1
|
Characterisation of MHC class I genes in the koala. Immunogenetics 2017; 70:125-133. [PMID: 28669101 DOI: 10.1007/s00251-017-1018-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 06/20/2017] [Indexed: 10/19/2022]
Abstract
Koala (Phascolarctos cinereus) populations are on the decline across the majority of Australia's mainland. Two major diseases threatening the long-term survival of affected koala populations are caused by obligate intracellular pathogens: Chlamydia and koala retrovirus (KoRV). To improve our understanding of the koala immune system, we characterised their major histocompatibility complex (MHC) class I genes, which are centrally involved in presenting foreign peptides derived from intracellular pathogens to cytotoxic T cells. A total of 11 class I genes were identified in the koala genome. Three genes, Phci-UA, UB and UC, showed relatively high genetic variability and were expressed in all 12 examined tissues, whereas the other eight genes had tissue-specific expression and limited polymorphism. Evidence of diversifying selection was detected in Phci-UA and UC, while gene conversion may have played a role in creating new alleles at Phci-UB. We propose that Phci-UA, UB and UC are likely classical MHC genes of koalas, and further research is needed to understand their role in koala chlamydial and KoRV infections.
Collapse
|
2
|
Krasnec KV, Papenfuss AT, Miller RD. The UT family of MHC class I loci unique to non-eutherian mammals has limited polymorphism and tissue specific patterns of expression in the opossum. BMC Immunol 2016; 17:43. [PMID: 27825298 PMCID: PMC5101759 DOI: 10.1186/s12865-016-0181-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 10/28/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The Major Histocompatibility Complex (MHC) class I family of genes encode for molecules that have well-conserved structures, but have evolved to perform diverse functions. The availability of the gray, short-tailed opossum, Monodelphis domestica whole genome sequence has allowed for analysis of MHC class I gene content in this marsupial. Utilization of a novel method to search for MHC related domain structures revealed a previously unknown family of MHC class I-related genes. These genes, named UT1-17, are clustered on chromosome 1 in the opossum, unlinked to the MHC region. UT genes are only found in marsupial and monotreme genomes, consistent with being ancient in mammals yet lost in eutherian mammals. This study investigates the expression and polymorphism of the UT loci in the opossum to gain insight into their possible function. RESULTS Of the 17 opossum UT genes, most have restricted tissue transcription patterns, with the thymus and skin being the most common sites. Full-length structure of 11 UT transcripts revealed genes varying between five and eight exons, typical for class I family members. There were only two alternative splice variants found. The UT genes also have limited polymorphism and little evidence of positive selection. One locus, UT8, was chosen for further analysis due to its conservation amongst marsupials and generic characteristics. UT8 transcription is limited to developing αβ thymocytes, and is absent from mature αβ T cells in peripheral lymphoid tissues. CONCLUSION The overall characteristics and features of UT genes including low polymorphism and restricted tissue expression make it likely that the molecules encoded by UT genes perform roles other than antigenic peptide presentation.
Collapse
Affiliation(s)
- Katina V Krasnec
- Department of Biology, Center for Evolutionary and Theoretical Immunology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Anthony T Papenfuss
- Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Pde, Parkville, 3052, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, Australia.,Peter MacCallum Cancer Centre, East Melbourne, 3002, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
| | - Robert D Miller
- Department of Biology, Center for Evolutionary and Theoretical Immunology, University of New Mexico, Albuquerque, NM, 87131, USA.
| |
Collapse
|
3
|
Molecular characterization of MHC class II in the Australian invasive cane toad reveals multiple splice variants. Immunogenetics 2016; 68:449-460. [DOI: 10.1007/s00251-016-0919-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 05/21/2016] [Indexed: 10/21/2022]
|
4
|
Characterisation of major histocompatibility complex class I genes at the fetal-maternal interface of marsupials. Immunogenetics 2015; 67:385-93. [PMID: 25957041 DOI: 10.1007/s00251-015-0842-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 04/29/2015] [Indexed: 10/23/2022]
Abstract
Major histocompatibility complex class I molecules (MHC-I) are expressed at the cell surface and are responsible for the presentation of self and non-self antigen repertoires to the immune system. Eutherian mammals express both classical and non-classical MHC-I molecules in the placenta, the latter of which are thought to modulate the maternal immune response during pregnancy. Marsupials last shared a common ancestor with eutherian mammals such as humans and mice over 160 million years ago. Since, like eutherians, they have an intra-uterine development dependent on a placenta, albeit a short-lived and less invasive one, they provide an opportunity to investigate the evolution of MHC-I expression at the fetal-maternal interface. We have characterised MHC-I mRNA expression in reproductive tissues of the tammar wallaby (Macropus eugenii) from the time of placental attachment to day 25 of the 26.5 day pregnancy. Putative classical MHC-I genes were expressed in the choriovitelline placenta, fetus, and gravid endometrium throughout the whole of this period. The MHC-I classical sequences were phylogenetically most similar to the Maeu-UC (50/100 clones) and Maeu-UA genes (7/100 clones). Expression of three non-classical MHC-I genes (Maeu-UD, Maeu-UK and Maeu-UM) were also present in placental samples. The results suggest that expression of classical and non-classical MHC-I genes in extant marsupial and eutherian mammals may have been necessary for the evolution of the ancestral therian placenta and survival of the mammalian fetus at the maternal-fetal interface.
Collapse
|
5
|
Krasnec KV, Sharp AR, Williams TL, Miller RD. The opossum MHC genomic region revisited. Immunogenetics 2015; 67:259-64. [PMID: 25737310 DOI: 10.1007/s00251-015-0826-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 01/29/2015] [Indexed: 10/23/2022]
Abstract
The gray short-tailed opossum Monodelphis domestica is one of the few marsupial species for which a high quality whole genome sequence is available and the major histocompatibility complex (MHC) region has been annotated. Previous analyses revealed only a single locus within the opossum MHC region, designated Modo-UA1, with the features expected for encoding a functionally classical class I α-chain. Nine other class I genes found within the MHC are highly divergent and have features usually associated with non-classical roles. The original annotation, however, was based on an early version of the opossum genome assembly. More recent analyses of allelic variation in individual opossums revealed too many Modo-UA1 sequences per individual to be accounted for by a single MHC class I locus found in the genome assembly. A reanalysis of a later generation assembly, MonDom5, revealed the presence of two additional loci, now designated Modo-UA3 and UA4, in a region that was expanded and more complete than in the earlier assembly. Modo-UA1, UA3, and UA4 are all transcribed, although Modo-UA4 transcripts are rarer. Modo-UA4 is also relatively non-polymorphic. Evidence presented support the accuracy of the later assembly and the existence of three related class I genes in the opossum, making opossums more typical of mammals and most tetrapods by having multiple apparent classical MHC class I loci.
Collapse
Affiliation(s)
- Katina V Krasnec
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| | | | | | | |
Collapse
|
6
|
Cheng Y, Belov K. Characterisation of non-classical MHC class I genes in the Tasmanian devil (Sarcophilus harrisii). Immunogenetics 2014; 66:727-35. [PMID: 25267059 DOI: 10.1007/s00251-014-0804-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 09/08/2014] [Indexed: 11/25/2022]
Abstract
The Tasmanian devil (Sarcophilus harrisii) is a carnivorous marsupial that is under threat of extinction due to an unusual transmissible disease called Devil Facial Tumour Disease (DFTD). Previous studies on the classical MHC genes have provided important insights into immune responses in this endangered species; however, so far, very little is known about the non-classical MHC genes of this species, which can also play significant roles in the immune system. Here, we report characterisation of five non-classical class I genes in the Tasmanian devil, including Saha-UD, -UK, -UM, -MR1 and -CD1. Saha-UD has been isolated previously and is known to have low genetic polymorphism, though its categorisation as classical or non-classical gene has remained undetermined. In this study, we observed tissue-specific expression of Saha-UD, suggesting that it is more characteristic of a non-classical gene. Restricted tissue expression patterns were also observed for other genes, with an exception of Saha-MR1 being ubiquitously expressed in all examined tissues. Saha-UK, -UM and -MR1 were found to be genetically monomorphic, while four alleles were found at Saha-CD1 with signs of positive selection detected within the α1 domain. Among the four Saha-CD1 alleles, one predominant allele (Saha-CD1*01) showed a high allele frequency of 0.906 in the Tasmanian devil population, resulting in a low heterozygosity (0.188) at this locus. Alternative splicing takes place in Saha-CD1, giving rise to a full-length transcript and a splice variant lacking intact antigen-binding, β2m-binding, transmembrane and cytoplasmic domains.
Collapse
Affiliation(s)
- Yuanyuan Cheng
- Faculty of Veterinary Science, University of Sydney, Office 302, RMC Gunn Building B19, Sydney, NSW, 2006, Australia,
| | | |
Collapse
|
7
|
Abstract
Marsupial immune responses were previously touted as ‘primitive’ but we now know that the marsupial immune system is complex and on par with that of eutherian mammals. In this manuscript we review the field of marsupial immunology, focusing on basic anatomy, developmental immunology, immunogenetics and evolution. We concentrate on advances to our understanding of marsupial immune gene architecture, made possible by the recent sequencing of the opossum, tammar wallaby and Tasmanian devil genomes. Characterisation of immune gene sequences now paves the way for the development of immunological assays that will allow us to more accurately study health and disease in marsupials.
Collapse
|
8
|
Dai ZX, Zhang GH, Zhang XH, Zheng YT. Identification and characterization of a novel splice variant of rhesus macaque MHC IA. Mol Immunol 2012; 53:206-13. [PMID: 22947772 DOI: 10.1016/j.molimm.2012.08.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2012] [Revised: 08/07/2012] [Accepted: 08/07/2012] [Indexed: 10/27/2022]
Abstract
Major histocompatibility complex class I (MHC I) molecules play a pivotal role in the immune recognition to intracellular pathogens. A number of important splice variants have already been characterized for these molecules in different species, suggesting their important roles in modulation of immune responses. In this study, we have identified and characterized a novel alternatively spliced form of rhesus macaque MHC IA (designated MHC IA-sv2) that lacks exons coding for the α2 and α3 domains. Despite lacking the α2 and α3 domains, MHC IA-sv2 is targeted to the cell surface, as a 23-kDa glycoprotein that is totally susceptible to endoglycosidase-H digestion and is reduced to 18kDa after deglycosylation with PNGase F. In contrast, the full-length MHC IA reaches the cell surface as a 43-kDa protein of form with complex-type N-glycosylation (endoglycosidase-H resistant). Moreover, we provide evidence here that MHC IA-sv2 can self-associate, forming homodimers, or associate with the fully mature MHC IA molecule, forming a heterodimeric structure in mammalian cells. These data demonstrate that the formation of heterodimers may have some functional implications in the fine tuning of MHC IA-mediated innate and adaptive immune responses.
Collapse
Affiliation(s)
- Zheng-Xi Dai
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, PR China
| | | | | | | |
Collapse
|
9
|
Cheng Y, Stuart A, Morris K, Taylor R, Siddle H, Deakin J, Jones M, Amemiya CT, Belov K. Antigen-presenting genes and genomic copy number variations in the Tasmanian devil MHC. BMC Genomics 2012; 13:87. [PMID: 22404855 PMCID: PMC3414760 DOI: 10.1186/1471-2164-13-87] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Accepted: 03/12/2012] [Indexed: 11/23/2022] Open
Abstract
Background The Tasmanian devil (Sarcophilus harrisii) is currently under threat of extinction due to an unusual fatal contagious cancer called Devil Facial Tumour Disease (DFTD). DFTD is caused by a clonal tumour cell line that is transmitted between unrelated individuals as an allograft without triggering immune rejection due to low levels of Major Histocompatibility Complex (MHC) diversity in Tasmanian devils. Results Here we report the characterization of the genomic regions encompassing MHC Class I and Class II genes in the Tasmanian devil. Four genomic regions approximately 960 kb in length were assembled and annotated using BAC contigs and physically mapped to devil Chromosome 4q. 34 genes and pseudogenes were identified, including five Class I and four Class II loci. Interestingly, when two haplotypes from two individuals were compared, three genomic copy number variants with sizes ranging from 1.6 to 17 kb were observed within the classical Class I gene region. One deletion is particularly important as it turns a Class Ia gene into a pseudogene in one of the haplotypes. This deletion explains the previously observed variation in the Class I allelic number between individuals. The frequency of this deletion is highest in the northwestern devil population and lowest in southeastern areas. Conclusions The third sequenced marsupial MHC provides insights into the evolution of this dynamic genomic region among the diverse marsupial species. The two sequenced devil MHC haplotypes revealed three copy number variations that are likely to significantly affect immune response and suggest that future work should focus on the role of copy number variations in disease susceptibility in this species.
Collapse
Affiliation(s)
- Yuanyuan Cheng
- Faculty of Veterinary Science, University of Sydney, Sydney, NSW, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Siddle HV, Deakin JE, Coggill P, Whilming LG, Harrow J, Kaufman J, Beck S, Belov K. The tammar wallaby major histocompatibility complex shows evidence of past genomic instability. BMC Genomics 2011; 12:421. [PMID: 21854592 PMCID: PMC3179965 DOI: 10.1186/1471-2164-12-421] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Accepted: 08/19/2011] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND The major histocompatibility complex (MHC) is a group of genes with a variety of roles in the innate and adaptive immune responses. MHC genes form a genetically linked cluster in eutherian mammals, an organization that is thought to confer functional and evolutionary advantages to the immune system. The tammar wallaby (Macropus eugenii), an Australian marsupial, provides a unique model for understanding MHC gene evolution, as many of its antigen presenting genes are not linked to the MHC, but are scattered around the genome. RESULTS Here we describe the 'core' tammar wallaby MHC region on chromosome 2q by ordering and sequencing 33 BAC clones, covering over 4.5 MB and containing 129 genes. When compared to the MHC region of the South American opossum, eutherian mammals and non-mammals, the wallaby MHC has a novel gene organization. The wallaby has undergone an expansion of MHC class II genes, which are separated into two clusters by the class III genes. The antigen processing genes have undergone duplication, resulting in two copies of TAP1 and three copies of TAP2. Notably, Kangaroo Endogenous Retroviral Elements are present within the region and may have contributed to the genomic instability. CONCLUSIONS The wallaby MHC has been extensively remodeled since the American and Australian marsupials last shared a common ancestor. The instability is characterized by the movement of antigen presenting genes away from the core MHC, most likely via the presence and activity of retroviral elements. We propose that the movement of class II genes away from the ancestral class II region has allowed this gene family to expand and diversify in the wallaby. The duplication of TAP genes in the wallaby MHC makes this species a unique model organism for studying the relationship between MHC gene organization and function.
Collapse
Affiliation(s)
- Hannah V Siddle
- Faculty of Veterinary Science, University of Sydney, NSW 2006, AUSTRALIA
- University of Cambridge, Department of Pathology, Cambridge CB2 1QP, UK
| | - Janine E Deakin
- ARC Centre of Excellence for Kangaroo Genomics, Research School of Biological Sciences, Australian National University, Canberra, ACT 0200, Australia
| | - Penny Coggill
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton Hall, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Laurens G Whilming
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton Hall, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Jennifer Harrow
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton Hall, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Jim Kaufman
- University of Cambridge, Department of Pathology, Cambridge CB2 1QP, UK
| | - Stephan Beck
- UCL Cancer Institute, University College London, London WC1E 6BT, UK
| | - Katherine Belov
- Faculty of Veterinary Science, University of Sydney, NSW 2006, AUSTRALIA
| |
Collapse
|
11
|
Abstract
BACKGROUND To understand the evolutionary origins of our own immune system, we need to characterise the immune system of our distant relatives, the marsupials and monotremes. The recent sequencing of the genomes of two marsupials (opossum and tammar wallaby) and a monotreme (platypus) provides an opportunity to characterise the immune gene repertoires of these model organisms. This was required as many genes involved in immunity evolve rapidly and fail to be detected by automated gene annotation pipelines. DESCRIPTION We have developed a database of immune genes from the tammar wallaby, red-necked wallaby, northern brown bandicoot, brush-tail possum, opossum, echidna and platypus. The resource contains 2,235 newly identified sequences and 3,197 sequences which had been described previously. This comprehensive dataset was built from a variety of sources, including EST projects and expert-curated gene predictions generated through a variety of methods including chained-BLAST and sensitive HMMER searches. To facilitate systems-based research we have grouped sequences based on broad Gene Ontology categories as well as by specific functional immune groups. Sequences can be extracted by keyword, gene name, protein domain and organism name. Users can also search the database using BLAST. CONCLUSION The Immunome Database for Marsupials and Monotremes (IDMM) is a comprehensive database of all known marsupial and monotreme immune genes. It provides a single point of reference for genomic and transcriptomic datasets. Data from other marsupial and monotreme species will be added to the database as it become available. This resource will be utilized by marsupial and monotreme immunologists as well as researchers interested in the evolution of mammalian immunity.
Collapse
|