1
|
Schober K, Buchholz VR, Busch DH. TCR repertoire evolution during maintenance of CMV-specific T-cell populations. Immunol Rev 2019; 283:113-128. [PMID: 29664573 DOI: 10.1111/imr.12654] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
During infections and cancer, the composition of the T-cell receptor (TCR) repertoire of antigen-specific CD8+ T cells changes over time. TCR avidity is thought to be a major driver of this process, thereby interacting with several additional regulators of T-cell responses to form a composite immune response architecture. Infections with latent viruses, such as cytomegalovirus (CMV), can lead to large T-cell responses characterized by an oligoclonal TCR repertoire. Here, we review the current status of experimental studies and theoretical models of TCR repertoire evolution during CMV infection. We will particularly discuss the degree to which this process may be determined through structural TCR avidity. As engineered TCR-redirected T cells have moved into the spotlight for providing more effective immunotherapies, it is essential to understand how the key features of a given TCR influence T-cell expansion and maintenance in settings of infection or malignancy. Deeper insights into these mechanisms will improve our basic understanding of T-cell immunology and help to identify optimal TCRs for immunotherapy.
Collapse
Affiliation(s)
- Kilian Schober
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München (TUM), Munich, Germany
| | - Veit R Buchholz
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München (TUM), Munich, Germany
| | - Dirk H Busch
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München (TUM), Munich, Germany.,Focus Group 'Clinical Cell Processing and Purification', Institute for Advanced Study, TUM, Munich, Germany.,National Centre for Infection Research (DZIF), Munich, Germany
| |
Collapse
|
2
|
Poiret T, Axelsson-Robertson R, Remberger M, Luo XH, Rao M, Nagchowdhury A, Von Landenberg A, Ernberg I, Ringden O, Maeurer M. Cytomegalovirus-Specific CD8+ T-Cells With Different T-Cell Receptor Affinities Segregate T-Cell Phenotypes and Correlate With Chronic Graft-Versus-Host Disease in Patients Post-Hematopoietic Stem Cell Transplantation. Front Immunol 2018; 9:760. [PMID: 29692783 PMCID: PMC5903031 DOI: 10.3389/fimmu.2018.00760] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 03/27/2018] [Indexed: 12/26/2022] Open
Abstract
Virus-specific T-cell responses are crucial to control cytomegalovirus (CMV) infections/reactivation in immunocompromised individuals. Adoptive cellular therapy with CMV-specific T-cells has become a viable treatment option. High-affinity anti-viral cellular immune responses are associated with improved long-term immune protection against CMV infection. To date, the characterization of high-affinity T-cell responses against CMV has not been achieved in blood from patients after allogeneic hematopoietic stem cell transplantation (HSCT). Therefore, the purpose of this study was to describe and analyze the phenotype and clinical impact of different CMV-specific CD8+ cytotoxic T-lymphocytes (CMV-CTL) classes based on their T-cell receptor (TCR) affinity. T-cells isolated from 23 patients during the first year following HSCT were tested for the expression of memory markers, programmed cell death 1 (PD-1), as well as TCR affinity, using three different HLA-A*02:01 CMVNLVPMVATV-Pp65 tetramers (wild-type, a245v and q226a mutants). High-affinity CMV-CTL defined by q226a tetramer binding, exhibited a higher frequency in CD8+ T-cells in the first month post-HSCT and exhibited an effector memory phenotype associated with strong PD-1 expression as compared to the medium- and low-affinity CMV-CTLs. High-affinity CMV-CTL was found at higher proportion in patients with chronic graft-versus-host disease (p < 0.001). This study provides a first insight into the detailed TCR affinities of CMV-CTL. This may be useful in order to improve current immunotherapy protocols using isolation of viral-specific T-cell populations based on their TCR affinity.
Collapse
Affiliation(s)
- Thomas Poiret
- Department of Laboratory Medicine, Karolinska University Hospital, Stockholm, Sweden
| | | | - Mats Remberger
- Center for Allogeneic Stem Cell Transplantation, Karolinska University Hospital, Stockholm, Sweden
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Xiao-Hua Luo
- Department of Laboratory Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Martin Rao
- Department of Laboratory Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Anurupa Nagchowdhury
- Department of Laboratory Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Anna Von Landenberg
- Department of Laboratory Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Ingemar Ernberg
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Olle Ringden
- Department of Laboratory Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Markus Maeurer
- Department of Laboratory Medicine, Karolinska University Hospital, Stockholm, Sweden
- Center for Allogeneic Stem Cell Transplantation, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
3
|
Rius C, Attaf M, Tungatt K, Bianchi V, Legut M, Bovay A, Donia M, Thor Straten P, Peakman M, Svane IM, Ott S, Connor T, Szomolay B, Dolton G, Sewell AK. Peptide-MHC Class I Tetramers Can Fail To Detect Relevant Functional T Cell Clonotypes and Underestimate Antigen-Reactive T Cell Populations. THE JOURNAL OF IMMUNOLOGY 2018; 200:2263-2279. [PMID: 29483360 PMCID: PMC5857646 DOI: 10.4049/jimmunol.1700242] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 01/29/2018] [Indexed: 12/01/2022]
Abstract
Peptide-MHC (pMHC) multimers, usually used as streptavidin-based tetramers, have transformed the study of Ag-specific T cells by allowing direct detection, phenotyping, and enumeration within polyclonal T cell populations. These reagents are now a standard part of the immunology toolkit and have been used in many thousands of published studies. Unfortunately, the TCR-affinity threshold required for staining with standard pMHC multimer protocols is higher than that required for efficient T cell activation. This discrepancy makes it possible for pMHC multimer staining to miss fully functional T cells, especially where low-affinity TCRs predominate, such as in MHC class II–restricted responses or those directed against self-antigens. Several recent, somewhat alarming, reports indicate that pMHC staining might fail to detect the majority of functional T cells and have prompted suggestions that T cell immunology has become biased toward the type of cells amenable to detection with multimeric pMHC. We use several viral- and tumor-specific pMHC reagents to compare populations of human T cells stained by standard pMHC protocols and optimized protocols that we have developed. Our results confirm that optimized protocols recover greater populations of T cells that include fully functional T cell clonotypes that cannot be stained by regular pMHC-staining protocols. These results highlight the importance of using optimized procedures that include the use of protein kinase inhibitor and Ab cross-linking during staining to maximize the recovery of Ag-specific T cells and serve to further highlight that many previous quantifications of T cell responses with pMHC reagents are likely to have considerably underestimated the size of the relevant populations.
Collapse
Affiliation(s)
- Cristina Rius
- Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital Wales, Cardiff CF14 4XN, United Kingdom
| | - Meriem Attaf
- Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital Wales, Cardiff CF14 4XN, United Kingdom
| | - Katie Tungatt
- Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital Wales, Cardiff CF14 4XN, United Kingdom
| | - Valentina Bianchi
- Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital Wales, Cardiff CF14 4XN, United Kingdom
| | - Mateusz Legut
- Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital Wales, Cardiff CF14 4XN, United Kingdom
| | - Amandine Bovay
- Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital Wales, Cardiff CF14 4XN, United Kingdom.,Department of Oncology and Ludwig Cancer Research, Lausanne University Hospital, Epalinges VD 1066, Switzerland
| | - Marco Donia
- Centre for Cancer Immune Therapy, Herlev University Hospital, DK-2730 Herlev, Denmark
| | - Per Thor Straten
- Centre for Cancer Immune Therapy, Herlev University Hospital, DK-2730 Herlev, Denmark
| | - Mark Peakman
- Department of Immunobiology, Guy's Hospital, King's College London, London SE1 9RT, United Kingdom
| | - Inge Marie Svane
- Centre for Cancer Immune Therapy, Herlev University Hospital, DK-2730 Herlev, Denmark
| | - Sascha Ott
- Department of Computer Science, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Tom Connor
- Systems Immunity Research Institute, Cardiff University School of Medicine, University Hospital Wales, Cardiff CF14 4XN, United Kingdom; and.,Cardiff University School of Biosciences, Cardiff CF10 3AX, United Kingdom
| | - Barbara Szomolay
- Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital Wales, Cardiff CF14 4XN, United Kingdom
| | - Garry Dolton
- Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital Wales, Cardiff CF14 4XN, United Kingdom
| | - Andrew K Sewell
- Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital Wales, Cardiff CF14 4XN, United Kingdom; .,Systems Immunity Research Institute, Cardiff University School of Medicine, University Hospital Wales, Cardiff CF14 4XN, United Kingdom; and
| |
Collapse
|
4
|
Allard M, Couturaud B, Carretero-Iglesia L, Duong MN, Schmidt J, Monnot GC, Romero P, Speiser DE, Hebeisen M, Rufer N. TCR-ligand dissociation rate is a robust and stable biomarker of CD8+ T cell potency. JCI Insight 2017; 2:92570. [PMID: 28724801 DOI: 10.1172/jci.insight.92570] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 06/15/2017] [Indexed: 12/16/2022] Open
Abstract
Despite influencing many aspects of T cell biology, the kinetics of T cell receptor (TCR) binding to peptide-major histocompatibility molecules (pMHC) remain infrequently determined in patient monitoring or for adoptive T cell therapy. Using specifically designed reversible fluorescent pMHC multimeric complexes, we performed a comprehensive study of TCR-pMHC off-rates combined with various functional assays on large libraries of self/tumor- and virus-specific CD8+ T cell clones from melanoma patients and healthy donors. We demonstrate that monomeric TCR-pMHC dissociation rates accurately predict the extent of cytotoxicity, cytokine production, polyfunctionality, cell proliferation, activating/inhibitory receptor expression, and in vivo antitumor potency of naturally occurring antigen-specific CD8+ T cells. Our data also confirm the superior binding avidities of virus-specific T cells as compared with self/tumor-specific T cell clonotypes (n > 300). Importantly, the TCR-pMHC off-rate is a more stable and robust biomarker of CD8+ T cell potency than the frequently used functional assays/metrics that depend on the T cell's activation state, and therefore show major intra- and interexperimental variability. Taken together, our data show that the monomeric TCR-pMHC off-rate is highly useful for the ex vivo high-throughput functional assessment of antigen-specific CD8+ T cell responses and a strong candidate as a biomarker of T cell therapeutic efficacy.
Collapse
Affiliation(s)
- Mathilde Allard
- Department of Oncology, Lausanne University Hospital Center (CHUV) and University of Lausanne, Epalinges, Switzerland
| | - Barbara Couturaud
- Department of Oncology, Lausanne University Hospital Center (CHUV) and University of Lausanne, Epalinges, Switzerland
| | - Laura Carretero-Iglesia
- Department of Oncology, Lausanne University Hospital Center (CHUV) and University of Lausanne, Epalinges, Switzerland
| | - Minh Ngoc Duong
- Department of Oncology, Lausanne University Hospital Center (CHUV) and University of Lausanne, Epalinges, Switzerland
| | - Julien Schmidt
- Ludwig Cancer Research, University of Lausanne, Epalinges, Switzerland
| | | | - Pedro Romero
- Ludwig Cancer Research, University of Lausanne, Epalinges, Switzerland
| | - Daniel E Speiser
- Department of Oncology, Lausanne University Hospital Center (CHUV) and University of Lausanne, Epalinges, Switzerland.,Ludwig Cancer Research, University of Lausanne, Epalinges, Switzerland
| | - Michael Hebeisen
- Department of Oncology, Lausanne University Hospital Center (CHUV) and University of Lausanne, Epalinges, Switzerland
| | - Nathalie Rufer
- Department of Oncology, Lausanne University Hospital Center (CHUV) and University of Lausanne, Epalinges, Switzerland.,Ludwig Cancer Research, University of Lausanne, Epalinges, Switzerland
| |
Collapse
|
5
|
Partners in Crime: The Role of CMV in Immune Dysregulation and Clinical Outcome During HIV Infection. Curr HIV/AIDS Rep 2016; 13:10-9. [PMID: 26810437 DOI: 10.1007/s11904-016-0297-9] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In the current era of combination antiretroviral therapy (ART), human immunodeficiency virus (HIV)-infected individuals are living longer and healthier lives. Nevertheless, HIV-infected persons are at greater risk for age-related disorders, which have been linked to residual immune dysfunction and inflammation. HIV-infected individuals are almost universally co-infected with cytomegalovirus (CMV) and both viruses are associated with inflammation-related morbidities. Therefore, a detailed investigation of the relationship between CMV and aging-related morbidities emerging during chronic HIV infection is warranted. Here, we review the literature on how CMV co-infection affects HIV infection and host immunity and we discuss the gaps in our knowledge that need elucidation.
Collapse
|
6
|
Freeman ML, Mudd JC, Shive CL, Younes SA, Panigrahi S, Sieg SF, Lee SA, Hunt PW, Calabrese LH, Gianella S, Rodriguez B, Lederman MM. CD8 T-Cell Expansion and Inflammation Linked to CMV Coinfection in ART-treated HIV Infection. Clin Infect Dis 2015; 62:392-6. [PMID: 26400999 DOI: 10.1093/cid/civ840] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 09/12/2015] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Persistent CD8 T-cell expansion, low CD4/CD8 T-cell ratios, and heightened inflammation persist in antiretroviral therapy (ART)-treated human immunodeficiency virus (HIV) infection and are associated with increased risk of morbid outcomes. We explored the role of cytomegalovirus (CMV) infection in CD8 lymphocytosis and inflammation in ART-treated HIV infection. METHODS Absolute CD4 and CD8 T-cell counts were abstracted from clinical records and compared among 32 HIV-infected CMV-seronegative subjects, 126 age, CD4 and gender-matched HIV-infected CMV-seropositive subjects, and among 21 HIV-uninfected controls (9 CMV-negative, 12 CMV-positive). Plasma inflammatory indices were measured in a subset by ELISA. RESULTS Median CD8 counts/µL were higher in HIV-positive/CMV-positive patients (795) than in HIV-positive/CMV-negative subjects (522, P = .006) or in healthy controls (451, P = .0007), whereas CD8 T-cell counts were similar to controls' levels in HIV-positive/CMV-negative subjects. Higher plasma levels of IP-10 (P = .0011), TNF-RII (P = .0002), and D-dimer (P = .0444) were also found in coinfected patients than in HIV-positive/CMV-negative subjects. CONCLUSIONS CMV infection is associated with higher CD8 T-cell counts, resultant lower CD4/CD8 ratios, and increased systemic inflammation in ART-treated HIV infection. CMV infection may contribute to risk for morbid outcomes in treated HIV infection.
Collapse
Affiliation(s)
- Michael L Freeman
- Center for AIDS Research, Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University/University Hospitals Case Medical Center
| | - Joseph C Mudd
- Center for AIDS Research, Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University/University Hospitals Case Medical Center
| | - Carey L Shive
- Center for AIDS Research, Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University/University Hospitals Case Medical Center, Veterans Administration Medical Center, Cleveland, Ohio
| | - Souheil-Antoine Younes
- Center for AIDS Research, Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University/University Hospitals Case Medical Center
| | - Soumya Panigrahi
- Center for AIDS Research, Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University/University Hospitals Case Medical Center
| | - Scott F Sieg
- Center for AIDS Research, Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University/University Hospitals Case Medical Center
| | - Sulggi A Lee
- Department of Medicine, University of California San Francisco
| | - Peter W Hunt
- Department of Medicine, University of California San Francisco
| | - Leonard H Calabrese
- Department of Rheumatic and Immunologic Diseases, Cleveland Clinic Foundation, Ohio
| | - Sara Gianella
- Division of Infectious Diseases, University of California San Diego, La Jolla
| | - Benigno Rodriguez
- Center for AIDS Research, Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University/University Hospitals Case Medical Center
| | - Michael M Lederman
- Center for AIDS Research, Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University/University Hospitals Case Medical Center
| |
Collapse
|
7
|
Martinez RJ, Evavold BD. Lower Affinity T Cells are Critical Components and Active Participants of the Immune Response. Front Immunol 2015; 6:468. [PMID: 26441973 PMCID: PMC4564719 DOI: 10.3389/fimmu.2015.00468] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Accepted: 08/28/2015] [Indexed: 11/13/2022] Open
Abstract
Kinetic and biophysical parameters of T cell receptor (TCR) and peptide:MHC (pMHC) interaction define intrinsic factors required for T cell activation and differentiation. Although receptor ligand kinetics are somewhat cumbersome to assess experimentally, TCR:pMHC affinity has been shown to predict peripheral T cell functionality and potential for forming memory. Multimeric forms of pMHC monomers have often been used to provide an indirect readout of higher affinity T cells due to their availability and ease of use while allowing simultaneous definition of other functional and phenotypic characteristics. However, multimeric pMHC reagents have introduced a bias that underestimates the lower affinity components contained in the highly diverse TCR repertoires of all polyclonal T cell responses. Advances in the identification of lower affinity cells have led to the examination of these cells and their contribution to the immune response. In this review, we discuss the identification of high- vs. low-affinity T cells as well as their attributed signaling and functional differences. Lastly, mechanisms are discussed that maintain a diverse range of low- and high-affinity T cells.
Collapse
Affiliation(s)
- Ryan J. Martinez
- Department of Microbiology and Immunology, Emory University, Atlanta, GA, USA
| | - Brian D. Evavold
- Department of Microbiology and Immunology, Emory University, Atlanta, GA, USA
| |
Collapse
|
8
|
Perturbation of the normal immune system in patients with CLL. Blood 2015; 126:573-81. [PMID: 26084672 DOI: 10.1182/blood-2015-03-567388] [Citation(s) in RCA: 264] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 06/08/2015] [Indexed: 12/22/2022] Open
Abstract
Immune dysregulation is a cardinal feature of chronic lymphocytic leukemia (CLL) from its early stage and worsens during clinical observation, even in absence of disease progression. Although the mechanisms remain unclear, new insights are emerging into the complex relationship between the CLL clone and its immune environment. T cells are increased in early-stage disease and show progressive accumulation and exhaustion. The mechanisms that drive this expansion may include auto-antigens involved in the original clonal expansion. In addition, chronic viral infections such as cytomegalovirus generate huge virus-specific immune responses, which are further expanded in CLL. Attention is now focused largely on the direct immunosuppressive properties of the tumor. Remarkably, CLL clones often have features of the recently described regulatory B cells producing immunosuppressive IL-10. Better knowledge of the regulatory properties intrinsic to CLL cells may soon become more important with the switch from chemotherapy-based treatments, which trade control of CLL with further impairment of immune function, to the new agents targeting CLL B-cell receptor-associated signaling. Treatment with these new agents is associated with evidence of immune recovery and reduced infectious complications. As such, they offer the prospect of immunologic rehabilitation and a platform from which to ultimately replace chemotherapy.
Collapse
|
9
|
Hadrup SR, Maurer D, Laske K, Frøsig TM, Andersen SR, Britten CM, van der Burg SH, Walter S, Gouttefangeas C. Cryopreservation of MHC multimers: Recommendations for quality assurance in detection of antigen specific T cells. Cytometry A 2015; 87:37-48. [PMID: 25297339 PMCID: PMC4309491 DOI: 10.1002/cyto.a.22575] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 08/24/2014] [Accepted: 09/24/2014] [Indexed: 11/16/2022]
Abstract
Fluorescence-labeled peptide-MHC class I multimers serve as ideal tools for the detection of antigen-specific T cells by flow cytometry, enabling functional and phenotypical characterization of specific T cells at the single cell level. While this technique offers a number of unique advantages, MHC multimer reagents can be difficult to handle in terms of stability and quality assurance. The stability of a given fluorescence-labeled MHC multimer complex depends on both the stability of the peptide-MHC complex itself and the stability of the fluorochrome. Consequently, stability is difficult to predict and long-term storage is generally not recommended. We investigated here the possibility of cryopreserving MHC multimers, both in-house produced and commercially available, using a wide range of peptide-MHC class I multimers comprising virus and cancer-associated epitopes of different affinities presented by various HLA-class I molecules. Cryopreservation of MHC multimers was feasible for at least 6 months, when they were dissolved in buffer containing 5-16% glycerol (v/v) and 0.5% serum albumin (w/v). The addition of cryoprotectants was tolerated across three different T-cell staining protocols for all fluorescence labels tested (PE, APC, PE-Cy7 and Quantum dots). We propose cryopreservation as an easily implementable method for stable storage of MHC multimers and recommend the use of cryopreservation in long-term immunomonitoring projects, thereby eliminating the variability introduced by different batches and inconsistent stability.
Collapse
Affiliation(s)
- Sine Reker Hadrup
- Department of Hematology, Center for Cancer Immune Therapy (CCIT), University Hospital HerlevHerlev, Denmark
| | | | - Karoline Laske
- Department of Immunology, Institute for Cell Biology, University of TübingenGermany and DKTK, DKFZ partner site Tübingen, Germany
| | - Thomas Mørch Frøsig
- Department of Hematology, Center for Cancer Immune Therapy (CCIT), University Hospital HerlevHerlev, Denmark
| | - Sofie Ramskov Andersen
- Department of Hematology, Center for Cancer Immune Therapy (CCIT), University Hospital HerlevHerlev, Denmark
| | - Cedrik M Britten
- Translational Oncology, University Medical Center, Johannes Gutenberg-University Mainz gGmbHMainz, Germany
| | - Sjoerd H van der Burg
- Department of Clinical Oncology, Leiden University Medical CenterLeiden, The Netherlands
| | | | - Cécile Gouttefangeas
- Department of Immunology, Institute for Cell Biology, University of TübingenGermany and DKTK, DKFZ partner site Tübingen, Germany
| |
Collapse
|
10
|
Dougan SK, Dougan M, Kim J, Turner JA, Ogata S, Cho HI, Jaenisch R, Celis E, Ploegh HL. Transnuclear TRP1-specific CD8 T cells with high or low affinity TCRs show equivalent antitumor activity. Cancer Immunol Res 2013; 1:99-111. [PMID: 24459675 PMCID: PMC3895912 DOI: 10.1158/2326-6066.cir-13-0047] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We have generated, via somatic cell nuclear transfer, two independent lines of transnuclear (TN) mice, using as nuclear donors CD8 T cells, sorted by tetramer staining, that recognize the endogenous melanoma antigen TRP1. These two lines of nominally identical specificity differ greatly in their affinity for antigen (TRP1(high) or TRP1(low)) as inferred from tetramer dissociation and peptide responsiveness. Ex vivo-activated CD8 T cells from either TRP1(high) or TRP1(low) mice show cytolytic activity in 3D tissue culture and in vivo, and slow the progression of subcutaneous B16 melanoma. Although naïve TRP1(low) CD8 T cells do not affect tumor growth, upon activation these cells function indistinguishably from TRP1(high) cells in vivo, limiting tumor cell growth and increasing mouse survival. The anti-tumor effect of both TRP1(high) and TRP1(low) CD8 T cells is enhanced in RAG-deficient hosts. However, tumor outgrowth eventually occurs, likely due to T cell exhaustion. The TRP1 TN mice are an excellent model for examining the functional attributes of T cells conferred by TCR affinity, and they may serve as a platform for screening immunomodulatory cancer therapies.
Collapse
Affiliation(s)
- Stephanie K. Dougan
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142
| | - Michael Dougan
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142
- Department of Medicine, Massachusetts General Hospital, Boston, MA
| | - Jun Kim
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142
- Massachusetts Institute of Technology, Cambridge, MA
| | - Jacob A. Turner
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142
- University of Cincinnati, 2600 Clifton Ave, Cincinnati, OH 45221
| | - Souichi Ogata
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142
- Janssen Research and Development, division of Janssen Pharmaceutica NV, Turnhoutseweg 30, Beerse B2340, Belgium
| | - Hyun-Il Cho
- Dept. of Immunology, H. Lee Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL 33612
| | - Rudolf Jaenisch
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142
| | - Esteban Celis
- Dept. of Immunology, H. Lee Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL 33612
| | - Hidde L. Ploegh
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142
| |
Collapse
|
11
|
Griffiths SJ, Riddell NE, Masters J, Libri V, Henson SM, Wertheimer A, Wallace D, Sims S, Rivino L, Larbi A, Kemeny DM, Nikolich-Zugich J, Kern F, Klenerman P, Emery VC, Akbar AN. Age-associated increase of low-avidity cytomegalovirus-specific CD8+ T cells that re-express CD45RA. THE JOURNAL OF IMMUNOLOGY 2013; 190:5363-72. [PMID: 23636061 DOI: 10.4049/jimmunol.1203267] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The mechanisms regulating memory CD8(+) T cell function and homeostasis during aging are unclear. CD8(+) effector memory T cells that re-express CD45RA increase considerably in older humans and both aging and persistent CMV infection are independent factors in this process. We used MHC class I tetrameric complexes that were mutated in the CD8 binding domain to identify CMV-specific CD8(+) T cells with high Ag-binding avidity. In individuals who were HLA-A*0201, CD8(+) T cells that expressed CD45RA and were specific for the pp65 protein (NLVPMVATV epitope) had lower avidity than those that expressed CD45RO and demonstrated decreased cytokine secretion and cytolytic potential after specific activation. Furthermore, low avidity NLVPMVATV-specific CD8(+) T cells were significantly increased in older individuals. The stimulation of blood leukocytes with CMV lysate induced high levels of IFN-α that in turn induced IL-15 production. Moreover, the addition of IL-15 to CD45RA(-)CD45RO(+) CMV-specific CD8(+) T cells induced CD45RA expression while Ag activated cells remained CD45RO(+). This raises the possibility that non-specific cytokine-driven accumulation of CMV-specific CD8(+)CD45RA(+) T cells with lower Ag-binding avidity may exacerbate the effects of viral reactivation on skewing the T cell repertoire in CMV-infected individuals during aging.
Collapse
Affiliation(s)
- Stephen J Griffiths
- Division of Infection and Immunity, University College London, London WC1E 6BT, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Dössinger G, Bunse M, Bet J, Albrecht J, Paszkiewicz PJ, Weißbrich B, Schiedewitz I, Henkel L, Schiemann M, Neuenhahn M, Uckert W, Busch DH. MHC multimer-guided and cell culture-independent isolation of functional T cell receptors from single cells facilitates TCR identification for immunotherapy. PLoS One 2013; 8:e61384. [PMID: 23637823 PMCID: PMC3637308 DOI: 10.1371/journal.pone.0061384] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Accepted: 03/07/2013] [Indexed: 02/05/2023] Open
Abstract
Adoptive therapy using T cells redirected to target tumor- or infection-associated antigens is a promising strategy that has curative potential and broad applicability. In order to accelerate the screening process for suitable antigen-specific T cell receptors (TCRs), we developed a new approach circumventing conventional in vitro expansion-based strategies. Direct isolation of paired full-length TCR sequences from non-expanded antigen-specific T cells was achieved by the establishment of a highly sensitive PCR-based T cell receptor single cell analysis method (TCR-SCAN). Using MHC multimer-labeled and single cell-sorted HCMV-specific T cells we demonstrate a high efficacy (approximately 25%) and target specificity of TCR-SCAN receptor identification. In combination with MHC-multimer based pre-enrichment steps, we were able to isolate TCRs specific for the oncogenes Her2/neu and WT1 even from very small populations (original precursor frequencies of down to 0.00005% of CD3(+) T cells) without any cell culture step involved. Genetic re-expression of isolated receptors demonstrates their functionality and target specificity. We believe that this new strategy of TCR identification may provide broad access to specific TCRs for therapeutically relevant T cell epitopes.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antigens, Neoplasm/immunology
- Cell Culture Techniques
- Cytomegalovirus/immunology
- Epitopes
- Gene Transfer Techniques
- HEK293 Cells
- Histocompatibility Antigens/chemistry
- Histocompatibility Antigens/metabolism
- Humans
- Immunotherapy
- Jurkat Cells
- Mice
- Molecular Sequence Data
- Polymerase Chain Reaction
- Protein Multimerization
- Receptors, Antigen, T-Cell/chemistry
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/isolation & purification
- Receptors, Antigen, T-Cell/therapeutic use
- Receptors, Antigen, T-Cell, alpha-beta
- Sequence Analysis, Protein
- Single-Cell Analysis
- Species Specificity
- Transgenes
Collapse
Affiliation(s)
- Georg Dössinger
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München, Munich, Germany
| | - Mario Bunse
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Jeannette Bet
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München, Munich, Germany
- Focus Group “Clinical Cell Processing and Purification”, Institute for Advanced Study, Technische Universität München, Munich, Germany
| | - Julia Albrecht
- Clinical Cooperation Groups ‘‘Antigen-specific Immunotherapy’’ and “Immune Monitoring”, Helmholtz Center Munich (Neuherberg) and Technische Universität München, Munich, Germany
| | - Paulina J. Paszkiewicz
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München, Munich, Germany
- Focus Group “Clinical Cell Processing and Purification”, Institute for Advanced Study, Technische Universität München, Munich, Germany
| | - Bianca Weißbrich
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München, Munich, Germany
- Focus Group “Clinical Cell Processing and Purification”, Institute for Advanced Study, Technische Universität München, Munich, Germany
| | - Isabell Schiedewitz
- Clinical Cooperation Groups ‘‘Antigen-specific Immunotherapy’’ and “Immune Monitoring”, Helmholtz Center Munich (Neuherberg) and Technische Universität München, Munich, Germany
| | - Lynette Henkel
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München, Munich, Germany
| | - Matthias Schiemann
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München, Munich, Germany
- Clinical Cooperation Groups ‘‘Antigen-specific Immunotherapy’’ and “Immune Monitoring”, Helmholtz Center Munich (Neuherberg) and Technische Universität München, Munich, Germany
| | - Michael Neuenhahn
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München, Munich, Germany
- Clinical Cooperation Groups ‘‘Antigen-specific Immunotherapy’’ and “Immune Monitoring”, Helmholtz Center Munich (Neuherberg) and Technische Universität München, Munich, Germany
| | - Wolfgang Uckert
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
- Humboldt-Universität, Berlin, Germany
| | - Dirk H. Busch
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München, Munich, Germany
- Focus Group “Clinical Cell Processing and Purification”, Institute for Advanced Study, Technische Universität München, Munich, Germany
- Clinical Cooperation Groups ‘‘Antigen-specific Immunotherapy’’ and “Immune Monitoring”, Helmholtz Center Munich (Neuherberg) and Technische Universität München, Munich, Germany
- DZIF - National Centre for Infection Research, Munich, Germany
- * E-mail:
| |
Collapse
|
13
|
Functional avidity: a measure to predict the efficacy of effector T cells? Clin Dev Immunol 2012; 2012:153863. [PMID: 23227083 PMCID: PMC3511839 DOI: 10.1155/2012/153863] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 10/22/2012] [Indexed: 01/30/2023]
Abstract
The functional avidity is determined by exposing T-cell populations in vitro to different amounts of cognate antigen. T-cells with high functional avidity respond to low antigen doses. This in vitro measure is thought to correlate well with the in vivo effector capacity of T-cells. We here present the multifaceted factors determining and influencing the functional avidity of T-cells. We outline how changes in the functional avidity can occur over the course of an infection. This process, known as avidity maturation, can occur despite the fact that T-cells express a fixed TCR. Furthermore, examples are provided illustrating the importance of generating T-cell populations that exhibit a high functional avidity when responding to an infection or tumors. Furthermore, we discuss whether criteria based on which we evaluate an effective T-cell response to acute infections can also be applied to chronic infections such as HIV. Finally, we also focus on observations that high-avidity T-cells show higher signs of exhaustion and facilitate the emergence of virus escape variants. The review summarizes our current understanding of how this may occur as well as how T-cells of different functional avidity contribute to antiviral and anti-tumor immunity. Enhancing our knowledge in this field is relevant for tumor immunotherapy and vaccines design.
Collapse
|
14
|
Ferrando-Martinez S, Leal M, González-Escribano MF, Vega Y, Ruiz-Mateos E. Simplified sequence-specific oligonucleotide-based polymerase chain reaction protocol to characterize human major histocompatibility complex A*02 and A*24 specificities. Hum Immunol 2011; 72:869-71. [PMID: 21741422 DOI: 10.1016/j.humimm.2011.05.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Revised: 05/24/2011] [Accepted: 05/25/2011] [Indexed: 01/06/2023]
Abstract
Major histocompatibility complex (MHC) multimer technology is used in studies of high scientific and clinical interest for the identification, analysis, purification, and adoptive transfer of virus-specific T cells. MHC peptide multimers are usually specific for MHC A*02 or A*24 specificities because both specificities exhibit a high worldwide frequency. However, commercially available typing methods perform complete typing instead of browsing for these prevailing specificities. In this study we demonstrate an easy and accessible polymerase chain reaction-based method to accurately identify A*02 and A*24 samples in a cost-effective way.
Collapse
Affiliation(s)
- Sara Ferrando-Martinez
- Laboratory of Molecular Immuno-Biology, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | | | | | | | | |
Collapse
|
15
|
Buchholz VR, Neuenhahn M, Busch DH. CD8+ T cell differentiation in the aging immune system: until the last clone standing. Curr Opin Immunol 2011; 23:549-54. [PMID: 21664807 DOI: 10.1016/j.coi.2011.05.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Accepted: 05/16/2011] [Indexed: 10/18/2022]
Abstract
A substantial deterioration of the naïve CD8(+) T cell pool occurs regularly in humans beyond the age of 65 years. While recall responses to pathogens encountered during youth or adulthood are largely uncompromised, the de novo generation of memory responses by aged naïve CD8(+) T cells is perturbed. In recent years evidence has accumulated that the diminished responsiveness of naïve CD8(+) T cells in aged humans and other mammals coincides with a progressive loss of naïve T cell receptor (TCR) repertoire diversity. In this review we focus on thymic involution and chronic latent viral infections as key factors driving the reduction in naïve TCR repertoire diversity. We present novel insights gained by studying the antigen-driven differentiation of single CD8(+) T cells in young hosts and discuss possible implications of these insights for therapeutic support of the thinned-out clonal T cell repertoire of the elderly by vaccination or adoptive cell therapy.
Collapse
Affiliation(s)
- Veit R Buchholz
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University Munich, Trogerstr. 30, 81675 München, Germany
| | | | | |
Collapse
|