNA) and random forest to identify prognostic differentially expressed immune-related genes (PR-DE-IRGs) highly related to HCC and characteristic prognostic differentially expressed ferroptosis-related genes (PR-DE-FRGs) respectively to run co-expression analysis for prognostic differentially expressed immune-related ferroptosis characteristic genes (PR-DE-IRFeCGs). Lasso regression finally identified 3 PR-DE-IRFeCGs for us to construct a prognostic predictive model. Differential expression and prognostic analysis based on shared data from multiple sources and experimental means were performed to further verify the 3 modeled genes' biological value in HCC. We ran various performance testing methods to test the model's performance and compare it with other similar signatures. Finally, we integrated composite factors to construct a comprehensive quantitative nomogram for accurate prognostic prediction and evaluated its performance. Results: 17 PR-DE-IRFeCGs were identified based on co-expression analysis between the screened 17 PR-DE-FRGs and 34 PR-DE-IRGs. Multi-source sequencing data, QRT-PCR, immunohistochemical staining and testing methods fully confirmed the upregulation and significant prognostic influence of the three PR-DE-IRFeCGs in HCC. The model performed well in the performance tests of multiple methods based on the 5 cohorts. Furthermore, our model outperformed other related models in various performance tests. The immunotherapy and chemotherapy guiding value of our signature and the comprehensive nomogram's excellent performance have also stood the test. Conclusion: We identified a novel PR-DE-IRFeCGs signature with excellent prognostic prediction and clinical guidance value in HCC.
Collapse
Affiliation(s)
- Wenxiu Jiang
- Department of Infectious Diseases, The People’s Hospital of Danyang, Affiliated Danyang Hospital of Nantong University, Danyang, China
| | - Lili Wang
- Department of Clinical Research, The Second Hospital of Nanjing, Nanjing Hospital Affiliated to Nanjing University of Traditional Chinese Medicine, Nanjing, China
| | - Yajuan Zhang
- General Medicine, Pingjiang Xincheng Community Health Service Center, Suzhou, China
| | - Hongliang Li
- Department of Infectious Diseases, The People’s Hospital of Danyang, Affiliated Danyang Hospital of Nantong University, Danyang, China
| |
Collapse
|
7
|
Tomioka Y, Suetsugu T, Seki N, Tanigawa K, Hagihara Y, Shinmura M, Asai S, Kikkawa N, Inoue H, Mizuno K. The Molecular Pathogenesis of Tumor-Suppressive miR-486-5p and miR-486-3p Target Genes: GINS4 Facilitates Aggressiveness in Lung Adenocarcinoma. Cells 2023; 12:1885. [PMID: 37508549 PMCID: PMC10378275 DOI: 10.3390/cells12141885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/14/2023] [Accepted: 07/16/2023] [Indexed: 07/30/2023] Open
Abstract
The involvement of passenger strands of miRNAs in the molecular pathogenesis of human cancers is a recent concept in miRNA research, and it will broaden our understanding of the molecular mechanisms of miRNA-mediated cancer. The analysis of our miRNA signature of LUAD revealed that both strands of pre-miR-486 (miR-486-5p and miR-486-3p) were downregulated in LUAD tissues. Ectopic expression of both miRNAs induced cell cycle arrest in LUAD cells, suggesting both strands of miRNAs derived from pre-miR-486 were tumor suppressive. Our in silico analysis showed a total of 99 genes may be under the control of both miRNAs in LUAD cells. Importantly, among these targets, the high expression of seven genes (MKI67, GINS4, RRM2, HELLS, MELK, TIMELESS, and SAPCD2) predicted a poorer prognosis of LUAD patients (p < 0.05). We focused on GINS4, a DNA replication complex GINS protein that plays an essential role in the initiation of DNA replication. Our functional assays showed that GINS4 was directly controlled by both strands of pre-miR-486, and its aberrant expression facilitated the aggressive behavior of LUAD cells. GINS4 is attractive as a therapeutic target for this disease. MiRNA analysis, including passenger strands, will further improve our understanding of the molecular pathogenesis of LUAD.
Collapse
Affiliation(s)
- Yuya Tomioka
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan
| | - Takayuki Suetsugu
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan
| | - Naohiko Seki
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chuo-ku, Chiba 260-8670, Japan
| | - Kengo Tanigawa
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan
| | - Yoko Hagihara
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan
| | - Masahiro Shinmura
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan
| | - Shunichi Asai
- Head and Neck Surgery, Chiba Cancer Center, Nitona, Chiba 260-8717, Japan
| | - Naoko Kikkawa
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chuo-ku, Chiba 260-8670, Japan
| | - Hiromasa Inoue
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan
| | - Keiko Mizuno
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan
| |
Collapse
|
8
|
Chatzidavid S, Kontandreopoulou CN, Diamantopoulos PT, Giannakopoulou N, Katsiampoura P, Stafylidis C, Dryllis G, Kyrtsonis MC, Dimou M, Panayiotidis P, Viniou NA. The Clinical and Prognostic Significance of Ribonucleotide Reductase Subunits RRM1 and RRM2 mRNA Levels in Patients with Chronic Lymphocytic Leukemia. Clin Hematol Int 2023:10.1007/s44228-023-00033-x. [PMID: 36811764 DOI: 10.1007/s44228-023-00033-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 01/25/2023] [Indexed: 02/24/2023] Open
Abstract
Ribonucleotide Reductase (RNR) converts ribonucleotides to deoxyribonucleotides required for DNA replication and repair. RNR consists of subunits M1 and M2. It has been studied as a prognostic factor in several solid tumors and in chronic hematological malignancies, but not in chronic lymphocytic leukemia (CLL). Peripheral blood samples were collected from 135 CLL patients. M1/M2 gene mRNA levels were measured and expressed as a RRM1-2/GAPDH ratio. M1 gene promoter methylation was studied in a patients' subgroup. M1 mRNA expression was higher in patients without anemia (p = 0.026), without lymphadenopathy (p = 0.005) and 17p gene deletion (p = 0.031). Abnormal LDH (p = 0.022) and higher Rai stage (p = 0.019) were associated with lower M1 mRNA levels. Higher M2 mRNA levels were found in patients without lymphadenopathy (p = .048), Rai stage 0 (p = 0.025) and Trisomy 12 (p = 0.025). The correlation between RNR subunits and clinic-biological characteristics in CLL patients demonstrate RNR's potential role as a prognostic factor.
Collapse
Affiliation(s)
- Sevastianos Chatzidavid
- Hematology Unit, First Department of Internal Medicine, Laikon General Hospital, National and Kapodistrian University of Athens, 17 Agiou Thoma Street, Athens, Greece.
| | - Christina-Nefeli Kontandreopoulou
- Hematology Unit, First Department of Internal Medicine, Laikon General Hospital, National and Kapodistrian University of Athens, 17 Agiou Thoma Street, Athens, Greece
| | - Panagiotis T Diamantopoulos
- Hematology Unit, First Department of Internal Medicine, Laikon General Hospital, National and Kapodistrian University of Athens, 17 Agiou Thoma Street, Athens, Greece
| | - Nefeli Giannakopoulou
- Hematology Unit, First Department of Internal Medicine, Laikon General Hospital, National and Kapodistrian University of Athens, 17 Agiou Thoma Street, Athens, Greece
| | - Panagiota Katsiampoura
- Hematology Unit, First Department of Internal Medicine, Laikon General Hospital, National and Kapodistrian University of Athens, 17 Agiou Thoma Street, Athens, Greece
| | - Christos Stafylidis
- Hematology Unit, First Department of Internal Medicine, Laikon General Hospital, National and Kapodistrian University of Athens, 17 Agiou Thoma Street, Athens, Greece
| | - Georgios Dryllis
- Hematology Unit, First Department of Internal Medicine, Laikon General Hospital, National and Kapodistrian University of Athens, 17 Agiou Thoma Street, Athens, Greece
| | - Marie-Christine Kyrtsonis
- Hematology Section of the First Department of Propaedeutic Internal Medicine, Laikon University Hospital, Athens, Greece
| | - Maria Dimou
- Hematology Section of the First Department of Propaedeutic Internal Medicine, Laikon University Hospital, Athens, Greece
| | - Panayiotis Panayiotidis
- Department of Hematology and Bone Marrow Transplantation Unit, National and Kapodistrian University of Athens, School of Medicine, Laikon General Hospital, Athens, Greece
| | - Nora-Athina Viniou
- Hematology Unit, First Department of Internal Medicine, Laikon General Hospital, National and Kapodistrian University of Athens, 17 Agiou Thoma Street, Athens, Greece
| |
Collapse
|
9
|
Prognostic and Immunological Potential of Ribonucleotide Reductase Subunits in Liver Cancer. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:3878796. [PMID: 36713030 PMCID: PMC9883104 DOI: 10.1155/2023/3878796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 11/08/2022] [Accepted: 11/30/2022] [Indexed: 01/21/2023]
Abstract
Background Ribonucleotide reductase (RR) consists of two subunits, the large subunit RRM1 and the small subunit (RRM2 or RRM2B), which is essential for DNA replication. Dysregulations of RR were implicated in multiple types of cancer. However, the abnormal expressions and biologic functions of RR subunits in liver cancer remain to be elucidated. Methods TCGA, HCCDB, CCLE, HPA, cBioPortal, and GeneMANIA were utilized to perform bioinformatics analysis of RR subunits in the liver cancer. GO, KEGG, and GSEA were used for enrichment analysis. Results The expressions of RRM1, RRM2, and RRM2B were remarkably upregulated among liver cancer tissue both in mRNA and protein levels. High expression of RRM1 and RRM2 was notably associated with high tumor grade, high stage, short overall survival, and disease-specific survival. Enrichment analyses indicated that RRM1 and RRM2 were related to DNA replication, cell cycle, regulation of nuclear division, DNA repair, and DNA recombination. Correlation analysis indicated that RRM1 and RRM2 were significantly associated with several subsets of immune cell, including Th2 cells, cytotoxic cells, and neutrophils. RRM2B expression was positively associated with immune score and stromal score. Chemosensitivity analysis revealed that sensitivity of nelarabine was positively associated with high expressions of RRM1 and RRM2. The sensitivity of rapamycin was positively associated with high expressions of RRM2B. Conclusion Our findings demonstrated high expression profiles of RR subunits in liver cancer, which may provide novel insights for predicting the poor prognosis and increased chemosensitivity of liver cancer in clinic.
Collapse
|
10
|
He J, Wei Q, Jiang R, Luan T, He S, Lu R, Xu H, Ran J, Li J, Chen D. The Core-Targeted RRM2 Gene of Berberine Hydrochloride Promotes Breast Cancer Cell Migration and Invasion via the Epithelial-Mesenchymal Transition. Pharmaceuticals (Basel) 2022; 16:ph16010042. [PMID: 36678539 PMCID: PMC9861674 DOI: 10.3390/ph16010042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 12/30/2022] Open
Abstract
Berberine hydrochloride (BBR) could inhibit the proliferation, migration, and invasion of various cancer cells. As the only enzyme for the de novo synthesis of ribonucleotides, RRM2 is closely related to the development of tumorigenesis. However, not much is currently known about the functional roles of RRM2 in breast cancer (BRCA), and whether BBR regulates the migration and invasion of BRCA cells by regulating the expression of RRM2 remains to be determined. We study the effects of BBR on BRCA cell proliferation in vitro and tumorigenesis in vivo by using colony formation assays, EdU assays, and xenograft models. Transcriptome sequencing, the random forest algorithm, and KEGG analysis were utilized to explore the therapeutic target genes and relative pathways. The expression of RRM2 in BRCA patients was analyzed with The Cancer Genome Atlas (TCGA) dataset, the GEPIA website tool, the Gene Expression Omnibus (GEO) database, and the UALCAN database. The survival probability of BRCA patients could be predicted by survival curve and nomogram analysis. Molecular docking was used to explore the affinity between BBR and potential targets. Gain- and loss-of-function methods were employed to explore the biological process in RRM2 participants. We comprehensively investigated the pharmacological characteristics of BBR on BRCA cell lines and discovered that BBR could inhibit the proliferation of BRCA cells in vitro and in vivo. Combining transcriptome sequencing and KEGG analysis, we found that BBR mainly affected the biological behavior of BRCA cells via HIF-1α and AMPK signal pathways. Additionally, by using bioinformatics and molecular docking, we demonstrated that RRM2 plays an oncogenic role in BRCA samples and that it acts as the hub gene of BBR on BRCA cells. Knockdown and overexpression studies indicated that RRM2 promoted BRCA cell migration as well as invasion in vitro by affecting the epithelial-to-mesenchymal transition (EMT). Our study demonstrated the significance of BBR regulating HIF-1α and AMPK signaling pathways in BRCA cells. Moreover, we revealed the carcinogenic role and potential mechanism of RRM2 as a core regulatory factor of BBR in BRCA in controlling BRCA invasion, migration, and EMT, suggesting that RRM2 may be a therapeutic target and prognostic biomarker for BRCA therapy.
Collapse
Affiliation(s)
- Jiaming He
- Laboratory of Stem Cells and Tissue Engineering, Department of Histology and Embryology, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Qiang Wei
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Rong Jiang
- Laboratory of Stem Cells and Tissue Engineering, Department of Histology and Embryology, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Tiankuo Luan
- Neuroscience Research Center, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Shuang He
- Laboratory of Stem Cells and Tissue Engineering, Department of Histology and Embryology, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Ruijin Lu
- Laboratory of Stem Cells and Tissue Engineering, Department of Histology and Embryology, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Hang Xu
- Neuroscience Research Center, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Jianhua Ran
- Neuroscience Research Center, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Jing Li
- Laboratory of Stem Cells and Tissue Engineering, Department of Histology and Embryology, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
- Correspondence: (J.L.); (D.C.)
| | - Dilong Chen
- Laboratory of Stem Cells and Tissue Engineering, Department of Histology and Embryology, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
- Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Chongqing Three Gorges Medical College, Chongqing 404120, China
- Correspondence: (J.L.); (D.C.)
| |
Collapse
|
11
|
Meng Q, Xu Y, Ling X, Liu H, Ding S, Wu H, Yan D, Fang X, Li T, Liu Q. Role of ferroptosis-related genes in coronary atherosclerosis and identification of key genes: integration of bioinformatics analysis and experimental validation. BMC Cardiovasc Disord 2022; 22:339. [PMID: 35906548 PMCID: PMC9338511 DOI: 10.1186/s12872-022-02747-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 06/16/2022] [Indexed: 12/12/2022] Open
Abstract
Background Coronary atherosclerosis (CA) is the most common type of atherosclerosis. However, the inherent pathogenesis and mechanisms of CA are unclear, and the relationship with ferroptosis-related genes (FRGs) has not been reported. The purpose of this study was to use bioinformatics techniques to evaluate potential therapeutic targets for CA.Please provide the given name for author “Dingshun”.Please provide the given name for author “Dingshun”.
Methods First, the GSE132651 dataset was acquired from the Gene Expression Omnibus database. Gene Ontology enrichment analysis, Kyoto Encyclopedia of Genes and Genomes enrichment analysis, and Protein–Protein interaction network were successively conducted. Next, overlapping genes between hub genes and CA genes were found. FRGs were found when comparing the CA group with the normal group. The correlation between overlapping genes and FRGs was further analyzed. At last, we performed Elisa to validate the expression of these genes in human blood specimens. Mice aortic tissues were used for western blot to detect the expression of proteins. Results Based on the GSE132651 dataset, 102 differentially expressed genes were identified. Five overlapping genes between hub genes and CA genes were found (CCNA2, RRM2, PBK, PCNA, CDK1). TFRC and GPX4 were found to be FRGs. TFRC was positively correlated with CCNA2, PBK, PCNA, CDK1, RRM2, with CDK1 being the strongest correlation. GPX4 was negatively correlated with these genes, among which CCNA2 was the strongest correlation. The ELISA results showed that CCNA2, CDK1, and TFRC expression were markedly increased in serum of the CA samples compared with controls, while GPX4 expression was markedly decreased in the CA samples. The western blot results show that GPX4 expression was lower in the model group, TFRC, CDK1, and CCNA2 protein expression were high in the model group. Conclusions Ferroptosis-related genes GPX4 and TFRC were closely correlated with the identified overlapping genes CCNA2 and CDK1, which may serve as targeted therapies for the treatment of CA. Supplementary Information The online version contains supplementary material available at 10.1186/s12872-022-02747-x.
Collapse
Affiliation(s)
- Qingwen Meng
- Deparment of Cardiology, The First Affiliated Hospital of Hainan Medical University, Haikou, 570100, China.,Hainan Provincial Key Laboratory of Tropical Brain Research and Transformation, Hainan Medical University, Haikou, 570100, China
| | - Yiqian Xu
- Department of Pharmacology, Hainan Medical University, Haikou, 570100, China
| | - Xuebin Ling
- Deparment of Cardiology, The First Affiliated Hospital of Hainan Medical University, Haikou, 570100, China
| | - Huajiang Liu
- Deparment of Cardiology, The First Affiliated Hospital of Hainan Medical University, Haikou, 570100, China
| | - Shun Ding
- Department of Pharmacology, Hainan Medical University, Haikou, 570100, China
| | - Haolin Wu
- Department of Pharmacology, Hainan Medical University, Haikou, 570100, China
| | - Dongming Yan
- Department of Pharmacology, Hainan Medical University, Haikou, 570100, China
| | - Xingyue Fang
- Deparment of Cardiology, The First Affiliated Hospital of Hainan Medical University, Haikou, 570100, China
| | - Tianfa Li
- Deparment of Cardiology, The First Affiliated Hospital of Hainan Medical University, Haikou, 570100, China.
| | - Qibing Liu
- Department of Pharmacology, Hainan Medical University, Haikou, 570100, China. .,Department of Pharmacy, The First Affiliated Hospital of Hainan Medical University, Haikou, 570100, China.
| |
Collapse
|
12
|
Lu M, Xiao L, Xu B, Gao Q. Identification of Novel Genes and Associated Drugs in Advanced Clear Cell Renal Cell Carcinoma by Bioinformatic Methods. TOHOKU J EXP MED 2022; 258:79-90. [PMID: 35896362 DOI: 10.1620/tjem.2022.j059] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Meiqi Lu
- Department of Nephrology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University
| | - Liangxiang Xiao
- Department of Nephrology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University
| | - Bo Xu
- Department of Nephrology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University
| | - Qing Gao
- Department of Nephrology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University.,The Third Clinical Medical College, Fujian Medical University
| |
Collapse
|
13
|
Comprehensive Landscape of RRM2 with Immune Infiltration in Pan-Cancer. Cancers (Basel) 2022; 14:cancers14122938. [PMID: 35740608 PMCID: PMC9221307 DOI: 10.3390/cancers14122938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/07/2022] [Accepted: 06/11/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary RRM2 is a crucial subunit of ribonucleotide reductase. In this article, we provided a comprehensive analysis of RRM2 with immune infiltration in pan-cancer. We focused on the hotspots of ferroptosis-related gene RRM2 and immunotherapy. Via bioinformatics analysis, multiple indicators suggested that RRM2 high expression may enhance immunotherapy sensitivity. For the first time, we systematically analyzed the role of RRM2 in pan-cancer. We provided the prospect of RRM2 and immunotherapy for pan-cancer. Additionally, we proved the expression pattern, clinical value, prognostic value and potential pathways of RRM2 with different platforms. In particular, we confirmed RRM2 expression and function in bladder cancer in our clinical samples and cell lines. Collectively, we found that RRM2 is a novel prognostic biomarker, and these findings may aid in an improved understanding of the role of RRM2 and its clinical application in human cancers. Abstract As a crucial subunit of ribonucleotide reductase, RRM2 plays a significant part in DNA synthesis. This study aimed to elucidate the comprehensive landscape of RRM2 in human cancers. With different bioinformatics platforms, we investigated the expression pattern, prognostic significance, mutational landscapes, gene interaction network, signaling pathways and immune infiltration of RRM2 in tumors. We found that RRM2 expression was predominantly up-expressed in tumor tissues in most tumors. Concurrently, RRM2 expression was significantly associated with worse prognosis and tumor stage across TCGA cancers. Moreover, RRM2 high levels were critically associated with the infiltration of natural killer T cells and immune scores. RRM2 was positively related to immune checkpoints, tumor mutation burden, microsatellite instability, neoantigen, and cytotoxic T lymphocyte in several cancers, predicting effective response to immunotherapy. Meanwhile, a strong co-expression of RRM2 with immune-related genes was observed. Additionally, multiple Cox regression analysis showed that RRM2 was an independent prognostic factor in bladder cancer (BLCA). Eventually, we verified that RRM2 was overexpressed in BLCA clinical samples and cell lines. Blocking RRM2 could suppress BLCA cells’ growth and proliferation while enhancing sensitivity to cisplatin. This study provided a new perspective for understanding RRM2 in cancers and new strategies for tumor immunotherapy.
Collapse
|
14
|
Huff SE, Winter JM, Dealwis CG. Inhibitors of the Cancer Target Ribonucleotide Reductase, Past and Present. Biomolecules 2022; 12:biom12060815. [PMID: 35740940 PMCID: PMC9221315 DOI: 10.3390/biom12060815] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 06/01/2022] [Accepted: 06/07/2022] [Indexed: 01/02/2023] Open
Abstract
Ribonucleotide reductase (RR) is an essential multi-subunit enzyme found in all living organisms; it catalyzes the rate-limiting step in dNTP synthesis, namely, the conversion of ribonucleoside diphosphates to deoxyribonucleoside diphosphates. As expression levels of human RR (hRR) are high during cell replication, hRR has long been considered an attractive drug target for a range of proliferative diseases, including cancer. While there are many excellent reviews regarding the structure, function, and clinical importance of hRR, recent years have seen an increase in novel approaches to inhibiting hRR that merit an updated discussion of the existing inhibitors and strategies to target this enzyme. In this review, we discuss the mechanisms and clinical applications of classic nucleoside analog inhibitors of hRRM1 (large catalytic subunit), including gemcitabine and clofarabine, as well as inhibitors of the hRRM2 (free radical housing small subunit), including triapine and hydroxyurea. Additionally, we discuss novel approaches to targeting RR and the discovery of new classes of hRR inhibitors.
Collapse
Affiliation(s)
- Sarah E. Huff
- Department of Pediatrics, University of California, San Diego, CA 92093, USA;
| | - Jordan M. Winter
- Department of Surgery, Division of Surgical Oncology, University Hospitals Cleveland Medical Center, Akron, OH 44106, USA;
| | - Chris G. Dealwis
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106, USA
- Correspondence:
| |
Collapse
|
15
|
Abdel-Rahman MA, Mahfouz M, Habashy HO. RRM2 expression in different molecular subtypes of breast cancer and its prognostic significance. Diagn Pathol 2022; 17:1. [PMID: 34986845 PMCID: PMC8734361 DOI: 10.1186/s13000-021-01174-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 11/20/2021] [Indexed: 02/07/2023] Open
Abstract
Background Breast cancer is one of the most common types of cancer. Ribonucleotide reductase (RNR) is a heterodimeric tetramer consisting of two Ribonucleoside-diphosphate reductase large subunits (RRM1) and two Ribonucleoside-diphosphate reductase small subunits (RRM2). RRM2 is the building subunit of RNR that is important for synthesis of Deoxynucleoside triphosphate (dNTP) during S phase of cell cycle during DNA replication. RRM2 is associated with poor prognosis in lung and colorectal cancer. In breast cancer, increased RRM2 protein level is strongly correlated with large tumour size, positive lymph node and relapse. In this study, we aimed to study expression of RRM2 in breast cancer and to correlate it with different clinicopathological parameters in Egyptian women. Material and methods This study was performed by investigating RRM2 protein expression in breast cancer and correlating the results with other clinicopathological variables using immunohistochemistry and tissue microarrays. Results About 77% of cases were RRM2 positive. High Ki67 was observed in cases with high RRM2 score. The majority of non-luminal cases expressed RRM2, however this was statistically insignificant. In ER positive group, RRM2 expression was associated with shorter disease free survival with borderline significance. Conclusion RRM2 protein expression can help in evaluating outcome of breast cancer patients and could be a potential therapeutic target.
Collapse
Affiliation(s)
- Manar Ahmed Abdel-Rahman
- Department of Pathology, Faculty of Medicine, Mansoura University, El-Gomhoria St., Mansoura, Dakahlia, Egypt
| | - Mena Mahfouz
- Department of Pathology, Faculty of Medicine, Mansoura University, El-Gomhoria St., Mansoura, Dakahlia, Egypt
| | - Hany Onsy Habashy
- Department of Pathology, Faculty of Medicine, Mansoura University, El-Gomhoria St., Mansoura, Dakahlia, Egypt.
| |
Collapse
|
16
|
Yang M, Yao P, Lang X, Li X, Zhang D. Ribonucleotide reductase subunit M2 promotes proliferation and epithelial-mesenchymal transition via the JAK2/STAT3 signaling pathway in retinoblastoma. Bioengineered 2021; 12:12800-12811. [PMID: 34895038 PMCID: PMC8809947 DOI: 10.1080/21655979.2021.2001241] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 11/05/2022] Open
Abstract
Retinoblastoma (RB) is an intraocular malignant tumor that often occurs in children. Along with the improvement of treatment strategies, the cure rate of RB has increased significantly. However, the treatment of advanced and recurrent RB remains as a critical challenge. Therefore, studying the molecular mechanisms underlying the progression of RB is essential for the development of novel and effective therapeutic strategies. Through the analysis of a previously published microarray study, we found that ribonucleotide reductase subunit M2 (RRM2) was highly expressed in RB tissues as compared to normal tissues. The purpose of this study is to clarify the role and mechanism of RRM2 in regulating the progression of RB. We first demonstrated that RRM2 expression level in RB tissues and cell lines was significantly higher when compared to that in normal retinal tissue and cell lines, and high RRM2 expression level was associated with a poorer overall survival of patients. In RB cells, RRM2 overexpression promoted cell proliferation, migration, invasion and epithelial-mesenchymal transformation (EMT), while RRM2 silencing suppressed these biological features. Silencing RRM2 reduced the activation of Janus kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) signaling pathway, and the presence of JAK2/STAT3 signaling pathway inhibitor INCB attenuated the effect of RRM2 overexpression. Collectively, our data indicate that RRM2 promotes the progression of RB by activating JAK2/STAT3 signaling pathway. Targeting RRM2/JAK2/STAT3 axis lays a theoretical foundation for the formulation of novel RB therapy.
Collapse
Affiliation(s)
- Min Yang
- Department of Ophthalmology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Panpan Yao
- Department of Ophthalmology Medicine, Wusong Branch, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xuqiang Lang
- Department of Ophthalmology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Xue Li
- Department of Ophthalmology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Dawei Zhang
- Department of Ophthalmology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
17
|
Liu Q, Guo L, Qi H, Lou M, Wang R, Hai B, Xu K, Zhu L, Ding Y, Li C, Xie L, Shen J, Xiang X, Shao J. A MYBL2 complex for RRM2 transactivation and the synthetic effect of MYBL2 knockdown with WEE1 inhibition against colorectal cancer. Cell Death Dis 2021; 12:683. [PMID: 34234118 PMCID: PMC8263627 DOI: 10.1038/s41419-021-03969-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 12/22/2022]
Abstract
Ribonucleotide reductase (RR) is a unique enzyme for the reduction of NDPs to dNDPs, the building blocks for DNA synthesis and thus essential for cell proliferation. Pan-cancer profiling studies showed that RRM2, the small subunit M2 of RR, is abnormally overexpressed in multiple types of cancers; however, the underlying regulatory mechanisms in cancers are still unclear. In this study, through searching in cancer-omics databases and immunohistochemistry validation with clinical samples, we showed that the expression of MYBL2, a key oncogenic transcriptional factor, was significantly upregulated correlatively with RRM2 in colorectal cancer (CRC). Ectopic expression and knockdown experiments indicated that MYBL2 was essential for CRC cell proliferation, DNA synthesis, and cell cycle progression in an RRM2-dependent manner. Mechanistically, MYBL2 directly bound to the promoter of RRM2 gene and promoted its transcription during S-phase together with TAF15 and MuvB components. Notably, knockdown of MYBL2 sensitized CRC cells to treatment with MK-1775, a clinical trial drug for inhibition of WEE1, which is involved in a degradation pathway of RRM2. Finally, mouse xenograft experiments showed that the combined suppression of MYBL2 and WEE1 synergistically inhibited CRC growth with a low systemic toxicity in vivo. Therefore, we propose a new regulatory mechanism for RRM2 transcription for CRC proliferation, in which MYBL2 functions by constituting a dynamic S-phase transcription complex following the G1/early S-phase E2Fs complex. Doubly targeting the transcription and degradation machines of RRM2 could produce a synthetic inhibitory effect on RRM2 level with a novel potential for CRC treatment.
Collapse
Affiliation(s)
- Qian Liu
- Department of Pathology & Pathophysiology, and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lijuan Guo
- Department of Pathology & Pathophysiology, and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hongyan Qi
- Department of Pathology & Pathophysiology, and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang University Cancer Center, Key Laboratory of Disease Proteomics of Zhejiang Province, Key Laboratory of Cancer Prevention and Intervention of China National Ministry of Education, Zhejiang University School of Medicine, Hangzhou, China
| | - Meng Lou
- Department of Pathology & Pathophysiology, and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang University Cancer Center, Key Laboratory of Disease Proteomics of Zhejiang Province, Key Laboratory of Cancer Prevention and Intervention of China National Ministry of Education, Zhejiang University School of Medicine, Hangzhou, China
| | - Rui Wang
- Department of Pathology & Pathophysiology, and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Boning Hai
- Department of Pathology & Pathophysiology, and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kailun Xu
- Department of Pathology & Pathophysiology, and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang University Cancer Center, Key Laboratory of Disease Proteomics of Zhejiang Province, Key Laboratory of Cancer Prevention and Intervention of China National Ministry of Education, Zhejiang University School of Medicine, Hangzhou, China
| | - Lijun Zhu
- Key Laboratory of Pancreatic Disease of Zhejiang Province, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yongfeng Ding
- Department of Pathology & Pathophysiology, and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Pancreatic Disease of Zhejiang Province, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chen Li
- Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, China
| | - Lingdan Xie
- Department of Pathology & Pathophysiology, and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang University Cancer Center, Key Laboratory of Disease Proteomics of Zhejiang Province, Key Laboratory of Cancer Prevention and Intervention of China National Ministry of Education, Zhejiang University School of Medicine, Hangzhou, China
| | - Jing Shen
- Department of Pathology & Pathophysiology, and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang University Cancer Center, Key Laboratory of Disease Proteomics of Zhejiang Province, Key Laboratory of Cancer Prevention and Intervention of China National Ministry of Education, Zhejiang University School of Medicine, Hangzhou, China
| | - Xueping Xiang
- Department of Pathology & Pathophysiology, and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Zhejiang University Cancer Center, Key Laboratory of Disease Proteomics of Zhejiang Province, Key Laboratory of Cancer Prevention and Intervention of China National Ministry of Education, Zhejiang University School of Medicine, Hangzhou, China.
| | - Jimin Shao
- Department of Pathology & Pathophysiology, and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Zhejiang University Cancer Center, Key Laboratory of Disease Proteomics of Zhejiang Province, Key Laboratory of Cancer Prevention and Intervention of China National Ministry of Education, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
18
|
Jiang X, Li Y, Zhang N, Gao Y, Han L, Li S, Li J, Liu X, Gong Y, Xie C. RRM2 silencing suppresses malignant phenotype and enhances radiosensitivity via activating cGAS/STING signaling pathway in lung adenocarcinoma. Cell Biosci 2021; 11:74. [PMID: 33858512 PMCID: PMC8051110 DOI: 10.1186/s13578-021-00586-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 04/07/2021] [Indexed: 01/22/2023] Open
Abstract
Background As one of the most common malignancy, lung adenocarcinoma (LUAD) is characterized by low 5-year survival rate. This research aimed to investigate the effects of ribonucleotide reductase regulatory subunit M2 (RRM2) on malignant biological behaviors and activation of cGAS/STING pathway. We also explored the synergistic sensitization mechanisms of RRM2 and radiotherapy. Methods Bioinformatic tools were used to evaluate the clinical significance of RRM2 in LUAD patients. The roles of RRM2 in malignant phenotype and DNA damage in LUAD cells were investigated with cell proliferation, colony formation, immunofluorescence, modified Boyden chamber and comet assays. The mouse models were used to evaluate the biological significance of RRM2 in vivo. Cytotoxic T cell infiltration was evaluated via flow cytometric analysis and immunohistochemistry staining in C57BL/6 mice. We also explored the synergistic effects of RRM2 silencing and radiation on LUAD cells with apoptosis assay and immunoblotting in vitro. Results Bioinformatic analysis revealed that RRM2 had diagnostic values for LUAD patients. Higher levels of RRM2 predicted worse prognosis. RRM2 silencing inhibited LUAD cell proliferation, invasion and migration. RRM2 knockdown induced S phase arrest and DNA damage. RRM2 silencing induced cyclic GMP-AMP synthase (cGAS)/stimulator of interferon genes (STING) pathway, and the downstream targets were regulated in a STING-dependent manner. Knockdown of RRM2 suppressed tumor growth in the xenograft tumor models. RRM2 deficiency increased CD8 + T cells in the tumor tissues and spleens. Furthermore, RRM2 silencing had synergistic effects with radiation on inhibiting cell proliferation and promoting apoptosis. Meanwhile, this combination promoted the activation of cGAS/STING signaling pathway synergistically, and simultaneously increased expression of IFNβ, CCL5 and CXCL10. Conclusion Our results demonstrated that RRM2 silencing had anti-tumor values and activated the cGAS/STING signaling pathway. RRM2 silencing increased CD8 + T cells infiltration. RRM2 silencing cooperated with radiation to inhibit LUAD cell proliferation, promote apoptosis and enhance the activation of cGAS/STING signaling pathway. RRM2 could be a promising target for tumor regression through cancer immunotherapy in LUAD. Supplementary Information The online version contains supplementary material available at 10.1186/s13578-021-00586-5.
Collapse
Affiliation(s)
- Xueping Jiang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
| | - Yangyi Li
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
| | - Nannan Zhang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
| | - Yanping Gao
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
| | - Linzhi Han
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
| | - Shuying Li
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
| | - Jiali Li
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
| | - Xingyu Liu
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
| | - Yan Gong
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China. .,Tumor Precision Diagnosis and Treatment Technology and Translational Medicine, Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China.
| | - Conghua Xie
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China. .,Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China. .,Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China.
| |
Collapse
|
19
|
Fouad S, Hauton D, D'Angiolella V. E2F1: Cause and Consequence of DNA Replication Stress. Front Mol Biosci 2021; 7:599332. [PMID: 33665206 PMCID: PMC7921158 DOI: 10.3389/fmolb.2020.599332] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 11/30/2020] [Indexed: 12/12/2022] Open
Abstract
In mammalian cells, cell cycle entry occurs in response to the correct stimuli and is promoted by the transcriptional activity of E2F family members. E2F proteins regulate the transcription of S phase cyclins and genes required for DNA replication, DNA repair, and apoptosis. The activity of E2F1, the archetypal and most heavily studied E2F family member, is tightly controlled by the DNA damage checkpoints to modulate cell cycle progression and initiate programmed cell death, when required. Altered tumor suppressor and oncogenic signaling pathways often result in direct or indirect interference with E2F1 regulation to ensure higher rates of cell proliferation independently of external cues. Despite a clear link between dysregulated E2F1 activity and cancer progression, literature on the contribution of E2F1 to DNA replication stress phenotypes is somewhat scarce. This review discusses how dysfunctional tumor suppressor and oncogenic signaling pathways promote the disruption of E2F1 transcription and hence of its transcriptional targets, and how such events have the potential to drive DNA replication stress. In addition to the involvement of E2F1 upstream of DNA replication stress, this manuscript also considers the role of E2F1 as a downstream effector of the response to this type of cellular stress. Lastly, the review introduces some reflections on how E2F1 activity is integrated with checkpoint control through post-translational regulation, and proposes an exploitable tumor weakness based on this axis.
Collapse
Affiliation(s)
- Shahd Fouad
- Department of Oncology, Medical Research Council Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| | - David Hauton
- Department of Oncology, Medical Research Council Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| | - Vincenzo D'Angiolella
- Department of Oncology, Medical Research Council Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
20
|
Shen H, Wu H, Sun F, Qi J, Zhu Q. A novel four-gene of iron metabolism-related and methylated for prognosis prediction of hepatocellular carcinoma. Bioengineered 2020; 12:240-251. [PMID: 33380233 PMCID: PMC8806199 DOI: 10.1080/21655979.2020.1866303] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a liver disease with a complex underlying mechanism, and patients with HCC have low survival rates. Iron metabolism plays a crucial role in the pathogenesis of HCC; however, the prognostic value of iron metabolism-related and methylated genes for HCC needs to be further explored. In the present study, we identified differentially expressed genes (DEGs) that play a role in iron metabolism and DNA methylation in HCC from The Cancer Genome Atlas. Four of these DEGs, whose expression levels are correlated with HCC prognosis, namely, RRM2, FTCD, CYP2C9, and ATP6V1C1, were further used to construct a prognostic model for HCC, wherein the risk score was calculated using the gene expression of the four DEGs. This could be used to predict the overall survival of HCC patients for 1, 3, and 5 years. Results of a multivariate Cox regression analysis further indicated that the risk score was an independent variable correlated with the prognosis of HCC patients. The identified gene signature was further validated using an independent cohort of HCC patients from the International Cancer Genome Consortium. Weighted gene co-expression network analysis and gene set enrichment analysis were performed to identify potential regulatory mechanisms of the gene signature in HCC. Taken together, we identified key prognostic factors of iron metabolism-related and methylated genes for HCC, providing a potential treatment strategy for HCC.
Collapse
Affiliation(s)
- Huimin Shen
- Department of Gastroenterology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University , Jinan, China
| | - Hao Wu
- Department of Gastroenterology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University , Jinan, China
| | - Fengkai Sun
- Department of Gastroenterology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University , Jinan, China
| | - Jianni Qi
- Central Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University , Jinan, China
| | - Qiang Zhu
- Department of Gastroenterology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University , Jinan, China
| |
Collapse
|
21
|
Yang Y, Lin J, Guo S, Xue X, Wang Y, Qiu S, Cui J, Ma L, Zhang X, Wang J. RRM2 protects against ferroptosis and is a tumor biomarker for liver cancer. Cancer Cell Int 2020; 20:587. [PMID: 33372599 PMCID: PMC7720568 DOI: 10.1186/s12935-020-01689-8] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/30/2020] [Indexed: 12/13/2022] Open
Abstract
Background Ferroptosis is the process of cell death triggered by lipid peroxides, and inhibition of glutathione (GSH) synthesis leads to ferroptosis. Liver cancer progression is closely linked to ferroptosis suppression. However, the mechanism by which inhibition of GSH synthesis suppresses potential ferroptosis of liver cancer cells and whether ferroptosis-related liver cancer biomarkers have a promising diagnostic value remain unknown. Methods Ribonucleotide reductase regulatory subunit M2 (RRM2) levels were measured using an enzyme linked immunosorbent assay (ELISA), quantitative RT-PCR (qPCR), immunoblotting (IB) and immunochemistry (IHC). Cell viability and cell death were measured by a CellTiter-Glo luminescent cell viability assay and staining with SYTOX Green followed by flow cytometry, respectively. Metabolites were measured using the indicated kits. The Interaction between glutathione synthetase (GSS) and RRM2 was measured using immunofluorescence (IF), co-immunoprecipitation (co-IP) and the proximal ligation assay (PLA). The diagnostic value was analyzed using the area under the receiver operating characteristic curve (AUC-ROC). Bioinformatics analysis was performed using the indicated database. Results RRM2 showed specifically elevated levels in liver cancer and inhibited ferroptosis by stimulating GSH synthesis via GSS. Mechanistically, phosphorylation of RRM2 at the Threonine 33 residue (T33) was maintained at normal levels to block the RRM2–GSS interaction and therefore protected RRM2 and GSS from further proteasome degradation. However, under ferroptotic stress, RRM2 was dephosphorylated at T33, thus the RRM2–GSS interaction was promoted. This resulted in the translocation of RRM2 and GSS to the proteasome for simultaneous degradation. Clinically, serum RRM2 was significantly associated with serum alpha-fetoprotein (AFP), carcinoembryonic antigen (CEA), alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), gamma glutamyl transpeptidase (γ-GT), albumin (ALB) and total bilirubin. The AUC-ROC for the combination of RRM2 with AFP was 0.947, with a sensitivity of 88.7% and a specificity of 97.0%, which indicates better diagnostic performance compared to either RRM2 or AFP alone. Conclusion RRM2 exerts an anti-ferroptotic role in liver cancer cells by sustaining GSH synthesis. Serum RRM2 will be useful as a biomarker to evaluate the degree to which ferroptosis is suppressed and improve diagnostic efficiency for liver cancer.
Collapse
Affiliation(s)
- Yueyue Yang
- Department of Clinical Laboratory, Shanghai Tenth People's Hospital of Tongji University, Shanghai, 200072, China
| | - Jiafei Lin
- Department of Clinical Laboratory, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Susu Guo
- Department of Clinical Laboratory, Shanghai Tenth People's Hospital of Tongji University, Shanghai, 200072, China
| | - Xiangfei Xue
- Department of Clinical Laboratory, Shanghai Tenth People's Hospital of Tongji University, Shanghai, 200072, China
| | - Yikun Wang
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Shiyu Qiu
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Jiangtao Cui
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Lifang Ma
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Xiao Zhang
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, China. .,Department of Thoracic Surgery, Shanghai Institute of Thoracic Tumors, Shanghai Chest Hospital, Shanghai Jiao Tong University, No. 241 Huaihai West Road, Shanghai, 200030, China.
| | - Jiayi Wang
- Department of Clinical Laboratory, Shanghai Tenth People's Hospital of Tongji University, Shanghai, 200072, China. .,Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, China. .,Department of Thoracic Surgery, Shanghai Institute of Thoracic Tumors, Shanghai Chest Hospital, Shanghai Jiao Tong University, No. 241 Huaihai West Road, Shanghai, 200030, China.
| |
Collapse
|
22
|
Ma C, Luo H, Cao J, Gao C, Fa X, Wang G. Independent prognostic implications of RRM2 in lung adenocarcinoma. J Cancer 2020; 11:7009-7022. [PMID: 33123291 PMCID: PMC7592001 DOI: 10.7150/jca.47895] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 10/03/2020] [Indexed: 12/16/2022] Open
Abstract
Background: Ribonucleoside-diphosphate reductase subunit M2 (RRM2) is the catalytic subunit of ribonucleotide reductase and modulates the enzymatic activity, which is essential for DNA replication and repair. However, the role of RRM2 in lung adenocarcinoma (LUAD) remains unclear. Methods: In this study, we explored the expression pattern and prognostic value of RRM2 in LUAD across TCGA, GEO, Oncomine, UALCAN, PrognoScan, and Kaplan-Meier Plotter, and confirmed its independent prognostic value via Cox analyses. LinkedOmics and GEPIA2 were applied to investigate co-expression and functional networks associated with RRM2. Besides, we used TIMER to assess the correlation between RRM2 and the main six types of tumor-infiltrating immune cells. Lastly, the correlations between immune signatures of immunomodulators, chemokines, and 28 tumor-infiltrating lymphocytes (TILs) and RRM2 were examined by tumor purity-corrected partial Spearman's rank correlation coefficient through TIMER portal. Results:RRM2 was found upregulated in tumor tissues in TCGA-LUAD, and validated in multiple independent cohorts. Moreover, whether in TCGA or other cohorts, high RRM2 expression was found to be associated with poor survival. Cox analyses showed that high RRM2 expression was an independent risk factor for overall survival, disease-specific survival, and progression-free survival of LUAD. Functional network analysis suggested that RRM2 regulates RNA transport, oocyte meiosis, spliceosome, ribosome biogenesis in eukaryotes, and cellular senescence signaling through pathways involving multiple cancer-related kinases and E2F family. Also, RRM2 expression correlated with infiltrating levels of B cells, CD4+ T cells, and neutrophils. Subsequent analysis found that B cells and dendritic cells could predict the outcome of LUAD. B cells were identified as an independent risk factor among six types of immune cells through Cox analyses. At last, the correlation analysis showed RRM2 correlated with 67.68% (624/922) of the immune signatures we performed. Conclusion: Our research showed that RRM2 could independently predict the prognosis of LUAD and was associated with immune infiltration. In particular, the tight relationship between RRM2 and B cell marker genes are the potential epicenter of the immune response and one of the critical factors affecting the prognosis. Our findings laid the foundation for further research on the immunomodulatory role of RRM2 in LUAD.
Collapse
Affiliation(s)
- Chao Ma
- Department of Cardiothoracic Surgery, Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and the Berlin Institute of Health.,Charité - Universitätsmedizin Berlin, BCRT - Berlin Institute of Health Center for Regenerative Therapies, Berlin, Germany.,Department of Thoracic Surgery, the First Affiliated Hospital of Southern University of Sciences and Technology, Shenzhen People's Hospital, Shenzhen, China
| | - Huan Luo
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and the Berlin Institute of Health.,Klinik für Augenheilkunde, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Jing Cao
- Department of Human Anatomy, School of Basic Medicine, Zhengzhou University, Zhengzhou, China
| | - Chengshan Gao
- Department of Cardiothoracic Surgery, Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xianen Fa
- Department of Cardiothoracic Surgery, Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Guangsuo Wang
- Department of Thoracic Surgery, the First Affiliated Hospital of Southern University of Sciences and Technology, Shenzhen People's Hospital, Shenzhen, China
| |
Collapse
|
23
|
B7-H3 expression in upper tract urothelial carcinoma associates with adverse clinicopathological features and poor survival. Pathol Res Pract 2020; 216:153219. [PMID: 33049447 DOI: 10.1016/j.prp.2020.153219] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/10/2020] [Accepted: 09/14/2020] [Indexed: 12/17/2022]
Abstract
B7-H3, a member of the B7 superfamily, is an immune checkpoint molecule. An association between B7-H3 expression and poor survival has been reported in many types of cancer. However, its prognostic value in patients with upper tract urothelial carcinoma (UTUC) has not yet been reported. The aim of this study was to examine the clinical significance of tumor B7-H3 expression in UTUC. B7-H3 positivity was observed in 36 of 271 cases (13 %) by immunohistochemistry and was significantly associated with several adverse clinicopathological features such as tumor grade, tumor stage, and lymph node metastasis. In addition, B7-H3 positivity was significantly associated with shorter metastasis-free survival and cancer-specific survival. We also found that B7-H3/programmed cell death ligand-1 (PD-L1) co-positivity was significantly associated with worse prognosis. These results suggest the utility of B7-H3 positivity and B7-H3/PD-L1 co-positivity as novel prognostic biomarkers in UTUC, and the potential usefulness of B7-H3 targeted therapy for patients with UTUC, the effect of which may be enhanced by combination with programmed cell death-1 /PD-L1 blockade.
Collapse
|
24
|
Liu P, Tian W. Identification of DNA methylation patterns and biomarkers for clear-cell renal cell carcinoma by multi-omics data analysis. PeerJ 2020; 8:e9654. [PMID: 32832275 PMCID: PMC7409785 DOI: 10.7717/peerj.9654] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/13/2020] [Indexed: 12/30/2022] Open
Abstract
Background Tumorigenesis is highly heterogeneous, and using clinicopathological signatures only is not enough to effectively distinguish clear cell renal cell carcinoma (ccRCC) and improve risk stratification of patients. DNA methylation (DNAm) with the stability and reversibility often occurs in the early stage of tumorigenesis. Disorders of transcription and metabolism are also an important molecular mechanisms of tumorigenesis. Therefore, it is necessary to identify effective biomarkers involved in tumorigenesis through multi-omics analysis, and these biomarkers also provide new potential therapeutic targets. Method The discovery stage involved 160 pairs of ccRCC and matched normal tissues for investigation of DNAm and biomarkers as well as 318 cases of ccRCC including clinical signatures. Correlation analysis of epigenetic, transcriptomic and metabolomic data revealed the connection and discordance among multi-omics and the deregulated functional modules. Diagnostic or prognostic biomarkers were obtained by the correlation analysis, the Least Absolute Shrinkage and Selection Operator (LASSO) and the LASSO-Cox methods. Two classifiers were established based on random forest (RF) and LASSO-Cox algorithms in training datasets. Seven independent datasets were used to evaluate robustness and universality. The molecular biological function of biomarkers were investigated using DAVID and GeneMANIA. Results Based on multi-omics analysis, the epigenetic measurements uniquely identified DNAm dysregulation of cellular mechanisms resulting in transcriptomic alterations, including cell proliferation, immune response and inflammation. Combination of the gene co-expression network and metabolic network identified 134 CpG sites (CpGs) as potential biomarkers. Based on the LASSO and RF algorithms, five CpGs were obtained to build a diagnostic classifierwith better classification performance (AUC > 99%). A eight-CpG-based prognostic classifier was obtained to improve risk stratification (hazard ratio (HR) > 4; log-rank test, p-value < 0.01). Based on independent datasets and seven additional cancers, the diagnostic and prognostic classifiers also had better robustness and stability. The molecular biological function of genes with abnormal methylation were significantly associated with glycolysis/gluconeogenesis and signal transduction. Conclusion The present study provides a comprehensive analysis of ccRCC using multi-omics data. These findings indicated that multi-omics analysis could identify some novel epigenetic factors, which were the most important causes of advanced cancer and poor clinical prognosis. Diagnostic and prognostic biomarkers were identified, which provided a promising avenue to develop effective therapies for ccRCC.
Collapse
Affiliation(s)
- Pengfei Liu
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China.,Department of Biostatistics and Computational Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Weidong Tian
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China.,Department of Biostatistics and Computational Biology, School of Life Sciences, Fudan University, Shanghai, China.,Children's Hospital of Fudan University, Shanghai, China
| |
Collapse
|
25
|
Wang S, Wang XL, Wu ZZ, Yang QC, Xiong HG, Xiao Y, Li H, Sun ZJ. Overexpression of RRM2 is related to poor prognosis in oral squamous cell carcinoma. Oral Dis 2020; 27:204-214. [PMID: 32640108 DOI: 10.1111/odi.13540] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/14/2020] [Accepted: 07/01/2020] [Indexed: 12/13/2022]
Abstract
OBJECTIVES Ribonucleotide reductase M2 (RRM2) is a rate-limiting enzyme involved in DNA repair and synthesis. This study aimed to investigate the expression level, clinicopathological significance, and prognostic value of RRM2 in oral squamous cell carcinoma (OSCC). MATERIALS AND METHODS Human OSCC tissue microarrays were used to detect the expression of RRM2, cancer stem cell (CSC) markers CD44 and aldehyde dehydrogenase 1 (ALDH1), and the epithelial-mesenchymal transition (EMT) marker Slug. The correlation of RRM2 expression with clinicopathological parameters was evaluated. The effects of RRM2 on cell proliferation, migration, and apoptosis were investigated. RESULTS Compared with normal and dysplastic tissues, the expression of RRM2 in human primary OSCC was significantly increased, and its overexpression was correlated with advanced pathological grade. The overall survival rate of patients with high RRM2 expression was lower than that of patients with low RRM2 expression. The overexpression of RRM2 was significantly associated with OSCC recurrence, and its overexpression was correlated with the CSC markers CD44 and ALDH1 and the EMT marker Slug. The expression of RRM2 promotes the proliferation and migration of human OSCC cells and inhibits apoptosis. CONCLUSION Ribonucleotide reductase M2 may be a novel target in the diagnosis, prognosis, and therapy of OSCC.
Collapse
Affiliation(s)
- Shuo Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei- MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Xiao-Long Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei- MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zhi-Zhong Wu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei- MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Qi-Chao Yang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei- MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Hong-Gang Xiong
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei- MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yao Xiao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei- MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Hao Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei- MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zhi-Jun Sun
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei- MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Oral Maxillofacial-Head Neck Oncology, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
26
|
Huang SP, Jiang YF, Yang LJ, Yang J, Liang MT, Zhou HF, Luo J, Yang DP, Mo WJ, Chen G, Shi L, Gan TQ. Downregulation of miR-125b-5p and Its Prospective Molecular Mechanism in Lung Squamous Cell Carcinoma. Cancer Biother Radiopharm 2020; 37:125-140. [PMID: 32614608 DOI: 10.1089/cbr.2020.3657] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background: To explore the clinical significance of miR-125b-5p and its potential mechanisms in lung squamous cell carcinoma (LUSC). Materials and Methods: An integrated analysis of data from in-house quantitative real-time polymerase chain reaction (qRT-PCR), microRNA-sequencing, and microarray assays to appraise the expression level of miR-125b-5p in LUSC tissues compared to adjacent noncancerous controls. The authors identified the candidate targets of miR-125b-5p and conducted functional analysis using computational biology strategies from gene ontology, the Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, disease ontology (DO), and protein-protein interaction (PPI) network analyses to investigate the prospective mechanisms. Results: According to qRT-PCR results, the expression level of miR-125b-5p was markedly decreased in LUSC tissues compared to noncancerous control tissues. Receiver operating characteristic and summary receiver operating characteristic analyses showed that miR-125b-5p had good specificity and sensitivity for distinguishing LUSC tissue from noncancerous lung tissue. The standard mean difference revealed that men and women with lower expression levels of miR-125b-5p may have a higher risk for LUSC. KEGG analysis and DO analysis intimated that target genes were evidently enriched in pyrimidine metabolism and pancreatic carcinoma. The PPI network of the top assembled KEGG pathway indicated that RRM2, UMPS, UCK2, and CTPS1 were regarded as crucial target genes for miR-125b-5p, and RRM2 was eventually deemed a key target. Conclusions: The authors' findings implicate a low expression level of miR-125b-5p in LUSC. A tumor-suppressive role of miR-125b-5p is proposed, based on its effects on LUSC tumor growth, clinical stage progression, and lymph node metastasis.
Collapse
Affiliation(s)
- Shu-Ping Huang
- Department of Medical Oncology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Yi-Fan Jiang
- Department of Medical Oncology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Lin-Jie Yang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Jie Yang
- Department of Pharmacology, School of Pharmacy, Guangxi Medical University, Nanning, People's Republic of China
| | - Mei-Ting Liang
- Department of Medical Oncology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Hua-Fu Zhou
- Department of Cardio-Thoracic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Jiao Luo
- Department of Cardio-Thoracic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Da-Ping Yang
- Department of Pathology, Guigang People's Hospital of Guangxi/The Eighth Affiliated Hospital of Guangxi Medical University, Guigang, People's Republic of China
| | - Wei-Jia Mo
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Gang Chen
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Lin Shi
- Department of Pathology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Ting-Qing Gan
- Department of Medical Oncology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| |
Collapse
|
27
|
Guo Y, Huang P, Ning W, Zhang H, Yu C. Identification of Core Genes and Pathways in Medulloblastoma by Integrated Bioinformatics Analysis. J Mol Neurosci 2020; 70:1702-1712. [PMID: 32535713 DOI: 10.1007/s12031-020-01556-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 04/13/2020] [Indexed: 12/20/2022]
Abstract
Medulloblastoma (MB) is one of the most common intracranial malignancies in children. The present study applied integrated bioinformatics to identify potential core genes associated with the pathogenesis of MB and reveal potential molecular mechanisms. Through the integrated analysis of multiple data sets from the Gene Expression Omnibus (GEO), 414 differentially expressed genes (DEGs) were identified. Combining the protein-protein interaction (PPI) network analysis with gene set enrichment analysis (GSEA), eight core genes, including CCNA2, CCNB1, CCNB2, AURKA, CDK1, MAD2L1, BUB1B, and RRM2, as well as four core pathways, including "cell cycle", "oocyte meiosis", "p53 pathway" and "DNA replication" were selected. In independent data sets, the core genes showed superior diagnostic values and significant prognostic correlations. Moreover, in the pan-caner data of the cancer genome atlas (TCGA), the core genes were also widely abnormally expressed. In conclusion, this study identified core genes and pathways of MB through integrated analysis to deepen the understanding of the molecular mechanisms underlying the MB and provide potential targets and pathways for diagnosis and treatment of MB.
Collapse
Affiliation(s)
- Yuduo Guo
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Peng Huang
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Weihai Ning
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Hongwei Zhang
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, China.
| | - Chunjiang Yu
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
28
|
Feng H, Wang Q, Xiao W, Zhang B, Jin Y, Lu H. LncRNA TTN-AS1 Regulates miR-524-5p and RRM2 to Promote Breast Cancer Progression. Onco Targets Ther 2020; 13:4799-4811. [PMID: 32547107 PMCID: PMC7261692 DOI: 10.2147/ott.s243482] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 04/07/2020] [Indexed: 12/12/2022] Open
Abstract
Background Recent studies suggest many long non-coding RNAs (lncRNAs) are crucial oncogenes or tumor suppressors. This study intended to investigate the biological function and mechanism of lncRNA TTN antisense RNA 1 (TTN-AS1) in the progression of breast cancer (BC). Materials and Methods BC tissue samples were collected. The expression of TTN-AS1 in BC tissues and adjacent tissues was detected by qRT-PCR, and the relationship between pathological indicators and TTN-AS1 expression was analyzed by chi-square test. BC cell lines T47D and BT549 were utilized as cell models. CCK-8 assay and BrdU assay were used to detect the effect of TTN-AS1 on BC cell proliferation. Transwell assay was used to detect the effects of TTN-AS1 on cell migration and invasion. In addition, dual-luciferase reporter gene assay was used to confirm the targeting relationship between miR-524-5p and TTN-AS1. Western blot was used to detect the function of TTN-AS1 on regulating ribonucleotide reductase subunit 2 (RRM2) and survivin. Additionally, subcutaneous xenotransplanted tumor model and tail vein injection model were constructed in vivo. Results The expression of TTN-AS1 in BC tissues was significantly higher than that in normal tissues, and its high expression was correlated with adverse pathological indicators. Overexpression of TTN-AS1 significantly promoted the proliferation, migration and invasion of BC cells. TTN-AS1 knockdown suppressed the malignant phenotypes of BC cells. TTN-AS1 overexpression significantly impeded the expression of miR-524-5p, but increased the expression of RRM2. Conclusion TTN-AS1 exerts oncogenic function in BC by repressing miR-524-5p and increasing the expression of RRM2.
Collapse
Affiliation(s)
- Hui Feng
- Department of Radiotherapy, Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong, People's Republic of China
| | - Qi Wang
- Department of Radiotherapy, Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong, People's Republic of China
| | - Wenjing Xiao
- Department of Radiotherapy, Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong, People's Republic of China
| | - Biyuan Zhang
- Department of Radiotherapy, Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong, People's Republic of China
| | - Yonglong Jin
- Department of Radiotherapy, Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong, People's Republic of China
| | - Haijun Lu
- Department of Radiotherapy, Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong, People's Republic of China
| |
Collapse
|
29
|
Zhu Z, Li L, Xu J, Ye W, Chen B, Zeng J, Huang Z. Comprehensive analysis reveals a metabolic ten-gene signature in hepatocellular carcinoma. PeerJ 2020; 8:e9201. [PMID: 32518728 PMCID: PMC7258935 DOI: 10.7717/peerj.9201] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 04/24/2020] [Indexed: 12/17/2022] Open
Abstract
Background Due to the complicated molecular and cellular heterogeneity in hepatocellular carcinoma (HCC), the morbidity and mortality still remains high level in the world. However, the number of novel metabolic biomarkers and prognostic models could be applied to predict the survival of HCC patients is still small. In this study, we constructed a metabolic gene signature by systematically analyzing the data from The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO) and International Cancer Genome Consortium (ICGC). Methods Differentially expressed genes (DEGs) between tumors and paired non-tumor samples of 50 patients from TCGA dataset were calculated for subsequent analysis. Univariate cox proportional hazard regression and LASSO analysis were performed to construct a gene signature. The Kaplan–Meier analysis, time-dependent receiver operating characteristic (ROC), Univariate and Multivariate Cox regression analysis, stratification analysis were used to assess the prognostic value of the gene signature. Furthermore, the reliability and validity were validated in four types of testing cohorts. Moreover, the diagnostic capability of the gene signature was investigated to further explore the clinical significance. Finally, Go enrichment analysis and Gene Set Enrichment Analysis (GSEA) have been performed to reveal the different biological processes and signaling pathways which were active in high risk or low risk group. Results Ten prognostic genes were identified and a gene signature were constructed to predict overall survival (OS). The gene signature has demonstrated an excellent ability for predicting survival prognosis. Univariate and Multivariate analysis revealed the gene signature was an independent prognostic factor. Furthermore, stratification analysis indicated the model was a clinically and statistically significant for all subgroups. Moreover, the gene signature demonstrated a high diagnostic capability in differentiating normal tissue and HCC. Finally, several significant biological processes and pathways have been identified to provide new insights into the development of HCC. Conclusion The study have identified ten metabolic prognostic genes and developed a prognostic gene signature to provide more powerful prognostic information and improve the survival prediction for HCC.
Collapse
Affiliation(s)
- Zhipeng Zhu
- Department of Gastrointestinal Surgery, Xiamen Cancer Center, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
| | - Lulu Li
- Department of Gastrointestinal Surgery, Xiamen Cancer Center, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
| | - Jiuhua Xu
- Department of Clinical Medicine, Fujian Medical University, Xiamen, Fujian, China
| | - Weipeng Ye
- Department of Clinical Medicine, Fujian Medical University, Xiamen, Fujian, China
| | - Borong Chen
- Department of Gastrointestinal Surgery, Xiamen Cancer Center, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
| | - Junjie Zeng
- Department of Gastrointestinal Surgery, Xiamen Cancer Center, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
| | - Zhengjie Huang
- Department of Gastrointestinal Surgery, Xiamen Cancer Center, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China.,Department of Clinical Medicine, Fujian Medical University, Xiamen, Fujian, China
| |
Collapse
|
30
|
Xu L, He J, Cai Q, Li M, Pu X, Guo Y. An effective seven-CpG-based signature to predict survival in renal clear cell carcinoma by integrating DNA methylation and gene expression. Life Sci 2020; 243:117289. [PMID: 31926254 DOI: 10.1016/j.lfs.2020.117289] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/29/2019] [Accepted: 01/07/2020] [Indexed: 12/16/2022]
Abstract
AIMS Currently, using clinicopathological risk factors only is not far from effective to evaluate the risk of disease progression in renal clear cell carcinoma (KIRC) patients. Molecular biomarkers might improve risk stratification of KIRC. DNA methylation occurs the whole process of tumor development and transcriptional disorders are also one of the important characteristics of tumor. Hence, this study aims to develop an effective and independent prognostic signature for KIRC patients by Integrating DNA methylation and gene expression. MAIN METHODS Difference analysis was conducted on DNA methylation sites and gene expression data. The Spearman's rank correlation and univariate Cox regression analysis were used to screen out the CpG sites that related with RNAs' expression and KIRC patients' overall survival. Then, a five-CpG-based prognostic classifier was established using LASSO Cox regression method. KEY FINDINGS The seven-CpG-based classifier can successfully divide KIRC patients into high-risk from low-risk groups, even after adjustment for standard clinical prognostic factors, such as age, stage, gender and grade. Moreover, the seven-CpG-based signature was more effective as independent prognostic factors than the combined model of these clinical factors. Six differential mRNA genes corresponding to the seven CpG sites are all related to human cancers by functional exploration. The gene functional and pathway enrichment analysis found that genes in immune-related pathways were remarkably different in high and low-risk groups. SIGNIFICANCE The new seven-CpG-based signature could helpfully provide insights into the underlying mechanism of KIRC and may be a powerful independent biomarker for predicting of the survival of KIRC patients.
Collapse
Affiliation(s)
- Lei Xu
- College of Chemistry, Sichuan University, Chengdu, Sichuan, China
| | - Jian He
- College of Chemistry, Sichuan University, Chengdu, Sichuan, China
| | - Qihang Cai
- College of Chemistry, Sichuan University, Chengdu, Sichuan, China
| | - Menglong Li
- College of Chemistry, Sichuan University, Chengdu, Sichuan, China
| | - Xuemei Pu
- College of Chemistry, Sichuan University, Chengdu, Sichuan, China
| | - Yanzhi Guo
- College of Chemistry, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
31
|
Wang J, Yi Y, Chen Y, Xiong Y, Zhang W. Potential mechanism of RRM2 for promoting Cervical Cancer based on weighted gene co-expression network analysis. Int J Med Sci 2020; 17:2362-2372. [PMID: 32922202 PMCID: PMC7484645 DOI: 10.7150/ijms.47356] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 08/20/2020] [Indexed: 12/18/2022] Open
Abstract
Cervical cancer is the most common gynecologic malignant tumor, with a high incidence in 50-55-year-olds. This study aims to investigate the potential molecular mechanism of RRM2 for promoting the development of cervical cancer based on The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO). RRM2 was found to be significant upregulated in cervical tissue (P<0.05) by extracting the expression of RRM2 from TCGA, GSE63514, GSE7410, GSE7803 and GSE9750. Survival analysis indicated that the overall survival was significantly worse in the patients with high-expression of RRM2 (P<0.05). The top 1000 positively/negatively correlated genes with RRM2 by Pearson Correlation test were extracted. The gene co-expression network by Weighted Gene Co-Expression Network Analysis (WGCNA) with these genes and the clinical characteristics (lymphocyte infiltration, monocyte infiltration, necrosis, neutrophil infiltration, the number of normal/stromal/tumor cells and the number of tumor nuclei) was constructed. By screening the hub nodes from the co-expression network, results suggested that RRM2 may co-express with relevant genes to regulate the number of stromal/tumor cells and the process of lymphocyte infiltration to promote the progression of cervical cancer. RRM2 is likely to become a novel potential diagnostic and prognostic biomarker of cervical cancer and provide evidence to support the study of mechanisms for cervical cancer.
Collapse
Affiliation(s)
- Jingtao Wang
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Yuexiong Yi
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Yurou Chen
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Yao Xiong
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Wei Zhang
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| |
Collapse
|
32
|
Huang N, Guo W, Ren K, Li W, Jiang Y, Sun J, Dai W, Zhao W. LncRNA AFAP1-AS1 Supresses miR-139-5p and Promotes Cell Proliferation and Chemotherapy Resistance of Non-small Cell Lung Cancer by Competitively Upregulating RRM2. Front Oncol 2019; 9:1103. [PMID: 31696057 PMCID: PMC6817562 DOI: 10.3389/fonc.2019.01103] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 10/07/2019] [Indexed: 12/12/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) is the leading cause of cancer-related death worldwide. This study aims to understand the underlying mechanism of lncRNA, actin filament-associated protein 1 antisense RNA 1(AFAP1-AS1) in mediating chemotherapeutic resistance in NSCLC. The levels of AFAP1-AS1 in NSCLC tissues and cells were determined using RT-PCR. The protein levels of RRM2, EGFR, and p-AKT were analyzed using Western blotting. Binding between AFAP1-AS1 and miR-139-5p was confirmed using dual luciferase reporter and RNA immunoprecipitation (RIP) assays, and binding between miR-139-5p and RRM2 was confirmed by a dual luciferase reporter assay. NSCLC cell proliferation, apoptosis, and colony formation were examined using MTT, flow cytometry, and colony formation assays, respectively. It was found that AFAP1-AS1 expression was upregulated in NSCLC tissues and cells. In addition, AFAP1-AS1 bound to and downregulated the expression of miR-139-5p, which was reduced in NSCLC tissues. Knockdown of AFAP1-AS1 and overexpression of miR-139-5p inhibited NSCLC cell proliferation, colony formation and chemotherapy resistance and increased cell apoptosis. Additionally, AFAP1-AS1 upregulates RRM2 expression via sponging miR-139-5p. Furthermore, AFAP1-AS1 enhanced NSCLC cell proliferation and chemotherapy resistance through upregulation of RRM2 by inhibiting miR-139-5p expression. Moreover, RRM2 promoted cellular chemotherapy resistance by activating EGFR/AKT. Finally, knockdown of AFAP1-AS1 significantly suppressed tumor growth and chemoresistance in nude mice. In conclusion, AFAP1-AS1 promoted chemotherapy resistance by supressing miR-139-5p expression and promoting RRM2/EGFR/AKT signaling pathway in NSCLC cells.
Collapse
Affiliation(s)
- Na Huang
- Department of Respiratory Medicine, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Wei Guo
- School of Laboratory Medicine/Sichuan Provincial Engineering Laboratory for Prevention and Control Technology of Veterinary Drug Residue in Animal-origin Food, Chengdu Medical College, Chengdu, China
| | - Ke Ren
- School of Laboratory Medicine/Sichuan Provincial Engineering Laboratory for Prevention and Control Technology of Veterinary Drug Residue in Animal-origin Food, Chengdu Medical College, Chengdu, China
| | - Wancheng Li
- Department of Respiratory Medicine, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Yi Jiang
- Department of Respiratory Medicine, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Jian Sun
- Department of Respiratory Medicine, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Wenjing Dai
- Department of Respiratory Medicine, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Wei Zhao
- Department of Respiratory Medicine, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China.,School of Laboratory Medicine/Sichuan Provincial Engineering Laboratory for Prevention and Control Technology of Veterinary Drug Residue in Animal-origin Food, Chengdu Medical College, Chengdu, China
| |
Collapse
|
33
|
Ding Y, Zhong T, Wang M, Xiang X, Ren G, Jia Z, Lin Q, Liu Q, Dong J, Li L, Li X, Jiang H, Zhu L, Li H, Shen D, Teng L, Li C, Shao J. Integrative Analysis Reveals Across-Cancer Expression Patterns and Clinical Relevance of Ribonucleotide Reductase in Human Cancers. Front Oncol 2019; 9:956. [PMID: 31637211 PMCID: PMC6788385 DOI: 10.3389/fonc.2019.00956] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 09/10/2019] [Indexed: 12/15/2022] Open
Abstract
Mining cancer-omics databases deepens our understanding of cancer biology and can lead to potential breakthroughs in cancer treatment. Here, we propose an integrative analytical approach to reveal across-cancer expression patterns and identify potential clinical impacts for genes of interest from five representative public databases. Using ribonucleotide reductase (RR), a key enzyme in DNA synthesis and cancer-therapeutic targeting, as an example, we characterized the mRNA expression profiles and inter-component associations of three RR subunit genes and assess their differing pathological and prognostic significance across over 30-types of cancers and their related subtypes. Findings were validated by immunohistochemistry with clinical tissue samples (n = 211) collected from multiple cancer centers in China and with clinical follow-up. Underlying mechanisms were further explored and discussed using co-expression gene network analyses. This framework represents a simple, efficient, accurate, and comprehensive approach for cancer-omics resource analysis and underlines the necessity to separate the tumors by their histological or pathological subtypes during the clinical evaluation of molecular biomarkers.
Collapse
Affiliation(s)
- Yongfeng Ding
- Department of Pathology & Pathophysiology, and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Disease Proteomics of Zhejiang Province, Key Laboratory of Cancer Prevention and Intervention of China National Ministry of Education, Research Center for Air Pollution and Health, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Department of Medical Oncology, Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tingting Zhong
- Department of Pathology & Pathophysiology, and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Disease Proteomics of Zhejiang Province, Key Laboratory of Cancer Prevention and Intervention of China National Ministry of Education, Research Center for Air Pollution and Health, Zhejiang University School of Medicine, Hangzhou, China.,Department of Pathology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Min Wang
- Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, China
| | - Xueping Xiang
- Department of Pathology & Pathophysiology, and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Disease Proteomics of Zhejiang Province, Key Laboratory of Cancer Prevention and Intervention of China National Ministry of Education, Research Center for Air Pollution and Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Guoping Ren
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Department of Medical Oncology, Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhongjuan Jia
- Department of Pathology & Pathophysiology, and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qinghui Lin
- Department of Pathology & Pathophysiology, and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qian Liu
- Department of Pathology & Pathophysiology, and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jingwen Dong
- Department of Pathology & Pathophysiology, and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Linrong Li
- Department of Pathology & Pathophysiology, and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiawei Li
- Department of Pathology & Pathophysiology, and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Haiping Jiang
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Department of Medical Oncology, Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lijun Zhu
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Department of Medical Oncology, Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Haoran Li
- Discovery Biochemistry, Kymera Therapeutics, Cambridge, MA, United States
| | - Dejun Shen
- Southern California Permanente Medical Group, Department of Pathology, Downey Medical Center, Downey, CA, United States
| | - Lisong Teng
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Department of Medical Oncology, Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chen Li
- Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, China
| | - Jimin Shao
- Department of Pathology & Pathophysiology, and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Disease Proteomics of Zhejiang Province, Key Laboratory of Cancer Prevention and Intervention of China National Ministry of Education, Research Center for Air Pollution and Health, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
34
|
Fouad S, Wells OS, Hill MA, D'Angiolella V. Cullin Ring Ubiquitin Ligases (CRLs) in Cancer: Responses to Ionizing Radiation (IR) Treatment. Front Physiol 2019; 10:1144. [PMID: 31632280 PMCID: PMC6781834 DOI: 10.3389/fphys.2019.01144] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 08/22/2019] [Indexed: 12/19/2022] Open
Abstract
Treatment with ionizing radiation (IR) remains the cornerstone of therapy for multiple cancer types, including disseminated and aggressive diseases in the palliative setting. Radiotherapy efficacy could be improved in combination with drugs that regulate the ubiquitin-proteasome system (UPS), many of which are currently being tested in clinical trials. The UPS operates through the covalent attachment of ATP-activated ubiquitin molecules onto substrates following the transfer of ubiquitin from an E1, to an E2, and then to the substrate via an E3 enzyme. The specificity of ubiquitin ligation is dictated by E3 ligases, which select substrates to be ubiquitylated. Among the E3s, cullin ring ubiquitin ligases (CRLs) represent prototypical multi-subunit E3s, which use the cullin subunit as a central assembling scaffold. CRLs have crucial roles in controlling the cell cycle, hypoxia signaling, reactive oxygen species clearance and DNA repair; pivotal factors regulating the cancer and normal tissue response to IR. Here, we summarize the findings on the involvement of CRLs in the response of cancer cells to IR, and we discuss the therapeutic approaches to target the CRLs which could be exploited in the clinic.
Collapse
Affiliation(s)
- Shahd Fouad
- Medical Research Council Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Owen S Wells
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Mark A Hill
- Medical Research Council Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Vincenzo D'Angiolella
- Medical Research Council Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
35
|
Liu X, Peng J, Zhou Y, Xie B, Wang J. Silencing RRM2 inhibits multiple myeloma by targeting the Wnt/β‑catenin signaling pathway. Mol Med Rep 2019; 20:2159-2166. [PMID: 31322175 PMCID: PMC6691237 DOI: 10.3892/mmr.2019.10465] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 05/29/2019] [Indexed: 12/22/2022] Open
Abstract
Ribonucleotide reductase M2 (RRM2) is one of the two subunits that comprise ribonucleotide reductase (RR), the enzyme that catalyzes the conversion of ribonucleotide 5'‑diphosphates into 2'‑deoxyribonucleotides, which are required for DNA synthesis. RRM2 is a stress response factor important for the development of several tumors. However, its role in multiple myeloma (MM) remains to be fully elucidated. The present study aimed to investigate the role of RRM2 in MM. The expression of RRM2 in patients with MM was analyzed using the Oncomine database. The results demonstrated that RRM2 expression was higher in MM compared with healthy subjects. Reverse transcription‑quantitative polymerase chain reaction and western blot results revealed that RRM2 expression was decreased following transfection with a small interfering RNA targeting RRM2 into NCI‑H929 cells. RR activity and Cell Counting Kit‑8 assays demonstrated that RRM2 silencing reduced RR activity and inhibited cell proliferation. Annexin V‑propidium iodide staining indicated that the percentage of apoptotic NCI‑H929 cells was increased following RRM2 silencing compared with that in the control group. Increased phosphorylation of H2AX indicated that RRM2 silencing may activate the DNA‑damage response pathway in NCI‑H929 cells. Western blot analysis revealed that protein levels of the apoptosis‑associated factor Bcl‑2 were reduced, whereas Bax, cleaved caspase‑3 and cleaved poly(ADP‑ribose) polymerase 1 were upregulated following RRM2 silencing compared with the control group. In addition, the results demonstrated that RRM2 silencing may inhibit target gene expression in the Wnt/β‑catenin signaling pathway by increasing the phosphorylation of glucose synthase kinase 3β. These findings indicated that RRM2 may be involved in the proliferation and apoptosis of MM cells via the Wnt/β‑catenin signaling pathway, suggesting that RRM2 may represent a novel therapeutic target for MM.
Collapse
Affiliation(s)
- Xia Liu
- Central Laboratory, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310005, P.R. China
| | - Jiamin Peng
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310005, P.R. China
| | - Yayun Zhou
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310005, P.R. China
| | - Bei Xie
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310005, P.R. China
| | - Jianchao Wang
- Department of Clinical Laboratory, Zhejiang Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310012, P.R. China
| |
Collapse
|
36
|
Zhu X, Tan J, Liang Z, Zhou M. Comprehensive analysis of competing endogenous RNA network and 3-mRNA signature predicting survival in papillary renal cell cancer. Medicine (Baltimore) 2019; 98:e16672. [PMID: 31348324 PMCID: PMC6708875 DOI: 10.1097/md.0000000000016672] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) can act as competing endogenous RNAs (ceRNAs) to exert significant roles in regulating the expression of mRNAs by sequestering and binding miRNAs. To elucidate the functional roles and regulatory mechanism of lncRNAs in papillary renal cell cancer (pRCC), we conducted a comprehensive analysis of ceRNA network and constructed a mRNA signature to predict prognosis of pRCC.We collected mRNAs and lncRNAs expression profiles of 289 pRCC samples and 32 normal renal tissues, and miRNA expression profiles of 292 pRCC samples and 34 normal samples from The Cancer Genome Atlas (TCGA) database. Differential expressions of RNAs were evaluated by the "edgeR" package in R. Functional enrichment analysis of DEmRNA was performed by DAVID 6.8 and KEGG, while PPI network of top 200 DEmRNAs was conducted using the STRING database. The univariate and multivariate Cox regression were conducted to figure out the candidate DEmRNAs with predictive values in prognosis. Receiver operator characteristic (ROC) curve estimation was performed to achieve the area under the curve (AUC) of the ROC curve to judge mRNA-associated prognosic model. A ceRNA network was established relying on the basis of combination of lncRNA-miRNA interactions and miRNA-mRNA interactions.A total of 1928 DEmRNAs, 981 DElncRNAs, and 52 DEmiRNAs were identified at significance level of |log2Fold Change |>2 and adjusted P-value < .01. A 3-mRNA signatures consisting of ERG, RRM2, and EGF was constructed to predict survival in pRCC. Moreover, a pRCC-associated ceRNA network was constructed, with 57 lncRNAs, 11 miRNAs, and 28 mRNAs.Our study illustrated the regulatory mechanism of ceRNA network in papillary renal cancer. The identified mRNA signatures could be used to predict survival of pRCC.
Collapse
Affiliation(s)
| | | | | | - Mi Zhou
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
37
|
Wu M, Liu Z, Li X, Zhang A, Lin D, Li N. Analysis of potential key genes in very early hepatocellular carcinoma. World J Surg Oncol 2019; 17:77. [PMID: 31043166 PMCID: PMC6495517 DOI: 10.1186/s12957-019-1616-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 04/14/2019] [Indexed: 02/07/2023] Open
Abstract
Background Hepatocellular carcinoma (HCC) is the major pathological type of primary liver cancer, one of the leading causes of cancer death worldwide. In addition, the long-term survival rates of HCC still remain low. Therefore, we attempted to identify the potential key genes in the occurrence of HCC by comparing the expression profiles of very early HCC tissue samples with that of chronic cirrhotic tissue samples by integrating the bioinformatics analysis in this study. Methods Gene expression profiles of 19 very early HCC and 19 cirrhotic tissue samples were selected from GSE63898. Differentially expressed genes (DEGs) were also identified by using online tool GEO2R. Furthermore, the GO and KEGG enrichment analysis of the DGEs were conducted on DAVID datasets. Then a protein–protein interaction (PPI) network was constructed and the modules were analyzed based on STRING database and Cytoscape software. The hub genes were screened by applying the cytoHubba plugin and then analyzed with the Kaplan Meier plotter. Results A total of 118 DEGs were identified between very early HCC and cirrhotic tissue samples. These DGEs were strongly associated with several biological processes, such as negative regulation of growth and p53 signaling pathway. A PPI network was constructed and top eight hub genes, including CDKN3, CDK1, CCNB1, TOP2A, CCNA2, CCNB2, PRC1, and RRM2, were determined. High expressions of CDK1, CCNB1, TOP2A, CCNA2, PRC1, RRM2, CDKN3, and CCNB2 were associated with poorer overall survivals (OS) in HCC patients. Conclusion We had compared the expression profiles between the very early HCC and cirrhotic tissue samples by using bioinformatics analysis tools, which might help us better to understand the molecular mechanism of the initiation of HCC and even to find novel targets for HCC therapy.
Collapse
Affiliation(s)
- Min Wu
- Department of General Surgery, Beijing Youan Hospital, Capital Medical University, 8 Xitoutiao, Youanmenwai, Feng-tai District, Beijing, 100069, China
| | - Zhaobo Liu
- Department of General Surgery, Beijing Youan Hospital, Capital Medical University, 8 Xitoutiao, Youanmenwai, Feng-tai District, Beijing, 100069, China
| | - Xin Li
- Department of General Surgery, Beijing Youan Hospital, Capital Medical University, 8 Xitoutiao, Youanmenwai, Feng-tai District, Beijing, 100069, China
| | - Aiying Zhang
- Beijing Institute of Hepatology, Beijing YouAn Hospital, Capital Medical University, 8 Xitoutiao, Youanmenwai, Feng-tai District, Beijing, 100069, China
| | - Dongdong Lin
- Department of General Surgery, Beijing Youan Hospital, Capital Medical University, 8 Xitoutiao, Youanmenwai, Feng-tai District, Beijing, 100069, China
| | - Ning Li
- Department of General Surgery, Beijing Youan Hospital, Capital Medical University, 8 Xitoutiao, Youanmenwai, Feng-tai District, Beijing, 100069, China.
| |
Collapse
|
38
|
Zou Y, Zhou J, Xu B, Li W, Wang Z. Ribonucleotide reductase subunit M2 as a novel target for clear-cell renal cell carcinoma. Onco Targets Ther 2019; 12:3267-3275. [PMID: 31118677 PMCID: PMC6501780 DOI: 10.2147/ott.s196347] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 03/06/2019] [Indexed: 12/03/2022] Open
Abstract
Background: Sufficient supply of deoxyribonucleoside triphosphates (dNTPs) is required for the uncontrolled replication of cancers. The current study aimed to investigate the biological and clinical role of ribonucleotide reductase subunit M2 (RRM2), a key enzyme regulating the dNTP pool, in clear-cell renal cell carcinoma (ccRCC). Methods: The expression of RRM2 on disease progression and patient outcome was assessed in ccRCC. Then, the effect of RRM2 inhibition on renal cell carcinoma (RCC) growth using siRNA or Triapine, an RRM2-specific inhibitor, was characterized in RCC cell lines. Results: The expression of RRM2 was up-regulated in ccRCC tissues as compared to the normal tissues. Patients with high RRM2 expression tend to have advanced pT stages, high Fuhrman grades, and shortened overall survival (OS). RRM2-siRNAs or Triapine significantly inhibited the cell growth by inducing G0/G1 cell cycle arrest in RCC cells through the attenuation of dNTP pool. Conclusions: The current results provided evidence that RRM2 might act as a novel target for ccRCC, and exploration of nonnucleoside, reversible, small-molecule inhibitors against RRM2 could be promising.
Collapse
Affiliation(s)
- Yun Zou
- Department of Urology and Andrology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China
| | - Juan Zhou
- Department of Urology and Andrology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China
| | - Bin Xu
- Department of Urology and Andrology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China
| | - Wenzhi Li
- Department of Urology and Andrology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China
| | - Zhong Wang
- Department of Urology and Andrology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China
| |
Collapse
|
39
|
Foloppe J, Kempf J, Futin N, Kintz J, Cordier P, Pichon C, Findeli A, Vorburger F, Quemeneur E, Erbs P. The Enhanced Tumor Specificity of TG6002, an Armed Oncolytic Vaccinia Virus Deleted in Two Genes Involved in Nucleotide Metabolism. MOLECULAR THERAPY-ONCOLYTICS 2019; 14:1-14. [PMID: 31011628 PMCID: PMC6461584 DOI: 10.1016/j.omto.2019.03.005] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 03/18/2019] [Indexed: 11/25/2022]
Abstract
Oncolytic vaccinia viruses are currently in clinical development. However, the safety and the tumor selectivity of these oncolytic viruses must be improved. We previously constructed a first-generation oncolytic vaccinia virus by expressing the suicide gene FCU1 inserted in the J2R locus that encodes thymidine kinase. We demonstrated that the combination of this thymidine-kinase-deleted vaccinia virus and the FCU1/5-fluocytosine system is a potent vector for cancer therapy. Here, we developed a second generation of vaccinia virus, named TG6002, expressing FCU1 and with targeted deletions of the J2R gene and the I4L gene, which encodes the large subunit of the ribonucleotide reductase. Compared to the previously used single thymidine-kinase-deleted vaccinia virus, TG6002 is highly attenuated in normal cells, yet it displays tumor-selective replication and tumor cell killing. TG6002 replication is highly dependent on cellular ribonucleotide reductase levels and is less pathogenic than the single-deleted vaccinia virus. Tumor-selective viral replication, prolonged therapeutic levels of 5-fluorouracil in tumors, and significant antitumor effects were observed in multiple human xenograft tumor models after systemic injection of TG6002 and 5-fluorocytosine. TG6002 displays a convincing safety profile and is a promising candidate for treatment of cancer in humans.
Collapse
|
40
|
Sun H, Yang B, Zhang H, Song J, Zhang Y, Xing J, Yang Z, Wei C, Xu T, Yu Z, Xu Z, Hou M, Ji M, Zhang Y. RRM2 is a potential prognostic biomarker with functional significance in glioma. Int J Biol Sci 2019; 15:533-543. [PMID: 30745840 PMCID: PMC6367584 DOI: 10.7150/ijbs.30114] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Accepted: 11/09/2018] [Indexed: 12/11/2022] Open
Abstract
Glioma is one of the most common brain tumors, suggesting the importance of investigating the molecular mechanism of gliomas. We studied the roles of Ribonucleotide Reductase Regulatory Subunit M2 (RRM2) in glioma. Expressions of RRM2 are higher in glioma tissues evidenced by TCGA data, western blot and immunohistochemistry. RRM2 is negatively correlated with glioma patient's survival. RNA-seq showed that genes involved in apoptosis, proliferation, cell adhesion and negative regulation of signaling were up-regulated upon RNAi-mediated knock-down of RRM2. Cell phenotypes specific for stably knocking down RRM2 were determined using stable transfection in vitro. In an in vivo model, knock-down of RRM2 inhibited tumor growth and caused suppression of AKT and ERK1/2 signalings. Interfering RRM2 also down-regulated the expression of cyclin A, cyclin B1, cyclin D1, Vimentin, and N-cadherin, and elevated E-cadherin expression. Moreover, overexpression of RRM2 failed to increase the expression of cyclin B1, cyclin D1, and N-cadherin when phosphorylation of AKT and ERK1/2 was suppressed by LY294002 or PD98059. These findings indicated that RRM2 is a positive regulator of glioma progression which contributes to the migration and proliferation of glioma cells through ERK1/2 and AKT signalings and might be a novel prognostic indicator for glioma patients.
Collapse
Affiliation(s)
- Hongzhi Sun
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Bingya Yang
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
- Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing, Jiangsu, 211166, China
| | - Hao Zhang
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Jingwei Song
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Yenan Zhang
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Jicheng Xing
- Department of Clinical laboratory, Bayi Hospital Affiliated to Nanjing University Of Chinese Medicine, Nanjing, Jiangsu, 210002, China
| | - Zhihui Yang
- Department of Clinical laboratory, Bayi Hospital Affiliated to Nanjing University Of Chinese Medicine, Nanjing, Jiangsu, 210002, China
| | - Changyong Wei
- Department of Hematology and Medical Oncology, School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Tuoye Xu
- Department of Neurosurgery, Brain Hospital, affiliated to Nanjing medical University, Nanjing, 210029, China
| | - Zhennan Yu
- Department of Neurosurgery, Brain Hospital, affiliated to Nanjing medical University, Nanjing, 210029, China
| | - Zhipeng Xu
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
- Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing, Jiangsu, 211166, China
| | - Min Hou
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Minjun Ji
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
- Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing, Jiangsu, 211166, China
| | - Yansong Zhang
- Department of Neurosurgery, Brain Hospital, affiliated to Nanjing medical University, Nanjing, 210029, China
| |
Collapse
|
41
|
Chen CW, Li Y, Hu S, Zhou W, Meng Y, Li Z, Zhang Y, Sun J, Bo Z, DePamphilis ML, Yen Y, Han Z, Zhu W. DHS (trans-4,4'-dihydroxystilbene) suppresses DNA replication and tumor growth by inhibiting RRM2 (ribonucleotide reductase regulatory subunit M2). Oncogene 2018; 38:2364-2379. [PMID: 30518875 PMCID: PMC6705423 DOI: 10.1038/s41388-018-0584-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 08/29/2018] [Accepted: 09/27/2018] [Indexed: 01/06/2023]
Abstract
DNA replication machinery is responsible for accurate and efficient duplication of the chromosome. Since inhibition of DNA replication can lead to replication fork stalling, resulting in DNA damage and apoptotic death, inhibitors of DNA replication are commonly used in cancer chemotherapy. Ribonucleotide reductase (RNR) is the rate-limiting enzyme in the biosynthesis of deoxyribonucleoside triphosphates (dNTPs) that are essential for DNA replication and DNA damage repair. Gemcitabine, a nucleotide analog that inhibits RNR, has been used to treat various cancers. However, patients often develop resistance to this drug during treatment. Thus, new drugs that inhibit RNR are needed to be developed. In this study, we identified a synthetic analog of resveratrol (3,5,4’-trihydroxy-trans-stilbene), termed DHS (trans-4,4’-dihydroxystilbene), that acts as a potent inhibitor of DNA replication. Molecular docking analysis identified the RRM2 (ribonucleotide reductase regulatory subunit M2) of RNR as a direct target of DHS. At the molecular level, DHS induced cyclin F-mediated down-regulation of RRM2 by the proteasome. Thus, treatment of cells with DHS reduced RNR activity and consequently decreased synthesis of dNTPs with concomitant inhibition of DNA replication, arrest of cells at S-phase, DNA damage, and finally apoptosis. In mouse models of tumor xenografts, DHS was efficacious against pancreatic, ovarian, and colorectal cancer cells. Moreover, DHS overcame both gemcitabine resistance in pancreatic cancer and cisplatin resistance in ovarian cancer. Thus, DHS is a novel anti-cancer agent that targets RRM2 with therapeutic potential either alone or in combination with other agents to arrest cancer development.
Collapse
Affiliation(s)
- Chi-Wei Chen
- Department of Biochemistry and Molecular Medicine, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA.,GW Cancer Center, The George Washington University, Washington, DC, USA
| | - Yongming Li
- Department of Biochemistry and Molecular Medicine, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA.,College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Shuya Hu
- City of Hope National Medical Center, Duarte, CA, USA
| | - Wei Zhou
- Department of Biochemistry and Molecular Medicine, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA.,GW Cancer Center, The George Washington University, Washington, DC, USA.,Department of Colorectal Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yunxiao Meng
- Department of Biochemistry and Molecular Medicine, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA.,GW Cancer Center, The George Washington University, Washington, DC, USA
| | - Zongzhu Li
- Department of Biochemistry and Molecular Medicine, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA.,GW Cancer Center, The George Washington University, Washington, DC, USA
| | - Yi Zhang
- Department of Biochemistry and Molecular Medicine, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA.,GW Cancer Center, The George Washington University, Washington, DC, USA
| | - Jing Sun
- Department of Biochemistry and Molecular Medicine, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA.,GW Cancer Center, The George Washington University, Washington, DC, USA
| | - Zhou Bo
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, China
| | | | - Yun Yen
- City of Hope National Medical Center, Duarte, CA, USA
| | - Zhiyong Han
- Department of Medical Sciences, Hackensack Meridian School of Medicine at Seton Hall University, South Orange, NJ, USA.
| | - Wenge Zhu
- Department of Biochemistry and Molecular Medicine, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA. .,GW Cancer Center, The George Washington University, Washington, DC, USA.
| |
Collapse
|
42
|
Liu M, Qiu YL, Jin T, Zhou Y, Mao ZY, Zhang YJ. Meta-analysis of microarray datasets identify several chromosome segregation-related cancer/testis genes potentially contributing to anaplastic thyroid carcinoma. PeerJ 2018; 6:e5822. [PMID: 30386706 PMCID: PMC6203939 DOI: 10.7717/peerj.5822] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 09/25/2018] [Indexed: 01/08/2023] Open
Abstract
AIM Anaplastic thyroid carcinoma (ATC) is the most lethal thyroid malignancy. Identification of novel drug targets is urgently needed. MATERIALS & METHODS We re-analyzed several GEO datasets by systematic retrieval and data merging. Differentially expressed genes (DEGs) were filtered out. We also performed pathway enrichment analysis to interpret the data. We predicted key genes based on protein-protein interaction networks, weighted gene co-expression network analysis and genes' cancer/testis expression pattern. We also further characterized these genes using data from the Cancer Genome Atlas (TCGA) project and gene ontology annotation. RESULTS Cell cycle-related pathways were significantly enriched in upregulated genes in ATC. We identified TRIP13, DLGAP5, HJURP, CDKN3, NEK2, KIF15, TTK, KIF2C, AURKA and TPX2 as cell cycle-related key genes with cancer/testis expression pattern. We further uncovered that most of these putative key genes were critical components during chromosome segregation. CONCLUSION We predicted several key genes harboring potential therapeutic value in ATC. Cell cycle-related processes, especially chromosome segregation, may be the key to tumorigenesis and treatment of ATC.
Collapse
Affiliation(s)
- Mu Liu
- The First Medical School of Nanjing Medical University, Nanjing Medical University, Nanjing, Jiangsu, China
- School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yu-Lu Qiu
- The First Medical School of Nanjing Medical University, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Tong Jin
- Department of Bioinformatics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yin Zhou
- The First Medical School of Nanjing Medical University, Nanjing Medical University, Nanjing, Jiangsu, China
- School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhi-Yuan Mao
- Department of Human Anatomy, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yong-Jie Zhang
- Department of Human Anatomy, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
- Key Laboratory for Aging & Diseases of Nanjing Medical University, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
43
|
Tang X, Xu Y, Lu L, Jiao Y, Liu J, Wang L, Zhao H. Identification of key candidate genes and small molecule drugs in cervical cancer by bioinformatics strategy. Cancer Manag Res 2018; 10:3533-3549. [PMID: 30271202 PMCID: PMC6145638 DOI: 10.2147/cmar.s171661] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Purpose Cervical cancer (CC) is one of the most common malignant tumors among women. The present study aimed at integrating two expression profile datasets to identify critical genes and potential drugs in CC. Materials and methods Expression profiles, GSE7803 and GSE9750, were integrated using bioinformatics methods, including differentially expressed genes analysis, Kyoto Encyclopedia of Genes and Genomes pathway analysis, and protein–protein interaction (PPI) network construction. Subsequently, survival analysis was performed among the key genes using Gene Expression Profiling Interactive Analysis websites. Connectivity Map (CMap) was used to query potential drugs for CC. Results A total of 145 upregulated genes and 135 downregulated genes in CC were identified. The functional changes of these differentially expressed genes related to CC were mainly associated with cell cycle, DNA replication, p53 signaling pathway, and oocyte meiosis. A PPI network was identified by STRING with 220 nodes and 2,111 edges. Thirteen key genes were identified as the intersecting genes of the enrichment pathways and the top 20 nodes in PPI network. Survival analysis revealed that high mRNA expression of MCM2, PCNA, and RFC4 was significantly associated with longer overall survival, and the survival was significantly better in the low-expression RRM2 group. Moreover, CMap predicted nine small molecules as possible adjuvant drugs to treat CC. Conclusion Our study found key dysregulated genes involved in CC and potential drugs to combat it, which might provide insights into CC pathogenesis and might shed light on potential CC treatments.
Collapse
Affiliation(s)
- Xin Tang
- School of Rehabilitation, Kunming Medical University, Kunming, China
| | - Yicong Xu
- Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming, China, .,Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Kunming, China,
| | - Lin Lu
- Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming, China, .,Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Kunming, China,
| | - Yang Jiao
- Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming, China, .,Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Kunming, China,
| | - Jianjun Liu
- Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming, China, .,Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Kunming, China,
| | - Linlin Wang
- Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming, China, .,Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Kunming, China,
| | - Hongbo Zhao
- Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming, China, .,Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Kunming, China,
| |
Collapse
|
44
|
siRNA Knockdown of RRM2 Effectively Suppressed Pancreatic Tumor Growth Alone or Synergistically with Doxorubicin. MOLECULAR THERAPY-NUCLEIC ACIDS 2018; 12:805-816. [PMID: 30153565 PMCID: PMC6118156 DOI: 10.1016/j.omtn.2018.08.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 08/04/2018] [Accepted: 08/05/2018] [Indexed: 12/22/2022]
Abstract
Pancreatic cancer is currently one of the deadliest of the solid malignancies, whose incidence and death rates are increasing consistently during the past 30 years. Ribonucleotide reductase (RR) is a rate-limiting enzyme that catalyzes the formation of deoxyribonucleotides from ribonucleotides, which are essential for DNA synthesis and replication. In this study, 23 small interfering RNAs (siRNAs) against RRM2, the second subunit of RR, were designed and screened, and one of them (termed siRRM2), with high potency and good RNase-resistant capability, was selected. Transfection of siRRM2 into PANC-1, a pancreatic cell line, dramatically repressed the formation of cell colonies by inducing remarkable cell-cycle arrest at S-phase. When combining with doxorubicin (DOX), siRRM2 improved the efficacy 4 times more than applying DOX alone, suggesting a synergistic effect of siRRM2 and DOX. Moreover, the combined application of siRRM2-loaded lipid nanoparticle and DOX significantly suppressed the tumor growth on the PANC-1 xenografted murine model. The inhibition efficiency revealed by tumor weight at the endpoint of the treatment reached more than 40%. Hence, siRRM2 effectively suppressed pancreatic tumor growth alone or synergistically with DOX. This study provides a feasible target gene, a drug-viable siRNA, and a promising therapeutic potential for the treatment of pancreatic cancer.
Collapse
|
45
|
Miyama Y, Morikawa T, Miyakawa J, Koyama Y, Kawai T, Kume H, Fukayama M. The prognostic value of PD-L1 expression in upper tract urothelial carcinoma varies according to platelet count. Cancer Med 2018; 7:4330-4338. [PMID: 30062756 PMCID: PMC6143937 DOI: 10.1002/cam4.1686] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 06/17/2018] [Accepted: 06/23/2018] [Indexed: 12/19/2022] Open
Abstract
Programmed cell death ligand-1 (PD-L1) is a ligand for programmed cell death-1 (PD-1) that negatively regulates T-cell activation and plays a crucial role in suppressing anti-tumor host immunity. Although PD-L1 is a promising immunotherapy target in various cancers, including urothelial carcinoma (UC), the prognostic significance of PD-L1 in UC is unclear. As platelets help protect tumor cells from immune elimination in the circulatory system, we hypothesized that tumor PD-L1 and circulating platelets might synergistically promote tumor metastasis, and that the prognostic significance of PD-L1 might vary according to platelet count. We immunohistochemically examined tumor PD-L1 expression in 271 patients with upper tract UC, which revealed PD-L1 positivity in 31 of 271 cases (11%). The associations of tumor PD-L1 expression with outcomes varied among patients with high or low platelet counts (Pinteraction < 0.004). Among patients with high platelet counts (N = 136), PD-L1 positivity (N = 15) was significantly associated with shorter metastasis-free survival (univariate hazard ratio [HR]: 6.23, 95% confidence interval [CI]: 2.95-13.1; multivariate HR: 2.68, 95% CI: 1.27-5.64) and shorter overall survival (univariate HR: 4.92, 95% CI: 2.14-11.3, multivariate HR: 2.78, 95% CI: 1.19-6.51). In contrast, among patients with low platelet counts (N = 135), PD-L1 positivity (N = 16) was not significantly associated with these outcomes. Our results suggest that tumor PD-L1 expression and platelet count might interact and help regulate tumor progression. Although a larger prospective study is needed to validate our findings, this relationship is important to consider, as immunotherapies targeting the PD-1/PD-L1 axis have gained significant attention as promising therapies for UC.
Collapse
Affiliation(s)
- Yu Miyama
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Teppei Morikawa
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Department of Diagnostic Pathology, NTT Medical Center Tokyo, Tokyo, Japan
| | - Jimpei Miyakawa
- Department of Urology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yuichi Koyama
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Taketo Kawai
- Department of Urology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Haruki Kume
- Department of Urology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masashi Fukayama
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
46
|
Nana AW, Wu SY, Yang YCS, Chin YT, Cheng TM, Ho Y, Li WS, Liao YM, Chen YR, Shih YJ, Liu YR, Pedersen J, Incerpi S, Hercbergs A, Liu LF, Whang-Peng J, Davis PJ, Lin HY. Nano-Diamino-Tetrac (NDAT) Enhances Resveratrol-Induced Antiproliferation by Action on the RRM2 Pathway in Colorectal Cancers. Discov Oncol 2018; 9:349-360. [PMID: 30027502 DOI: 10.1007/s12672-018-0334-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 05/10/2018] [Indexed: 12/19/2022] Open
Abstract
Cancer resistance to chemotherapeutic agents is a major issue in the management of cancer patients. Overexpression of the ribonucleotide reductase regulatory subunit M2 (RRM2) has been associated with aggressive cancer behavior and chemoresistance. Nano-diamino-tetrac (NDAT) is a nanoparticulate derivative of tetraiodothyroacetic acid (tetrac), which exerts anticancer properties via several mechanisms and downregulates RRM2 gene expression in cancer cells. Resveratrol is a stilbenoid phytoalexin which binds to a specific site on the cell surface integrin αvβ3 to trigger cancer cell death via nuclear translocation of COX-2. Here we report that resveratrol paradoxically activates RRM2 gene expression and protein translation in colon cancer cells. This unanticipated effect inhibits resveratrol-induced COX-2 nuclear accumulation. RRM2 downregulation, whether achieved by RNA interference or treatment with NDAT, enhanced resveratrol-induced COX-2 gene expression and nuclear uptake which is essential to integrin αvβ3-mediated-resveratrol-induced antiproliferation in cancer cells. Elsewhere, NDAT downregulated resveratrol-induced RRM2 expression in vivo but potentiated the anticancer effect of the stilbene. These findings suggest that RRM2 appears as a cancer cell defense mechanism which can hinder the anticancer effect of the stilbene via the integrin αvβ3 axis. Furthermore, the antagonistic effect of RRM2 against resveratrol is counteracted by the administration of NDAT.
Collapse
Affiliation(s)
- André Wendindondé Nana
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei, Taiwan
| | - Szu Yuan Wu
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Radiation Oncology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Biotechnology, Hungkuang University, Taichung, Taiwan
| | - Yu-Chen Sh Yang
- Joint Biobank, Office of Human Research, Taipei Medical University, Taipei, Taiwan
| | - Yu-Tang Chin
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 11031, Taiwan
- Taipei Cancer Center, Taipei Medical University, Taipei, Taiwan
| | - Tsai-Mu Cheng
- Graduate Institute of Translational Medicine, College of Medicine and Technology, Taipei Medical University, Taipei, Taiwan
| | - Yih Ho
- School of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Wen-Shan Li
- Laboratory of Chemical Biology and Medicinal Chemistry, Institute of Chemistry, Academia Sinica, Taipei, Taiwan
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Yu-Min Liao
- Integrated Laboratory, Center of Translational Medicine, Core Facility, Taipei Medical University, Taipei, Taiwan
| | - Yi-Ru Chen
- Taipei Cancer Center, Taipei Medical University, Taipei, Taiwan
| | - Ya-Jung Shih
- Taipei Cancer Center, Taipei Medical University, Taipei, Taiwan
| | - Yun-Ru Liu
- Joint Biobank, Office of Human Research, Taipei Medical University, Taipei, Taiwan
| | - Jens Pedersen
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Sandra Incerpi
- Department of Sciences, Roma Tre University, Rome, Italy
| | - Aleck Hercbergs
- Department of Radiation Oncology, Cleveland Clinic, Cleveland, OH, USA
| | - Leroy F Liu
- Taipei Cancer Center, Taipei Medical University, Taipei, Taiwan
| | | | - Paul J Davis
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Albany, NY, USA
- Department of Medicine, Albany Medical College, Albany, NY, USA
| | - Hung-Yun Lin
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 11031, Taiwan.
- Taipei Cancer Center, Taipei Medical University, Taipei, Taiwan.
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Albany, NY, USA.
- Traditional Herbal Medicine Research Center of Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
47
|
Li C, Zheng J, Chen S, Huang B, Li G, Feng Z, Wang J, Xu S. RRM2 promotes the progression of human glioblastoma. J Cell Physiol 2018; 233:6759-6767. [PMID: 29667764 DOI: 10.1002/jcp.26529] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 01/30/2018] [Indexed: 12/12/2022]
Abstract
Glioblastoma pathogenesis is related to multiple processes that affected by dozens of regulatory factors, but the potential underlying factors regulating glioblastoma progression remains unclear. The goal of this research was to determine how the ribonucleotide reductase M2 subunit (RRM2) influenced proliferation, invasion, migration, and apoptosis of human glioblastoma cells. The level of proliferation of human glioblastoma cells was measured through CCK8, colony formation assay and immunofluorescence stains. Flow cytometry (FCM), wound healing, and transwell assays were conducted to detect cell apoptosis, migration, and invasion. Apoptotic level of cells and invasion-related expression of protein were measured by Western blot. Xenograft tumor model was established to confirm effect of RRM2 on the proliferation of human glioblastoma cells in vivo. Silencing RRM2 inhibited proliferation, invasion, and migration of glioblastoma cells whereas enhanced apoptosis rate. Overexpressing RRM2 promoted proliferation, migration and invasion but suppressed apoptosis. In vivo, Overexpressing RRM2 accelerated the tumor growth in glioblastoma cells. The present study illustrated that RRM2 was overexpressed in human glioblastoma cells. RRM2 promoted proliferation, migration, and invasion but inhibited apoptosis of human glioblastoma cells.
Collapse
Affiliation(s)
- Chao Li
- Department of Neurosurgery, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Jingfang Zheng
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Si Chen
- Department of Neurosurgery, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Bin Huang
- Department of Neurosurgery, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Guosheng Li
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | | | - Jiwei Wang
- Shandong University, Jinan, Shandong, China
| | - Shujun Xu
- Department of Neurosurgery, Qilu Hospital, Shandong University, Jinan, Shandong, China
| |
Collapse
|
48
|
He Z, Hu X, Liu W, Dorrance A, Garzon R, Houghton PJ, Shen C. P53 suppresses ribonucleotide reductase via inhibiting mTORC1. Oncotarget 2018; 8:41422-41431. [PMID: 28507282 PMCID: PMC5522210 DOI: 10.18632/oncotarget.17440] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 04/11/2017] [Indexed: 11/25/2022] Open
Abstract
Balanced deoxyribonucleotides pools are essential for cell survival and genome stability. Ribonucleotide reductase is the rate-limiting enzyme for the production of deoxyribonucleotides. We report here that p53 suppresses ribonucleotide reductase subunit 1 (RRM1) and 2 (RRM2) via inhibiting mammalian target of rapamycin complex 1 (mTORC1). In vitro, cancer cell lines and mouse embryonic fibroblast cells were treated with different concentrations of pharmacological inhibitors for different times. In vivo, rhabdomyosarcoma Rh30 cell tumor-bearing mice were treated with rapamycin or AZD8055. Protein levels and phosphorylation status were assessed by immunoblotting and mRNA levels were determined by real time RT-PCR. Pharmacological inhibition of mTORC1 with rapamycin, mTOR kinase with AZD8055 or protein kinase B with MK2206 resulted in decrease of RRM1 and RRM2 in Rh30 cells both in vitro and in mouse tumor xenografts. Moreover, eukaryotic translational initiation factor 4E-binding proteins 1 and 2 double knockout mouse embryonic fibroblast cells demonstrated an elevation of RRM1 and RRM2. Furthermore, down-regulation of mTOR-protein kinase B signaling or cyclin dependent kinase 4 led to decrease of RRM1 and RRM2 mRNAs. In addition, TP53 mutant cancer cells had elevation of RRM1 and RRM2, which was reduced by rapamycin. Importantly, human double minute 2 inhibitor nutlin-3 decreased RRM1 and RRM2 in TP53 wild type rhabdomyosarcoma Rh18 but not in TP53 mutated Rh30 cells. Our data demonstrated that mTOR enhances the cap-dependent protein translation and gene transcription of RRM1 and RRM2. Our findings might provide an additional mechanism by which p53 maintains genome stability.
Collapse
Affiliation(s)
- Zhengfu He
- Department of Thoracic Surgery, Sir Run Run Shaw Hospital, College of Medicine Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Xing Hu
- College of Biology and Food Engineering, Huaihua University, Huaihua, Hunan Province, China
| | - Weijin Liu
- College of Biology and Food Engineering, Huaihua University, Huaihua, Hunan Province, China
| | - Adrienne Dorrance
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Ramiro Garzon
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Peter J Houghton
- The Greehey Children's Cancer Research Institute, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Changxian Shen
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
49
|
Wang N, Li Y, Zhou J. Downregulation of ribonucleotide reductase subunits M2 induces apoptosis and G1 arrest of cervical cancer cells. Oncol Lett 2018; 15:3719-3725. [PMID: 29556274 PMCID: PMC5844123 DOI: 10.3892/ol.2018.7806] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 11/29/2017] [Indexed: 12/11/2022] Open
Abstract
Ribonucleotide reductase subunit M2 (RRM2) is associated with the biological behaviours of cancers, including apoptosis, cell proliferation, invasion, cell cycle and migration. Previous studies have suggested that the expression of RRM2 plays critical roles in tumorigenesis in several cancer types. However, the precise molecular mechanism remains unknown. We previously identified RRM2 as a novel downstream target that is activated by human papillomavirus E7, which activates the extracellular signal-regulated kinase 1/2 signalling pathway, but further studies are warranted to establish RRM2 as a therapeutic target. The results of the present study indicate that RRM2 is associated with cervical cancer cell apoptosis and proliferation. The downregulation of RRM2 significantly increased apoptosis, promoted cell cycle arrest at the G1 phase in vitro and inhibited tumour formation in nude mice transplant models in vivo. These results highlight the potential for inhibition of RRM2 expression as a promising therapeutic target for human cervical cancer treatment.
Collapse
Affiliation(s)
- Nan Wang
- Laboratory of Molecular Biology, College of Life Sciences, Jiaying University, Meizhou, Guangdong 514015, P.R. China
| | - Yong Li
- Key Laboratory of Molecular Biophysics of The Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P.R. China
| | - Jianhong Zhou
- Laboratory of Molecular Biology, College of Life Sciences, Jiaying University, Meizhou, Guangdong 514015, P.R. China
| |
Collapse
|
50
|
Potts KG, Irwin CR, Favis NA, Pink DB, Vincent KM, Lewis JD, Moore RB, Hitt MM, Evans DH. Deletion of F4L (ribonucleotide reductase) in vaccinia virus produces a selective oncolytic virus and promotes anti-tumor immunity with superior safety in bladder cancer models. EMBO Mol Med 2017; 9:638-654. [PMID: 28289079 PMCID: PMC5412795 DOI: 10.15252/emmm.201607296] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Bladder cancer has a recurrence rate of up to 80% and many patients require multiple treatments that often fail, eventually leading to disease progression. In particular, standard of care for high-grade disease, Bacillus Calmette-Guérin (BCG), fails in 30% of patients. We have generated a novel oncolytic vaccinia virus (VACV) by mutating the F4L gene that encodes the virus homolog of the cell-cycle-regulated small subunit of ribonucleotide reductase (RRM2). The F4L-deleted VACVs are highly attenuated in normal tissues, and since cancer cells commonly express elevated RRM2 levels, have tumor-selective replication and cell killing. These F4L-deleted VACVs replicated selectively in immune-competent rat AY-27 and xenografted human RT112-luc orthotopic bladder cancer models, causing significant tumor regression or complete ablation with no toxicity. It was also observed that rats cured of AY-27 tumors by VACV treatment developed anti-tumor immunity as evidenced by tumor rejection upon challenge and by ex vivo cytotoxic T-lymphocyte assays. Finally, F4L-deleted VACVs replicated in primary human bladder cancer explants. Our findings demonstrate the enhanced safety and selectivity of F4L-deleted VACVs, with application as a promising therapy for patients with BCG-refractory cancers and immune dysregulation.
Collapse
Affiliation(s)
- Kyle G Potts
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada.,Li Ka Shing Institute of Virology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada.,Cancer Research Institute of Northern Alberta (CRINA), Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Chad R Irwin
- Li Ka Shing Institute of Virology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada.,Cancer Research Institute of Northern Alberta (CRINA), Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada.,Department of Medical Microbiology & Immunology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Nicole A Favis
- Li Ka Shing Institute of Virology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada.,Cancer Research Institute of Northern Alberta (CRINA), Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada.,Department of Medical Microbiology & Immunology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Desmond B Pink
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada.,Cancer Research Institute of Northern Alberta (CRINA), Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Krista M Vincent
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada.,Cancer Research Institute of Northern Alberta (CRINA), Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada.,Department of Anatomy & Cell Biology, Faculty of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - John D Lewis
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada.,Cancer Research Institute of Northern Alberta (CRINA), Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Ronald B Moore
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada.,Cancer Research Institute of Northern Alberta (CRINA), Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada.,Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Mary M Hitt
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada.,Li Ka Shing Institute of Virology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada.,Cancer Research Institute of Northern Alberta (CRINA), Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - David H Evans
- Li Ka Shing Institute of Virology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada .,Cancer Research Institute of Northern Alberta (CRINA), Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada.,Department of Medical Microbiology & Immunology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|