1
|
Costa KMDA, Valente RC, Silva JMCDA, Paiva LSDE, Rumjanek VM. Glucocorticoid susceptibility and in vivo ABCB1 activity differ in murine B cell subsets. AN ACAD BRAS CIENC 2020; 90:3081-3097. [PMID: 30304236 DOI: 10.1590/0001-3765201820180364] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 06/22/2018] [Indexed: 01/09/2023] Open
Abstract
Glucocorticoids are produced and released by the adrenal gland and become elevated in response to stress. Although glucocorticoids are well known for their immunosuppressive effects, less is known about their effects on B cells. ABCB1 is an efflux pump expressed in both cancer and normal cells, modulating the gradient of various metabolites, including hydrocortisone. Our goal was to evaluate the effect of this glucocorticoid on murine B cell differentiation and whether sensitivity to hydrocortisone could be related to ABCB1 activity in vivo. C57BL/6 mice received one or three consecutive i.p. injections of hydrocortisone (70, 140 and 200 mg/kg/day). ABCB1 activity was evaluated via the rhodamine-123 transport and inhibited by cyclosporin A in hydrocortisone-treated and control mice. Cells from bone marrow, spleen and blood were counted, incubated with antibodies and analyzed by flow cytometry. A single hydrocortisone injection did not alter the number of bone marrow subsets. Conversely, three daily injections were able to reduce the cell number of most bone marrow subsets, excepting c-kit-sca-1+ and mature B cells. This treatment reduced marginal zone, follicular and transitional B cells, though splenic subsets were more resistant than bone marrow B cells. Recirculating follicular B cells in the blood were resistant to hydrocortisone. With the exception of follicular B cells, all subpopulations exhibited ABCB1 activity. However, hydrocortisone treatment did not affect ABCB1 activity in most subsets analyzed. Results suggest that hydrocortisone is able to regulate B cell lymphopoiesis although ABCB1 activity is not related to the susceptibility to that glucocorticoid in B cell subsets.
Collapse
Affiliation(s)
- Kelli M DA Costa
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373, Sala H2-03, Ilha do Fundão, 21941-902 Rio de Janeiro, RJ, Brazil.,Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373, Sala C1-42, 21941-902 Ilha do Fundão, Rio de Janeiro, RJ, Brazil
| | - Raphael C Valente
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373, Sala H2-03, Ilha do Fundão, 21941-902 Rio de Janeiro, RJ, Brazil.,Faculdade de Ciências Médicas, Departamento de Microbiologia, Imunologia e Parasitologia, Universidade do Estado do Rio de Janeiro, Av. Prof. Manuel de Abreu 444, 3º andar, Vila Isabel, 20550-170 Rio de Janeiro, RJ, Brazil
| | - Joyle M C DA Silva
- Instituto de Biologia, Departamento de Imunobiologia, Universidade Federal Fluminense, Outeiro de São João Batista, s/n, Campus do Valonguinho, Prédio Núcleo de Animais de Laboratório, 2º andar, Laboratório de Imunorregulacão, 24020-141 Niterói, RJ, Brazil
| | - Luciana S DE Paiva
- Instituto de Biologia, Departamento de Imunobiologia, Universidade Federal Fluminense, Outeiro de São João Batista, s/n, Campus do Valonguinho, Prédio Núcleo de Animais de Laboratório, 2º andar, Laboratório de Imunorregulacão, 24020-141 Niterói, RJ, Brazil
| | - Vivian M Rumjanek
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373, Sala H2-03, Ilha do Fundão, 21941-902 Rio de Janeiro, RJ, Brazil
| |
Collapse
|
2
|
Salustiano EJ, da Costa KM, Freire-de-Lima L, Mendonça-Previato L, Previato JO. Inhibition of glycosphingolipid biosynthesis reverts multidrug resistance by differentially modulating ABC transporters in chronic myeloid leukemias. J Biol Chem 2020; 295:6457-6471. [PMID: 32229586 DOI: 10.1074/jbc.ra120.013090] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/27/2020] [Indexed: 12/16/2022] Open
Abstract
Multidrug resistance (MDR) in cancer arises from cross-resistance to structurally- and functionally-divergent chemotherapeutic drugs. In particular, MDR is characterized by increased expression and activity of ATP-binding cassette (ABC) superfamily transporters. Sphingolipids are substrates of ABC proteins in cell signaling, membrane biosynthesis, and inflammation, for example, and their products can favor cancer progression. Glucosylceramide (GlcCer) is a ubiquitous glycosphingolipid (GSL) generated by glucosylceramide synthase, a key regulatory enzyme encoded by the UDP-glucose ceramide glucosyltransferase (UGCG) gene. Stressed cells increase de novo biosynthesis of ceramides, which return to sub-toxic levels after UGCG mediates incorporation into GlcCer. Given that cancer cells seem to mobilize UGCG and have increased GSL content for ceramide clearance, which ultimately contributes to chemotherapy failure, here we investigated how inhibition of GSL biosynthesis affects the MDR phenotype of chronic myeloid leukemias. We found that MDR is associated with higher UGCG expression and with a complex GSL profile. UGCG inhibition with the ceramide analog d-threo-1-(3,4,-ethylenedioxy)phenyl-2-palmitoylamino-3-pyrrolidino-1-propanol (EtDO-P4) greatly reduced GSL and monosialotetrahexosylganglioside levels, and co-treatment with standard chemotherapeutics sensitized cells to mitochondrial membrane potential loss and apoptosis. ABC subfamily B member 1 (ABCB1) expression was reduced, and ABCC-mediated efflux activity was modulated by competition with nonglycosylated ceramides. Consistently, inhibition of ABCC-mediated transport reduced the efflux of exogenous C6-ceramide. Overall, UGCG inhibition impaired the malignant glycophenotype of MDR leukemias, which typically overcomes drug resistance through distinct mechanisms. This work sheds light on the involvement of GSL in chemotherapy failure, and its findings suggest that targeted GSL modulation could help manage MDR leukemias.
Collapse
Affiliation(s)
- Eduardo J Salustiano
- Laboratório de Glicobiologia, Instituto de Biofísica Carlos Chagas Filho - Centro de Ciências da Saúde C1-042, Universidade Federal do Rio de Janeiro; Av. Carlos Chagas Filho 373 - Cidade Universitária, CEP 21941-902, Rio de Janeiro/RJ, Brazil
| | - Kelli M da Costa
- Laboratório de Glicobiologia, Instituto de Biofísica Carlos Chagas Filho - Centro de Ciências da Saúde C1-042, Universidade Federal do Rio de Janeiro; Av. Carlos Chagas Filho 373 - Cidade Universitária, CEP 21941-902, Rio de Janeiro/RJ, Brazil
| | - Leonardo Freire-de-Lima
- Laboratório de Glicobiologia, Instituto de Biofísica Carlos Chagas Filho - Centro de Ciências da Saúde C1-042, Universidade Federal do Rio de Janeiro; Av. Carlos Chagas Filho 373 - Cidade Universitária, CEP 21941-902, Rio de Janeiro/RJ, Brazil
| | - Lucia Mendonça-Previato
- Laboratório de Glicobiologia, Instituto de Biofísica Carlos Chagas Filho - Centro de Ciências da Saúde C1-042, Universidade Federal do Rio de Janeiro; Av. Carlos Chagas Filho 373 - Cidade Universitária, CEP 21941-902, Rio de Janeiro/RJ, Brazil
| | - José O Previato
- Laboratório de Glicobiologia, Instituto de Biofísica Carlos Chagas Filho - Centro de Ciências da Saúde C1-042, Universidade Federal do Rio de Janeiro; Av. Carlos Chagas Filho 373 - Cidade Universitária, CEP 21941-902, Rio de Janeiro/RJ, Brazil
| |
Collapse
|
3
|
Terashima T, Nakae Y, Katagi M, Okano J, Suzuki Y, Kojima H. Stem cell factor induces polarization of microglia to the neuroprotective phenotype in vitro. Heliyon 2018; 4:e00837. [PMID: 30294687 PMCID: PMC6171080 DOI: 10.1016/j.heliyon.2018.e00837] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 08/16/2018] [Accepted: 09/27/2018] [Indexed: 02/05/2023] Open
Abstract
Microglia are classified mainly into the M1 or M2 phenotypes, which evoke either proinflammatory or neuroprotective responses. Given the association of microglia with the pathogenesis of neuronal diseases, they are in focus as therapeutic targets for the treatment of such conditions. Stem cell factor (SCF) is a ligand for the c-kit receptor, one of the differentiation factors for bone marrow cells. In this study, characteristics of SCF-activated microglia and their effects on neurons were analyzed to investigate the therapeutic potential of SCF in neuronal diseases. SCF was found to induce proliferation, migration, and phagocytosis of microglia. In addition, SCF-derived microglia showed a neuroprotective phenotype expressing anti-inflammatory cytokines, growth factors, and M2 markers as compared to the phenotype shown by granulocyte macrophage-colony stimulating factor-derived microglia expressing inflammatory cytokines and M1 markers. Furthermore, supernatant medium from SCF-activated microglia enhanced cell proliferation and protection from cell death in NSC-34 neuronal cells. We conclude that SCF modulates microglial functions and induces activation of the neuroprotective effects of microglia, which could be used for treatment of neuronal diseases.
Collapse
Affiliation(s)
- Tomoya Terashima
- Department of Stem Cell Biology and Regenerative Medicine, Shiga University of Medical Science, Shiga, Japan
| | - Yuki Nakae
- Department of Stem Cell Biology and Regenerative Medicine, Shiga University of Medical Science, Shiga, Japan
| | - Miwako Katagi
- Department of Stem Cell Biology and Regenerative Medicine, Shiga University of Medical Science, Shiga, Japan
| | - Junko Okano
- Division of Anatomy and Cell Biology, Shiga University of Medical Science, Shiga, Japan.,Department of Plastic Surgery, Shiga University of Medical Science, Shiga, Japan
| | - Yoshihisa Suzuki
- Department of Plastic Surgery, Shiga University of Medical Science, Shiga, Japan
| | - Hideto Kojima
- Department of Stem Cell Biology and Regenerative Medicine, Shiga University of Medical Science, Shiga, Japan
| |
Collapse
|
4
|
Miyake MM, Nocera A, Miyake MM. P-glycoprotein and chronic rhinosinusitis. World J Otorhinolaryngol Head Neck Surg 2018; 4:169-174. [PMID: 30506047 PMCID: PMC6251952 DOI: 10.1016/j.wjorl.2018.07.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 07/18/2018] [Indexed: 11/13/2022] Open
Abstract
Chronic rhinosinusitis (CRS) is a heterogeneous definition that includes different disease states that usually are associated with abnormal inflammatory responses. Besides being prevalent, the mechanisms involved in its pathogenesis are not clear and there are few therapeutic options with tolerable side effects. P-glycoprotein (P-gp) is an efflux pump responsible of extruding xenobiotics and cellular metabolites from multiple cell types. It has been widely studied in the cancer field, due to its ability to confer resistance to chemotherapy. It also promotes Type 2 helper T-cell polarizing cytokine secretion in CRS and may represent a potential target to differentiate subtypes of CRS and personalize treatment. This state-of-the-art review explores current knowledge on the participation of P-gp in the pathogenesis of CRS, the P-gp inhibition as a novel targeted therapeutic strategy and the exosomal P-gp test, a non-invasive biomarker that can represent an important advance in the field of rhinology.
Collapse
Affiliation(s)
- Marcel M Miyake
- Department of Otolaryngology, Santa Casa de Sao Paulo School of Medical Sciences, RuaDoutorCesário Motta Júnior, 61 - Vila Buarque, São Paulo, SP, 01221-020, Brazil
| | - Angela Nocera
- Department of Otolaryngology, Division of Rhinology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, 243 Charles St, Boston, MA, 02114, USA
| | - Michelle M Miyake
- Department of Otolaryngology, Santa Casa de Sao Paulo School of Medical Sciences, RuaDoutorCesário Motta Júnior, 61 - Vila Buarque, São Paulo, SP, 01221-020, Brazil
| |
Collapse
|
5
|
Cancer cell resistance mechanisms: a mini review. Clin Transl Oncol 2014; 16:511-6. [DOI: 10.1007/s12094-014-1162-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Accepted: 02/04/2014] [Indexed: 12/16/2022]
|
6
|
P-glycoprotein and drug resistance in systemic autoimmune diseases. Int J Mol Sci 2014; 15:4965-76. [PMID: 24658440 PMCID: PMC3975434 DOI: 10.3390/ijms15034965] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 03/06/2014] [Accepted: 03/13/2014] [Indexed: 02/07/2023] Open
Abstract
Autoimmune diseases such as systemic lupus erythematosus (SLE), rheumatoid arthritis (RA) and psoriatic arthritis (PsA) are chronic inflammatory disorders of unknown etiology characterized by a wide range of abnormalities of the immune system that may compromise the function of several organs, such as kidney, heart, joints, brain and skin. Corticosteroids (CCS), synthetic and biologic immunosuppressive agents have demonstrated the capacity to improve the course of autoimmune diseases. However, a significant number of patients do not respond or develop resistance to these therapies over time. P-glycoprotein (P-gp) is a transmembrane protein that pumps several drugs out of the cell, including CCS and immunosuppressants; thus, its over-expression or hyper-function has been proposed as a possible mechanism of drug resistance in patients with autoimmune disorders. Recently, different authors have demonstrated that P-gp inhibitors, such as cyclosporine A (CsA) and its analogue Tacrolimus, are able to reduce P-gp expression and or function in SLE, RA and PsA patients. These observations suggest that P-gp antagonists could be adopted to revert drug resistance and improve disease outcome. The complex inter-relationship among drug resistance, P-gp expression and autoimmunity still remains elusive.
Collapse
|
7
|
Kim I, Koh Y, Yoon SS, Park S, Kim BK, Kim DY, Lee JH, Lee KH, Cheong JW, Lee HK, Kim SH, Kim H, Joo YD, Lee SM, Won JH, Park SK, Hong DS, Kim SH, Sohn SK, Kim CS, Park E, Kim MK, Park MR, Lee JH, Min YH. Fludarabine, cytarabine, and attenuated-dose idarubicin (m-FLAI) combination therapy for elderly acute myeloid leukemia patients. Am J Hematol 2013; 88:10-5. [PMID: 23077109 DOI: 10.1002/ajh.23337] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 08/29/2012] [Accepted: 08/30/2012] [Indexed: 12/11/2022]
Abstract
We performed a phase II trial to evaluate the efficacy and safety of the modified fludarabine, cytarabine, and attenuated-dose idarubicin (m-FLAI) regimen in elderly acute myeloid leukemia (AML) patients. Elderly (≥60 years) AML patients who had not previously received chemotherapy were enrolled in the study. Patients received two consecutive cycles of m-FLAI chemotherapy as an induction. The m-FLAI regimen comprised fludarabine (25 mg/m(2) , days 1-4), cytarabine (1,000 mg/m(2) , days 1-4), and attenuated-dose idarubicin (5 mg/m(2) , days 1-3). The primary end point was complete remission (CR) rate. Secondary end points were overall survival (OS), event-free survival (EFS), and treatment-related mortality (TRM). There were 108 patients (median age 68.4 years, M:F = 64:44) enrolled in the study. CR was achieved in 56.5% of patients, and the TRM rate was 21.3%. Median OS and median EFS were 10.2 and 6.6 months, respectively. The mortality at 30 and 60 days was 15 and 21%, respectively. Performance status and comorbidity did not have prognostic value in this patient cohort. Bone marrow expression of CD117 was associated with increased EFS and OS. m-FLAI is an effective induction regimen for previously untreated AML in elderly patients. In addition, bone-marrow CD117 expression is an independent favorable prognostic factor in elderly AML patients. (ClinicalTrials.gov number, NCT01247493).
Collapse
Affiliation(s)
- Inho Kim
- Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Szeri F, Iliás A, Pomozi V, Robinow S, Bakos E, Váradi A. The high turnover Drosophila multidrug resistance-associated protein shares the biochemical features of its human orthologues. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1788:402-9. [PMID: 19059376 DOI: 10.1016/j.bbamem.2008.11.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2008] [Revised: 11/04/2008] [Accepted: 11/06/2008] [Indexed: 10/21/2022]
Abstract
DMRP, an ABC transporter encoded by the dMRP/CG6214 gene, is the Drosophila melanogaster orthologue of the "long" human multidrug resistance-associated proteins (MRP1/ABCC1, MRP2/ABCC2, MRP3/ABCC3, MRP6/ABCC6, and MRP7/ABCC10). In order to provide a detailed biochemical characterisation we expressed DMRP in Sf9 insect cell membranes. We demonstrated DMRP as a functional orthologue of its human counterparts capable of transporting several human MRP substrates like beta-estradiol 17-beta-D-glucuronide, leukotriene C4, calcein, fluo3 and carboxydichlorofluorescein. Unexpectedly, we found DMRP to exhibit an extremely high turnover rate for the substrate transport as compared to its human orthologues. Furthermore, DMRP showed remarkably high basal ATPase activity (68-75 nmol Pi/mg membrane protein/min), which could be further stimulated by probenecid and the glutathione conjugate of N-ethylmaleimide. Surprisingly, this high level basal ATPase activity was inhibited by the transported substrates. We discussed this phenomenon in the light of a potential endogenous substrate (or activator) present in the Sf9 membrane.
Collapse
Affiliation(s)
- Flóra Szeri
- Institute of Enzymology, Hungarian Academy of Sciences, Budapest, P.O. Box 7, H-1518, Hungary.
| | | | | | | | | | | |
Collapse
|
9
|
Drobinskaya I, Linn T, Saric T, Bretzel RG, Bohlen H, Hescheler J, Kolossov E. Scalable selection of hepatocyte- and hepatocyte precursor-like cells from culture of differentiating transgenically modified murine embryonic stem cells. Stem Cells 2008; 26:2245-56. [PMID: 18556507 DOI: 10.1634/stemcells.2008-0387] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Potential therapeutic applications of embryonic stem cell (ESC)-derived hepatocytes are limited by their relatively low output in differentiating ESC cultures, as well as by the danger of contamination with tumorigenic undifferentiated ESCs. To address these problems, we developed transgenic murine ESC clones possessing bicistronic expression vector that contains the alpha-fetoprotein gene promoter driving a cassette for the enhanced green "live" fluorescent reporter protein (eGFP) and a puromycin resistance gene. Under established culture conditions these clones allowed for both monitoring of differentiation and for puromycin selection of hepatocyte-committed cells in a suspension mass culture of transgenic ESC aggregates ("embryoid bodies" [EBs]). When plated on fibronectin, the selected eGFP-positive cells formed colonies, in which intensely proliferating hepatocyte precursor-like cells gave rise to morphologically differentiated cells expressing alpha-1-antitrypsin, alpha-fetoprotein, and albumin. A number of cells synthesized glycogen and in some of the cells cytokeratin 18 microfilaments were detected. Major hepatocyte marker genes were expressed in the culture, along with the gene and protein expression of stem/progenitor markers, suggesting the features of both hepatocyte precursors and more advanced differentiated cells. When cultured in suspension, the EB-derived puromycin-selected cells formed spheroids capable of outgrowing on an adhesive substrate, resembling the behavior of fetal mouse hepatic progenitor cells. The established system based on the highly efficient selection/purification procedure could be suitable for scalable generation of ESC-derived hepatocyte- and hepatocyte precursor-like cells and offers a potential in vitro source of cells for transplantation therapy of liver diseases, tissue engineering, and drug and toxicology screening.
Collapse
Affiliation(s)
- Irina Drobinskaya
- Institute for Neurophysiology, Center of Physiology and Pathophysiology, University of Cologne, Robert-Koch Str. 39, D-50931 Cologne, Germany.
| | | | | | | | | | | | | |
Collapse
|
10
|
Kyle-Cezar F, Echevarria-Lima J, Rumjanek VM. Independent Regulation of ABCB1 and ABCC Activities in Thymocytes and Bone Marrow Mononuclear Cells during Aging. Scand J Immunol 2007; 66:238-48. [PMID: 17635801 DOI: 10.1111/j.1365-3083.2007.01965.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Aging modifies a number of functional and phenotypic parameters of cells from the immune system. In this study, the activities of two members of the superfamily of ATP-binding cassette (ABC) transport proteins, ABCB1 and ABCC (measured by rhodamine 123 efflux and Fluo-3 efflux respectively), were compared in murine bone marrow cells and thymocytes of young (3-4 weeks old), adult (2-3 months old) and old (18 months old) mice. ABCB1 activity was shown to be age regulated in murine bone marrow mononuclear cells and thymocytes. In the bone marrow, the increased amount of cells with ABCB1 activity observed in old mice was restricted to the c-kit(-)Sca-1(+) and c-kit(+)Sca-1(+) subpopulations. Only a small percentage of c-kit(+) cells in the thymus had ABCB1 activity, and this subpopulation increased with age. In the thymus, old age augmented this activity in the CD4(-) CD8(-) double-negative cells and in the CD4(+) and CD8(+) single-positive populations. The activity of another ABC transporter, the ABCC-related activity, was also modified by age in the bone marrow. However, the age-related increase was observed in the subpopulations were ABCB1 was not modified, namely the non-progenitor population (c-kit(-)Sca-1(-)cells) and c-kit(+)Sca-1(-) cells. Nearly, all thymocytes expressed the ABCC1 molecule in an active form and aging did not affect this pattern. This study demonstrates an independent upregulation of ABCB1 and ABCC activities during the aging process. The increases were observed in different subsets of cells but followed a developmentally regulated pattern. The functions played by these transporters and alterations in aging are discussed.
Collapse
Affiliation(s)
- F Kyle-Cezar
- Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | |
Collapse
|