1
|
da Silveira GCAR, Costa RV, Lemos FLM, de Moraes ATL, Kataoka MSDS, Freitas VM, de Menezes SAF, Vasconcelos ACU, Etges A, Santos FP, de Araújo VC, Alves Júnior SDM, Jaeger RG, Pinheiro JDJV. Assessment of Protein Immunoexpression Associated with Tumor Proliferation and Invasion in Histological Subtypes of Unicystic and Conventional Ameloblastoma. Int J Mol Sci 2025; 26:1267. [PMID: 39941035 PMCID: PMC11818812 DOI: 10.3390/ijms26031267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/28/2025] [Accepted: 01/29/2025] [Indexed: 02/16/2025] Open
Abstract
The aim of this study was to verify whether the expression of proteins related to the formation of invadopodia, MT1-MMP, cortactin, Tks-4 and Tks-5 is associated with the degree of tumor invasiveness of different types of unicystic ameloblastomas. An immunohistochemical study was performed on 29 unicystic ameloblastoma (UA) samples, 9 conventional ameloblastoma (CAM) samples and 9 dental follicle (DF) samples. The potential for tumor invasiveness was assessed based on the immunoexpression of the following invadopodia-forming proteins: MT1-MMP, cortactin, Tks-4 and Tks5. Mural unicystic ameloblastoma (MUA) showed higher MT1-MMP, cortactin, Tks-4, and Tks-5 immunoexpression than luminal and intra-luminal types. Conventional ameloblastoma exhibited lower MT1-MMP, cortactin, and Tks-5 expression compared to MUA. MUA's cystic capsule neoplastic cells had significantly higher MT1-MMP, cortactin, Tks-4, and Tks-5 expression than lumen cells. Dental follicles showed minimal expression. Neoplastic cells in the cystic capsule of mural unicystic ameloblastomas showed higher invadopodia-related protein expression than lumen and luminal/intraluminal cells, suggesting that proximity to the bone region influences the aggressive behavior of mural unicystic ameloblastomas more compared to other subtypes.
Collapse
Affiliation(s)
- Gabriela Cristina Avertano Rocha da Silveira
- Laboratory of Pathological Anatomy and Immunohistochemistry, School of Dentistry, Federal University of Pará, Belém 66075-110, PA, Brazil; (G.C.A.R.d.S.); (R.V.C.); (F.L.M.L.); (S.d.M.A.J.)
| | - Rebeca Vieira Costa
- Laboratory of Pathological Anatomy and Immunohistochemistry, School of Dentistry, Federal University of Pará, Belém 66075-110, PA, Brazil; (G.C.A.R.d.S.); (R.V.C.); (F.L.M.L.); (S.d.M.A.J.)
| | - Flavia Letícia Magalhães Lemos
- Laboratory of Pathological Anatomy and Immunohistochemistry, School of Dentistry, Federal University of Pará, Belém 66075-110, PA, Brazil; (G.C.A.R.d.S.); (R.V.C.); (F.L.M.L.); (S.d.M.A.J.)
| | - Antonia Taiane Lopes de Moraes
- Oral Diagnosis Department, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba 13414-903, SP, Brazil;
| | | | - Vanessa Morais Freitas
- Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, SP, Brazil; (V.M.F.); (R.G.J.)
| | | | - Ana Carolina Uchoa Vasconcelos
- Center for the Diagnosis of Diseases of the Mouth, School of Dentistry, Federal University of Pelotas, Pelotas 96010-610, RS, Brazil; (A.C.U.V.); (A.E.)
| | - Adriana Etges
- Center for the Diagnosis of Diseases of the Mouth, School of Dentistry, Federal University of Pelotas, Pelotas 96010-610, RS, Brazil; (A.C.U.V.); (A.E.)
| | - Fabricio Passador Santos
- Department of Oral Pathology, São Leopoldo Mandic Institute and Research Center, Campinas 13045-755, SP, Brazil; (F.P.S.); (V.C.d.A.)
| | - Vera Cavalcanti de Araújo
- Department of Oral Pathology, São Leopoldo Mandic Institute and Research Center, Campinas 13045-755, SP, Brazil; (F.P.S.); (V.C.d.A.)
| | - Sérgio de Melo Alves Júnior
- Laboratory of Pathological Anatomy and Immunohistochemistry, School of Dentistry, Federal University of Pará, Belém 66075-110, PA, Brazil; (G.C.A.R.d.S.); (R.V.C.); (F.L.M.L.); (S.d.M.A.J.)
| | - Ruy Gastaldoni Jaeger
- Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, SP, Brazil; (V.M.F.); (R.G.J.)
| | - João de Jesus Viana Pinheiro
- Laboratory of Pathological Anatomy and Immunohistochemistry, School of Dentistry, Federal University of Pará, Belém 66075-110, PA, Brazil; (G.C.A.R.d.S.); (R.V.C.); (F.L.M.L.); (S.d.M.A.J.)
| |
Collapse
|
2
|
Vieira Costa R, Balbinot KM, da Silveira GCAR, Kataoka MSDS, de Menezes SAF, Freitas VM, Vasconcelos ACU, Etges A, Martins Montalli VA, Santos FP, Alves Júnior SDM, Jaeger RG, Pinheiro JDJV. Prognostic value of the expression and localization of cell proliferation and apoptosis markers in unicystic ameloblastomas. Sci Rep 2024; 14:3856. [PMID: 38360984 PMCID: PMC10869795 DOI: 10.1038/s41598-024-54132-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 02/08/2024] [Indexed: 02/17/2024] Open
Abstract
The aim of this study was to verify whether the expression of cell proliferation and apoptosis markers in different types of unicystic ameloblastoma (UA) is associated with the location of neoplastic cells. Immunohistochemical study with a sample of 32 cases of UA, 11 cases of conventional ameloblastoma (CAM) and ten dental follicles (DF) cases was performed. Cell proliferation was assessed using Ki-67 status, and apoptosis by caspase-3 expression. Mural UA (MUA) showed a higher immunostaining of Ki-67 (p < 0.05) and a lower immunostaining of Caspase-3 (p < 0.05) compared with luminal and intraluminal subtypes of UA and CAM. The neoplastic cells of the MUA's cystic capsule showed a higher expression of Ki-67 protein (p < 0.0001) and a lower expression of Caspase-3 (p < 0.0001) compared with the lumen. DF showed lower Ki-67 and Caspase-3 immunostaining (p < 0.05) than neoplasms. The higher immunoexpression of Ki-67 and the lower immunoexpression of Caspase-3 in MUA, in the parenchyma cells within the cystic capsule, suggest an association between the biological behaviour and location of neoplastic cells in a tumour.
Collapse
Affiliation(s)
- Rebeca Vieira Costa
- Laboratory of Pathological Anatomy and Immunohistochemistry, School of Dentistry, Federal University of Pará, Rua Augusto Corrêa, 01, Belém, Pará, 66075-110, Brazil
| | - Karolyny Martins Balbinot
- Laboratory of Pathological Anatomy and Immunohistochemistry, School of Dentistry, Federal University of Pará, Rua Augusto Corrêa, 01, Belém, Pará, 66075-110, Brazil
| | | | - Maria Sueli da Silva Kataoka
- Cell Culture Laboratory, School of Dentistry, Federal University of Pará, Rua Augusto Corrêa, 01, Belém, Pará, 66075-110, Brazil
| | | | - Vanessa Morais Freitas
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Ana Carolina Uchoa Vasconcelos
- Center for the Diagnosis of Diseases of the Mouth, School of Dentistry, Federal University of Pelotas, Rua Gonçalves Chaves, 457/607, Pelotas, Rio Grande do Sul, 96015-560, Brazil
| | - Adriana Etges
- Center for the Diagnosis of Diseases of the Mouth, School of Dentistry, Federal University of Pelotas, Rua Gonçalves Chaves, 457/607, Pelotas, Rio Grande do Sul, 96015-560, Brazil
| | - Victor Angelo Martins Montalli
- Department of Oral Pathology, São Leopoldo Mandic Institute and Research Center, Rua Dr. José Rocha Junqueira, 13-Pte. Preta, Campinas, SP, 13045-755, Brazil
| | - Fabricio Passador Santos
- Department of Oral Pathology, São Leopoldo Mandic Institute and Research Center, Rua Dr. José Rocha Junqueira, 13-Pte. Preta, Campinas, SP, 13045-755, Brazil
| | - Sérgio de Melo Alves Júnior
- Laboratory of Pathological Anatomy and Immunohistochemistry, School of Dentistry, Federal University of Pará, Rua Augusto Corrêa, 01, Belém, Pará, 66075-110, Brazil
| | - Ruy Gastaldoni Jaeger
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - João de Jesus Viana Pinheiro
- Cell Culture Laboratory, School of Dentistry, Federal University of Pará, Rua Augusto Corrêa, 01, Belém, Pará, 66075-110, Brazil.
| |
Collapse
|
3
|
Clarke MJ, Battagin S, Coppolino MG. Assessment of Invadopodium Formation and Gelatin Degradation in Vitro. Methods Mol Biol 2024; 2747:141-149. [PMID: 38038938 DOI: 10.1007/978-1-0716-3589-6_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Some cancer cells form highly regulated structures, termed invadopodia, which mediate local, enzymatic degradation of extracellular matrix and facilitate cancer cell invasion and migration during metastatic progression. Understanding invadopodium formation and function in cancer cells is therefore an important strategy to find novel clinical approaches to interfere with metastasis. Invadopodia are F-actin-rich protrusions that form on the advancing edge of cells, supported by complex molecular interactions at the cell membrane. Invadopodia formation, structure, and function can be studied in vitro, using commonly cultured cancer cell lines and standard microscopic techniques. Here, these approaches are described in detail.
Collapse
Affiliation(s)
- Marguerite J Clarke
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Samantha Battagin
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Marc G Coppolino
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada.
| |
Collapse
|
4
|
Jain A, Gupta S, Sharma P. Role of Hypoxia-inducible proteins in Ameloblastoma: A Review. JOURNAL OF ORAL AND MAXILLOFACIAL SURGERY, MEDICINE, AND PATHOLOGY 2022. [DOI: 10.1016/j.ajoms.2022.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
5
|
Gene Expression and Immunochemistry Analysis of ADAMTS-1 and Versican in Ameloblastoma. Int J Dent 2022; 2022:5235376. [PMID: 36338393 PMCID: PMC9629950 DOI: 10.1155/2022/5235376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 09/23/2022] [Accepted: 10/11/2022] [Indexed: 11/23/2022] Open
Abstract
Background Ameloblastoma is a benign but locally invasive odontogenic epithelial tumor, associated with a high recurrence rate after treatment. The action of enzymes of the metalloproteinase family is important to the degraded extracellular matrix, contributing to invasion. Thus, this study aimed to investigate the gene and protein expression of ADAMTS-1 and versican in ameloblastoma. Materials and Methods Twenty cases of ameloblastoma (n = 20) and ten dental follicles (DF) (n = 10) were used as a source for immunochemistry and quantitative RT-PCR for determining the protein and mRNA expressions of the concerned genes, respectively. Moreover, western blot and indirect immunofluorescence analysis were performed in AME cells. Results ADAMTS-1 and versican were overexpressed in DF than ameloblastoma by RT-PCR. However, in the immunolocalization analysis, ADAMTS-1 was expressed in ameloblastoma more than in DF and versican immunostaining obtained a similar pattern between ameloblastoma and DF. Indirect immunofluorescence detected the ADAMTS-1 and versican expression in cell lines derived from ameloblastoma. Western blot from cell lysate and conditioned medium detected ADAMTS-1 bands representing full-length and different processed forms. Monensin treatment confined ADAMTS-1 in the cell cytoplasm. Versican fragments also were detected in different compartments, intracellular and conditioned medium, allowing the versican process by ADAMTS-1. Conclusion This study showed a distinct expression of ADAMTS-1 and versican in ameloblastoma and DF, with ADAMTS-1 protein higher expression observed in ameloblastoma and possibly cleaved versican. These findings suggested that ADAMTS-1 may participate in tumor invasion, especially for the degradation of substrates (versican) in the ECM.
Collapse
|
6
|
da Silva KD, Gomes APN, Balbinot KM, Sena YR, Mosconi C, de Mendonça EF, Tarquinio SBC, de Melo Alves Junior S, de Jesus Viana Pinheiro J, Ferreira de Aguiar MC. Glandular odontogenic cysts: a collaborative investigation of 22 cases and proteins related to invasiveness. J Oral Pathol Med 2022; 51:342-349. [PMID: 35122318 DOI: 10.1111/jop.13283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/29/2021] [Accepted: 01/31/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND A glandular odontogenic cyst has an intriguing, aggressive behaviour whose mechanisms have not yet been clarified. OBJECTIVE To conduct a collaborative cross-sectional study on the clinical, demographic, microscopic, and immunohistochemical characteristics of glandular odontogenic cysts, emphasizing the histopathological characteristics and expression of proteins related to invasiveness. METHODS Twenty-two cases of glandular odontogenic cyst from three oral and maxillofacial pathology services in Brazil were selected from 1988 to 2018. Clinical and demographic data were collected. Histopathological features were evaluated in detail. Sixteen cases of glandular odontogenic cyst were also submitted to immunohistochemistry to detect MT1-MMP, TKS4, TKS5, and cortactin, the key regulators of invadopodia formation. RESULTS GOCs were primarily seen in men over 40 years of age, in the posterior mandible and the anterior maxilla as a unilocular, radiolucent lesion. All cases presented hobnail cells, clear cells, and variable thickness of the lining epithelium, three of the ten key histopathological parameters to be evaluated in glandular odontogenic cysts. Immunohistochemistry revealed a greater expression of the studied proteins in the glandular odontogenic cysts than in the controls (p <0.0001). CONCLUSION Overexpression of proteins that regulate cell invasiveness was identified, and the present study's findings suggest that invadopodia activity is a possible mechanism used by glandular odontogenic cysts to promote local invasion, which could partly explain its intriguing biological behaviour.
Collapse
Affiliation(s)
- Karine Duarte da Silva
- Department of Oral Pathology and Surgery, School of Dentistry, Universidade Federal de Minas Gerais. Belo Horizonte, Minas Gerais, Brazil
| | - Ana Paula Neutzling Gomes
- Department of Semiology and Clinics, School of Dentistry, Universidade Federal de Pelotas. Pelotas, Rio Grande do Sul, Brazil
| | - Karolyny Martins Balbinot
- Laboratory of Histopathology and Immunohistochemistry, School of Dentistry, Universidade Federal do Pará. Belém, Pará, Brazil
| | | | - Carla Mosconi
- Department of Oral Pathology, School of Dentistry, Universidade Federal de Goiás. Goiânia, Goiás, Brazil
| | | | - Sandra Beatriz Chaves Tarquinio
- Department of Semiology and Clinics, School of Dentistry, Universidade Federal de Pelotas. Pelotas, Rio Grande do Sul, Brazil
| | | | - João de Jesus Viana Pinheiro
- Laboratory of Histopathology and Immunohistochemistry, School of Dentistry, Universidade Federal do Pará. Belém, Pará, Brazil
| | - Maria Cássia Ferreira de Aguiar
- Department of Oral Pathology and Surgery, School of Dentistry, Universidade Federal de Minas Gerais. Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
7
|
HIF-1 α Is Associated with Resistance to Hypoxia-Induced Apoptosis in Ameloblastoma. Int J Dent 2022; 2021:3060375. [PMID: 34987583 PMCID: PMC8723839 DOI: 10.1155/2021/3060375] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/11/2021] [Accepted: 12/13/2021] [Indexed: 12/24/2022] Open
Abstract
Background Ameloblastoma (AMB) is a benign odontogenic tumour, with an aggressive local behaviour and a high rate of recurrence. Previous studies have demonstrated that hypoxia-induced factor alpha 1 (HIF-1α) and activated caspase-3 contribute to tumour invasiveness and cytogenesis in ameloblastoma. Hypoxia increases HIF-1α levels, which triggers a number of signalling pathways. This paper aimed to present data in the study of hypoxia-activated signalling pathways that modulate proapoptotic and antiapoptotic events in AMB. Methods Twenty cases of AMB and ten cases of dental follicle (DF) were used to analyse the immunoexpression of HIF-1α, p53, BNIP3, Bcl-2, IAP-2, GLUT1, and Bax. To contribute to the study, an analysis of expression and genetic interaction was performed using the cell line AME-1. Results AMB and DF expressed the studied proteins. These proteins showed significantly greater immunoexpression in AMB compared with the DF (p < 0.05). HIF-1α showed an important association with GLUT1, and a positive correlation was observed among p53, Bcl-2, and IAP-2. Transcriptomic analysis showed the significant expression of the studied proteins, and the network generated showed a direct association of HIF-1αF with GLUT1 (SLC2A1), TP53, and LDHA. Interestingly, GLUT1 also exhibited direct interaction with TP53 and LDHA. Conclusion In AMB tumorigenesis, hypoxia is possibly related to antiapoptotic events, which suggests an important role for HIF-1α, GLUT1, Bcl-2, IAP-2, and possibly p53.
Collapse
|
8
|
Giovanini AF, Priesnitz TF, Til B, Reisdoerfer G, do Nascimento TCDL, Sobreiro B, de Siqueira AS, Pinheiro JDJV. Immunolocalization of IP3R and V-ATPase in Ameloblastomas. Head Neck Pathol 2019; 14:392-398. [PMID: 31183746 PMCID: PMC7235139 DOI: 10.1007/s12105-019-01044-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 05/27/2019] [Indexed: 11/26/2022]
Abstract
The goal of this study was to investigate the immunolocalization of inositol 1,4,5-trisphosphate receptor (IP3R) and vacuolar ATPase (V-ATPase) in ameloblastomas with special attention to the invasive front. Thirty-seven cases of previously diagnosed formalin-fixed paraffin-embedded (FFPE) human ameloblastoma samples were selected for this study. The samples were grouped according to the predominant histologic pattern and comprised twelve plexiform, eighteen follicular, and seven unicystic ameloblastomas. Of the unicystic variants, six demonstrated purely luminal and intraluminal growth, and one displayed mural extension. One granular cell variant was included in the follicular ameloblastoma group. All specimens were evaluated for IP3R and V-ATPase expression by immunohistochemistry (IHC). IP3R was positive in columnar cells, similar to ameloblasts, and non-peripheral cells in all samples. In the area of tumor protrusion and front of invasion, membranous and cystoplasmic IP3R expression was observed. In contrast, areas adjacent to tumoral protrusion demonstrated only membranous staining patterns. V-ATPase was not expressed in peripheral columnar cells of the unicystic and granular cell variants of ameloblastoma; however, strong staining was present in these cells in plexiform ameloblastomas, follicular ameloblastomas, and areas of mural growth of unicystic ameloblastomas. In areas of tumor protrusion, reactivity for V-ATPase was observed with both membranous and cytoplasmic staining, while other areas showed only membranous V-ATPase. These findings suggest that concomitant immunolocalization of IP3R and V-ATPase, with both cytoplasmic and membranous expression in the peripheral columnar cells, may indicate the invasive potential of ameloblastomas. Furthermore, these results suggest the tumoral spread of ameloblastomas may be correlated with the autophagy process and channelopathy. The expression of these proteins could establish a baseline for future research and provide therapeutic targets for treatment of ameloblastomas.
Collapse
Affiliation(s)
- Allan Fernando Giovanini
- Medical School, Positivo University Curitiba, R Pedro Viriato Parigot de Souza, 5300 Campo Comprido, Curitiba, Paraná, 81280-330, Brazil.
| | | | - Bruna Til
- Dentistry School, Positivo University Curitiba, Curitiba, Paraná, Brazil
| | - Gisele Reisdoerfer
- Dentistry School, Positivo University Curitiba, Curitiba, Paraná, Brazil
| | | | - Bernardo Sobreiro
- Medical School, Positivo University Curitiba, R Pedro Viriato Parigot de Souza, 5300 Campo Comprido, Curitiba, Paraná, 81280-330, Brazil
| | | | | |
Collapse
|
9
|
Ribeiro Ribeiro AL, da Costa NMM, de Siqueira AS, Brasil da Silva W, da Silva Kataoka MS, Jaeger RG, de Melo Alves-Junior S, Smith AM, de Jesus Viana Pinheiro J. Keratocystic odontogenic tumor overexpresses invadopodia-related proteins, suggesting invadopodia formation. Oral Surg Oral Med Oral Pathol Oral Radiol 2016; 122:500-8. [PMID: 27554376 DOI: 10.1016/j.oooo.2016.06.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Revised: 05/12/2016] [Accepted: 06/06/2016] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Keratocystic odontogenic tumor (KOT) is an odontogenic neoplasm that shows aggressive clinical behavior and local invasiveness. Invadopodia are actin-rich cellular protrusions exhibiting proteolytic pericellular activity, thereby inducing focal invasion in neoplastic cells and increasing neoplasms aggressiveness. Thus, this study aimed to evaluate immunoexpression of invadopodia-related proteins, cortactin, MT1-MMP, Tks4, and Tks5, in KOT. STUDY DESIGN Immunohistochemistry of 16 cases of KOT, eight cases of calcifying cystic odontogenic tumor (CCOT), and eight samples of the oral mucosa (OM) was carried out to assess the expression of the above described invadopodia-related proteins in the basal and suprabasal layer. RESULTS KOT samples showed higher and significant immunoexpression of cortactin, MT1-MMP, TKs4, and TKs5 compared with the CCOT and OM samples. Significant expression of all these proteins was observed in the basal layer compared with the suprabasal layer in KOT. CONCLUSIONS Overexpression of cortactin, MT1-MMP, TKs4, and TKs5 was observed in KOT compared with samples of CCOT and OM. These proteins were also overexpressed in the basal over the suprabasal layer of KOT samples. Taken together, these results suggest the participation of invadopodia-related proteins on the pathogenesis of this lesion.
Collapse
Affiliation(s)
- André Luis Ribeiro Ribeiro
- Department of Oral and Maxillofacial Surgery, School of Dentistry, University Center of Pará - CESUPA, Belém, Brazil; Department of Microbial Diseases, Eastman Dental Institute, University College London, London, England.
| | | | | | | | | | - Ruy Gastaldoni Jaeger
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Andrew M Smith
- Department of Microbial Diseases, Eastman Dental Institute, University College London, London, England
| | | |
Collapse
|
10
|
da Costa NMM, Fialho ADV, Proietti CC, da Silva Kataoka MS, Jaeger RG, de Alves-Júnior SM, de Jesus Viana Pinheiro J. Role of hypoxia-related proteins in invasion of ameloblastoma cells: crosstalk between NOTCH1, hypoxia-inducible factor 1α, a disintegrin and metalloproteinase 12, and heparin-binding epidermal growth factor. Histopathology 2016; 69:99-106. [PMID: 26707922 DOI: 10.1111/his.12922] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 12/20/2015] [Indexed: 12/17/2022]
Abstract
AIMS Ameloblastoma AME is a benign tumour characterized by local invasiveness, high recurrence rates, and diverse histological patterns. The oxygen concentration is reduced in specific areas of the tumour microenvironment, which leads to intratumoral hypoxia. Crosstalk between NOTCH1, a disintegrin and metalloproteinase 12 (ADAM-12), hypoxia-inducible factor 1α (HIF-1α) and heparin-binding epidermal growth factor (HB-EGF) under hypoxic conditions has been implicated in invadopodia formation, tumour invasiveness, and metastasis development. The aim of this study was to analyse the expression of these proteins, in order to further elucidate the mechanisms underlying AME invasiveness. METHODS AND RESULTS Twenty cases of AME, eight calcifying cystic odontogenic tumours CCOTs and 10 samples of dental follicle were used to investigate the expression of these proteins by immunohistochemistry with the primary antibodies anti-NOTCH1, anti-ADAM-12, anti-HIF-1α, and anti-HB-EGF. Immunostaining results were expressed as the percentage of stained area in images acquired in an AxioScope microscope equipped with an AxioCamHRc camera and a × 40 objective. The results showed that immunoexpression of all proteins was higher in the AME samples than in the CCOT and dental follicle samples (P < 0.05). CONCLUSIONS AME showed an increased presence of proteins associated with tumour invasiveness, which indicates a possible role of these proteins in the biological behaviour of this tumour.
Collapse
Affiliation(s)
| | | | | | | | - Ruy Gastaldoni Jaeger
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | | | | |
Collapse
|
11
|
Siar CH, Rahman ZABA, Tsujigiwa H, Mohamed Om Alblazi K, Nagatsuka H, Ng KH. Invadopodia proteins, cortactin, N-WASP and WIP differentially promote local invasiveness in ameloblastoma. J Oral Pathol Med 2016; 45:591-8. [PMID: 26752341 DOI: 10.1111/jop.12417] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/10/2015] [Indexed: 01/17/2023]
Abstract
BACKGROUND Cell migration and invasion through interstitial tissues are dependent upon several specialized characteristics of the migratory cell notably generation of proteolytic membranous protrusions or invadopodia. Ameloblastoma is a benign odontogenic epithelial neoplasm with a locally infiltrative behaviour. Cortactin and MMT1-MMP are two invadopodia proteins implicated in its local invasiveness. Other invadopodia regulators, namely N-WASP, WIP and Src kinase remain unclarified. This study addresses their roles in ameloblastoma. MATERIALS AND METHOD Eighty-seven paraffin-embedded ameloblastoma cases (20 unicystic, 47 solid/multicystic, 3 desmoplastic and 17 recurrent) were subjected to immunohistochemistry for expression of cortactin, N-WASP, WIP, Src kinase and F-actin, and findings correlated with clinicopathological parameters. RESULTS Invadopodia proteins (except Src kinase) and F-actin were widely detected in ameloblastoma (cortactin: n = 73/87, 83.9%; N-WASP: n = 59/87; 67.8%; WIP: n = 77/87; 88.5%; and F-actin: n = 87/87, 100%). Protein localization was mainly cytoplasmic and/or membranous, and occasionally nuclear for F-actin. Cortactin, which functions as an actin-scaffolding protein, demonstrated significantly higher expression levels within ameloblastoma tumoral epithelium than in stroma (P < 0.05). N-WASP, which coordinates actin polymerization and invadopodia-mediated extracellular matrix degradation, was overexpressed in the solid/multicystic subtype (P < 0.05). WIP, an upstream regulator of N-WASP, and F-actin were significantly upregulated along the tumour invasive front compared to tumour centres (P < 0.05). Except for males with cortactin overexpression, other clinical parameters (age, ethnicity and anatomical site) showed no significant correlations. CONCLUSIONS Present results suggest that local invasiveness of ameloblastoma is dependent upon the migratory potential of its tumour cells as defined by their distribution of cortactin, N-WASP and WIP in correlation with F-actin cytoskeletal dynamics.
Collapse
Affiliation(s)
- Chong Huat Siar
- Department of Oro-Maxillofacial Surgical and Medical Sciences, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | - Zainal Ariff Bin Abdul Rahman
- Department of Oro-Maxillofacial Surgical and Medical Sciences, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | - Hidetsugu Tsujigiwa
- Laboratory of Histopathology, Department of Life Science, Faculty of Science, Okayama University of Science, Okayama, Japan
| | - Kamila Mohamed Om Alblazi
- Department of Oro-Maxillofacial Surgical and Medical Sciences, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | - Hitoshi Nagatsuka
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Kok Han Ng
- Unit of Stomatology, Cancer Research Centre, Institute for Medical Research, Kuala Lumpur, Malaysia
| |
Collapse
|
12
|
Prosdócimi FC, Rodini CO, Sogayar MC, Sousa SCOM, Xavier FCA, Paiva KBS. Calcifying Cystic Odontogenic Tumour: immunohistochemical expression of matrix metalloproteinases, their inhibitors (TIMPs and RECK) and inducer (EMMPRIN). J Oral Pathol Med 2014; 43:545-53. [PMID: 24484176 DOI: 10.1111/jop.12154] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2013] [Indexed: 12/22/2022]
Abstract
BACKGROUND Calcifying cyst odontogenic tumour (CCOT) is a rare benign cystic neoplasm of odontogenic origin. MMPs are responsible for extracellular matrix remodelling and, together their inhibitors and inducer, determinate the level of its turnover in pathological processes, leading to an auspicious microenvironment for tumour development. Thus, our goal was to evaluate matrix metalloproteinases (MMPs-2, -7, -9 and -14), their inhibitors (TIMPs-2, -3, -4 and RECK) and its inductor (EMMPRIN) expression in CCOT. MATERIALS AND METHODS We used 18 cases of CCOT submitted to immunolocalization of the target proteins and analysed in both neoplastic odontogenic epithelial and stromal compartments. RESULTS All molecules evaluated were expressed in both compartments in CCOT. In epithelial layer, immunostaining for MMPs, TIMPs, RECK and EMMPRIN was found in basal, suprabasal spindle and stellate cells surrounding ghost cells and ghost cells themselves, except for MMP-9 and TIMP-2 which were only expressed by ghost cells. In stromal compartment, extracellular matrix, mesenchymal (MC) and endothelial cells (EC) were positive for MMP-2, -7, TIMP-3 and -4, while MMP-9, TIMP-2 and RECK were positive only in MC and MMP-14 only in EC. Statistical significance difference was found between both compartments for MMP-9 (P < 0.001), RECK (P = 0.004) and EMMPRIN (P < 0.001), being more expressed in epithelium than in stroma. Positive correlation between both stromal EMMPRIN and RECK expression was found (R = 0.661, P = 0.003). CONCLUSIONS We concluded that these proteins/enzymes are differentially expressed in both epithelium and stroma of CCOT, suggesting an imbalance between MMPs and their inducer/inhibitors may contribute on the tumour behaviour.
Collapse
Affiliation(s)
- Fábio C Prosdócimi
- Department of Oral Pathology, Dental School, University of São Paulo, São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
13
|
Ribeiro ALR, Nobre RM, Alves-Junior SM, Kataoka MSS, Barroso RFF, Jaeger RG, Pinheiro JJV. Matrix metalloproteinases, tissue inhibitors of metalloproteinases, and growth factors regulate the aggressiveness and proliferative activity of keratocystic odontogenic tumors. Oral Surg Oral Med Oral Pathol Oral Radiol 2013; 114:487-96. [PMID: 22986244 DOI: 10.1016/j.oooo.2012.06.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Revised: 06/15/2012] [Accepted: 06/16/2012] [Indexed: 12/31/2022]
Abstract
OBJECTIVE The objective of this preliminary study was to evaluate the expression of matrix metalloproteinases (MMPs), tissue inhibitors of metalloproteinases (TIMPs) and growth factors in keratocystic odontogenic tumors (KOTs). STUDY DESIGN The expression of MMPs, TIMPs, growth factors, and the extracellular signal-regulated kinase (ERK) 1/2 signaling pathway were assessed by immunohistochemistry in 15 cases of KOT and 4 cases of calcifying cystic odontogenic tumor (CCOT). RESULTS KOT samples expressed significantly higher amounts of MMPs, TIMPs, growth factors, epidermal growth factor receptor (EGFR), and ERK compared with CCOT samples, with the exception of MMP-2 and TIMP-1. CONCLUSIONS MMP-9, TIMP-2, EGF and transforming growth factor α act together and likely regulate the proliferation and aggressiveness of KOT. ERK-1/2 serves as the transducer of signals generated by these proteins, which signal through the common receptor, EGFR. This process may be related to the increased proliferation and aggressiveness observed in KOT.
Collapse
Affiliation(s)
- André Luis Ribeiro Ribeiro
- Department of Oral and Maxillofacial Surgery, School of Dentistry, University Center of Pará, Belém, Brazil.
| | | | | | | | | | | | | |
Collapse
|