1
|
Zhang X, Ferree PM. PSRs: Selfish chromosomes that manipulate reproductive development. Semin Cell Dev Biol 2024; 159-160:66-73. [PMID: 38394822 DOI: 10.1016/j.semcdb.2024.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/17/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024]
Abstract
B chromosomes are intriguing "selfish" genetic elements, many of which exhibit higher-than-Mendelian transmission. This perspective highlights a group of B chromosomes known as Paternal Sex Ratio chromosomes (PSRs), which are found in several insects with haplo-diploid reproduction. PSRs harshly alter the organism's reproduction to facilitate their own inheritance. A manifestation of this effect is the conversion of female destined individuals into males. Key to this conversion is the mysterious ability of PSRs to cause elimination of the sperm-inherited half of the genome during zygote formation. Here we discuss how PSRs were discovered, what is known about how they alter paternal chromatin dynamics to cause sex conversion, and how PSR-induced genome elimination is different from other forms of programmed genome elimination in different insects. PSRs also stand out because their DNA sequence compositions differ in remarkable ways from their insect's essential chromosomes, a characteristic suggestive of interspecies origins. Broadly, we also highlight poorly understood aspects of PSR dynamics that need to be investigated.
Collapse
Affiliation(s)
- Xinmi Zhang
- W. M. Keck Science Department, Pitzer and Scripps Colleges, Claremont, CA 91711, USA
| | - Patrick M Ferree
- W. M. Keck Science Department, Pitzer and Scripps Colleges, Claremont, CA 91711, USA.
| |
Collapse
|
2
|
Johnson Pokorná M, Reifová R. Evolution of B Chromosomes: From Dispensable Parasitic Chromosomes to Essential Genomic Players. Front Genet 2021; 12:727570. [PMID: 34956308 PMCID: PMC8695967 DOI: 10.3389/fgene.2021.727570] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 10/25/2021] [Indexed: 11/13/2022] Open
Abstract
B chromosomes represent additional chromosomes found in many eukaryotic organisms. Their origin is not completely understood but recent genomic studies suggest that they mostly arise through rearrangements and duplications from standard chromosomes. They can occur in single or multiple copies in a cell and are usually present only in a subset of individuals in the population. Because B chromosomes frequently show unstable inheritance, their maintenance in a population is often associated with meiotic drive or other mechanisms that increase the probability of their transmission to the next generation. For all these reasons, B chromosomes have been commonly considered to be nonessential, selfish, parasitic elements. Although it was originally believed that B chromosomes had little or no effect on an organism's biology and fitness, a growing number of studies have shown that B chromosomes can play a significant role in processes such as sex determination, pathogenicity and resistance to pathogens. In some cases, B chromosomes became an essential part of the genome, turning into new sex chromosomes or germline-restricted chromosomes with important roles in the organism's fertility. Here, we review such cases of "cellular domestication" of B chromosomes and show that B chromosomes can be important genomic players with significant evolutionary impact.
Collapse
Affiliation(s)
- Martina Johnson Pokorná
- Department of Zoology, Charles University, Prague, Czech Republic.,Department of Ecology, Charles University, Prague, Czech Republic.,Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Liběchov, Czech Republic
| | - Radka Reifová
- Department of Zoology, Charles University, Prague, Czech Republic
| |
Collapse
|
3
|
Milani D, Ruiz-Ruano FJ, Camacho JPM, Cabral-de-Mello DC. Out of patterns, the euchromatic B chromosome of the grasshopper Abracris flavolineata is not enriched in high-copy repeats. Heredity (Edinb) 2021; 127:475-483. [PMID: 34482369 PMCID: PMC8551250 DOI: 10.1038/s41437-021-00470-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 02/07/2023] Open
Abstract
In addition to the normal set of standard (A) chromosomes, some eukaryote species harbor supernumerary (B) chromosomes. In most cases, B chromosomes show differential condensation with respect to A chromosomes and display dark C-bands of heterochromatin, and some of them are highly enriched in repetitive DNA. Here we perform a comprehensive NGS (next-generation sequencing) analysis of the repeatome in the grasshopper Abracris flavolineata aimed at uncovering the molecular composition and origin of its B chromosome. Our results have revealed that this B chromosome shows a DNA repeat content highly similar to the DNA repeat content observed for euchromatic (non-C-banded) regions of A chromosomes. Moreover, this B chromosome shows little enrichment for high-copy repeats, with only a few elements showing overabundance in B-carrying individuals compared to the 0B individuals. Consequently, the few satellite DNAs (satDNAs) mapping on the B chromosome were mostly restricted to its centromeric and telomeric regions, and they displayed much smaller bands than those observed on the A chromosomes. Our data support the intraspecific origin of the B chromosome from the longest autosome by misdivision, isochromosome formation, and additional restructuring, with accumulation of specific repeats in one or both B chromosome arms, yielding a submetacentric B. Finally, the absence of B-specific satDNAs, which are frequent in other species, along with its euchromatic nature, suggest that this B chromosome arose recently and might still be starting a heterochromatinization process. On this basis, it could be a good model to investigate the initial steps of B chromosome evolution.
Collapse
Affiliation(s)
- Diogo Milani
- Departamento de Biologia Geral e Aplicada, UNESP - Univ Estadual Paulista, Instituto de Biociências/IB, Rio Claro, São Paulo, Brazil
| | - Francisco J Ruiz-Ruano
- Evolutionary Biology Centre, Department of Organismal Biology - Systematic Biology, Uppsala University, Uppsala, Sweden
- Norwich Research Park, School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Juan Pedro M Camacho
- Departamento de Genética, Facultad de Ciencias, UGR - Univ de Granada, Granada, Spain
| | - Diogo C Cabral-de-Mello
- Departamento de Biologia Geral e Aplicada, UNESP - Univ Estadual Paulista, Instituto de Biociências/IB, Rio Claro, São Paulo, Brazil.
| |
Collapse
|
4
|
Dalla Benetta E, Akbari OS, Ferree PM. Sequence Expression of Supernumerary B Chromosomes: Function or Fluff? Genes (Basel) 2019; 10:E123. [PMID: 30744010 PMCID: PMC6409846 DOI: 10.3390/genes10020123] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 02/01/2019] [Accepted: 02/05/2019] [Indexed: 12/25/2022] Open
Abstract
B chromosomes are enigmatic heritable elements found in the genomes of numerous plant and animal species. Contrary to their broad distribution, most B chromosomes are non-essential. For this reason, they are regarded as genome parasites. In order to be stably transmitted through generations, many B chromosomes exhibit the ability to "drive", i.e., they transmit themselves at super-Mendelian frequencies to progeny through directed interactions with the cell division apparatus. To date, very little is understood mechanistically about how B chromosomes drive, although a likely scenario is that expression of B chromosome sequences plays a role. Here, we highlight a handful of previously identified B chromosome sequences, many of which are repetitive and non-coding in nature, that have been shown to be expressed at the transcriptional level. We speculate on how each type of expressed sequence could participate in B chromosome drive based on known functions of RNA in general chromatin- and chromosome-related processes. We also raise some challenges to functionally testing these possible roles, a goal that will be required to more fully understand whether and how B chromosomes interact with components of the cell for drive and transmission.
Collapse
Affiliation(s)
- Elena Dalla Benetta
- W. M. Keck Science Department of Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, CA 91711, USA.
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Omar S Akbari
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Patrick M Ferree
- W. M. Keck Science Department of Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, CA 91711, USA.
| |
Collapse
|
5
|
Marques A, Klemme S, Houben A. Evolution of Plant B Chromosome Enriched Sequences. Genes (Basel) 2018; 9:genes9100515. [PMID: 30360448 PMCID: PMC6210368 DOI: 10.3390/genes9100515] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 10/13/2018] [Accepted: 10/18/2018] [Indexed: 01/10/2023] Open
Abstract
B chromosomes are supernumerary chromosomes found in addition to the normal standard chromosomes (A chromosomes). B chromosomes are well known to accumulate several distinct types of repeated DNA elements. Although the evolution of B chromosomes has been the subject of numerous studies, the mechanisms of accumulation and evolution of repetitive sequences are not fully understood. Recently, new genomic approaches have shed light on the origin and accumulation of different classes of repetitive sequences in the process of B chromosome formation and evolution. Here we discuss the impact of repetitive sequences accumulation on the evolution of plant B chromosomes.
Collapse
Affiliation(s)
- André Marques
- Laboratory of Genetic Resources, Federal University of Alagoas, Av. Manoel Severino Barbosa, 57309-005 Arapiraca-AL, Brazil.
| | - Sonja Klemme
- Biology Centre, Czech Academy of Sciences, Institute of Plant Molecular Biology, Branišovská 31, CZ-37005 České Budějovice, Czech Republic.
| | - Andreas Houben
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Gatersleben, Germany.
| |
Collapse
|
6
|
Vujošević M, Rajičić M, Blagojević J. B Chromosomes in Populations of Mammals Revisited. Genes (Basel) 2018; 9:E487. [PMID: 30304868 PMCID: PMC6210394 DOI: 10.3390/genes9100487] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 10/01/2018] [Accepted: 10/03/2018] [Indexed: 01/23/2023] Open
Abstract
The study of B chromosomes (Bs) started more than a century ago, while their presence in mammals dates since 1965. As the past two decades have seen huge progress in application of molecular techniques, we decided to throw a glance on new data on Bs in mammals and to review them. We listed 85 mammals with Bs that make 1.94% of karyotypically studied species. Contrary to general view, a typical B chromosome in mammals appears both as sub- or metacentric that is the same size as small chromosomes of standard complement. Both karyotypically stable and unstable species possess Bs. The presence of Bs in certain species influences the cell division, the degree of recombination, the development, a number of quantitative characteristics, the host-parasite interactions and their behaviour. There is at least some data on molecular structure of Bs recorded in nearly a quarter of species. Nevertheless, a more detailed molecular composition of Bs presently known for six mammalian species, confirms the presence of protein coding genes, and the transcriptional activity for some of them. Therefore, the idea that Bs are inert is outdated, but the role of Bs is yet to be determined. The maintenance of Bs is obviously not the same for all species, so the current models must be adapted while bearing in mind that Bs are not inactive as it was once thought.
Collapse
Affiliation(s)
- Mladen Vujošević
- Institute for Biological Research "Siniša Stanković", Department of Genetic Research, University of Belgrade, Bulevar despota Stefana 142, Belgrade 11060, Serbia.
| | - Marija Rajičić
- Institute for Biological Research "Siniša Stanković", Department of Genetic Research, University of Belgrade, Bulevar despota Stefana 142, Belgrade 11060, Serbia.
| | - Jelena Blagojević
- Institute for Biological Research "Siniša Stanković", Department of Genetic Research, University of Belgrade, Bulevar despota Stefana 142, Belgrade 11060, Serbia.
| |
Collapse
|
7
|
Unique sequence organization and small RNA expression of a "selfish" B chromosome. Chromosoma 2017; 126:753-768. [PMID: 28780664 DOI: 10.1007/s00412-017-0641-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 07/27/2017] [Accepted: 07/28/2017] [Indexed: 10/19/2022]
Abstract
B chromosomes are found in numerous plants and animals. These nonessential, supernumerary chromosomes are often composed primarily of noncoding DNA repeats similar to those found within transcriptionally "silenced" heterochromatin. In order to persist within their resident genomes, many B chromosomes exhibit exceptional cellular behaviors, including asymmetric segregation into gametes and induction of genome elimination during early development. An important goal in understanding these behaviors is to identify unique B chromosome sequences and characterize their transcriptional contributions. We investigated these properties by examining a paternally transmitted B chromosome known as paternal sex ratio (PSR), which is present in natural populations of the jewel wasp Nasonia vitripennis. To facilitate its own transmission, PSR severely biases the sex ratio by disrupting early chromatin remodeling processes. Through cytological mapping and other approaches, we identified multiple DNA repeats unique to PSR, as well as those found on the A chromosomes, suggesting that PSR arose through a merger of sequences from both within and outside the N. vitripennis genome. The majority of PSR-specific repeats are interspersed among each other across PSR's long arm, in contrast with the distinct "blocks" observed in other organisms' heterochromatin. Through transcriptional profiling, we identified a subset of repeat-associated, small RNAs expressed by PSR, most of which map to a single PSR-specific repeat. These RNAs are expressed at much higher levels than those arising from A chromosome-linked repeats, suggesting that in addition to its sequence organization, PSR's transcriptional properties differ substantially from the pericentromeric regions of the normal chromosomes.
Collapse
|
8
|
Aldrich JC, Leibholz A, Cheema MS, Ausiό J, Ferree PM. A 'selfish' B chromosome induces genome elimination by disrupting the histone code in the jewel wasp Nasonia vitripennis. Sci Rep 2017; 7:42551. [PMID: 28211924 PMCID: PMC5304203 DOI: 10.1038/srep42551] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 01/10/2017] [Indexed: 01/04/2023] Open
Abstract
Intragenomic conflict describes a phenomenon in which genetic elements act ‘selfishly’ to gain a transmission advantage at the expense of the whole genome. A non-essential, selfish B chromosome known as Paternal Sex Ratio (PSR) induces complete elimination of the sperm-derived hereditary material in the jewel wasp Nasonia vitripennis. PSR prevents the paternal chromatin from forming chromosomes during the first embryonic mitosis, leading to its loss. Although paternally transmitted, PSR evades self-elimination in order to be inherited. We examined important post-translational modifications to the DNA packaging histones on the normal genome and the PSR chromosome in the fertilized embryo. Three histone marks – H3K9me2,3, H3K27me1, and H4K20me1 – became abnormally enriched and spread to ectopic positions on the sperm’s chromatin before entry into mitosis. In contrast, other histone marks and DNA methylation were not affected by PSR, suggesting that its effect on the paternal genome is specific to a subset of histone marks. Contrary to the paternally derived genome, the PSR chromosome was visibly devoid of the H3K27me1 and H4K20me1 marks. These findings strongly suggest that PSR causes paternal genome elimination by disrupting at least three histone marks following fertilization, while PSR avoids self-elimination by evading two of these marks.
Collapse
Affiliation(s)
- John C Aldrich
- W. M. Keck Science Department, Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, CA 91711, USA
| | - Alexandra Leibholz
- W. M. Keck Science Department, Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, CA 91711, USA
| | - Manjinder S Cheema
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8W-3P6, Canada
| | - Juan Ausiό
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8W-3P6, Canada
| | - Patrick M Ferree
- W. M. Keck Science Department, Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, CA 91711, USA
| |
Collapse
|
9
|
Akbari OS, Antoshechkin I, Hay BA, Ferree PM. Transcriptome profiling of Nasonia vitripennis testis reveals novel transcripts expressed from the selfish B chromosome, paternal sex ratio. G3 (BETHESDA, MD.) 2013; 3:1597-605. [PMID: 23893741 PMCID: PMC3755920 DOI: 10.1534/g3.113.007583] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 07/16/2013] [Indexed: 11/18/2022]
Abstract
A widespread phenomenon in nature is sex ratio distortion of arthropod populations caused by microbial and genetic parasites. Currently little is known about how these agents alter host developmental processes to favor one sex or the other. The paternal sex ratio (PSR) chromosome is a nonessential, paternally transmitted centric fragment that segregates in natural populations of the jewel wasp, Nasonia vitripennis. To persist, PSR is thought to modify the hereditary material of the developing sperm, with the result that all nuclear DNA other than the PSR chromosome is destroyed shortly after fertilization. This results in the conversion of a fertilized embryo--normally a female--into a male, thereby insuring transmission of the "selfish" PSR chromosome, and simultaneously leading to wasp populations that are male-biased. To begin to understand this system at the mechanistic level, we carried out transcriptional profiling of testis from WT and PSR-carrying males. We identified a number of transcripts that are differentially expressed between these conditions. We also discovered nine transcripts that are uniquely expressed from the PSR chromosome. Four of these PSR-specific transcripts encode putative proteins, whereas the others have very short open reading frames and no homology to known proteins, suggesting that they are long noncoding RNAs. We propose several different models for how these transcripts could facilitate PSR-dependent effects. Our analyses also revealed 15.71 MB of novel transcribed regions in the N. vitripennis genome, thus increasing the current annotation of total transcribed regions by 53.4%. Finally, we detected expression of multiple meiosis-related genes in the wasp testis, despite the lack of conventional meiosis in the male sex.
Collapse
Affiliation(s)
- Omar S. Akbari
- Division of Biology, MC156-29, California Institute of Technology, Pasadena, California 91125
| | - Igor Antoshechkin
- Division of Biology, MC156-29, California Institute of Technology, Pasadena, California 91125
| | - Bruce A. Hay
- Division of Biology, MC156-29, California Institute of Technology, Pasadena, California 91125
| | - Patrick M. Ferree
- W. M. Keck Science Department, Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, California 91711
| |
Collapse
|
10
|
Swim MM, Kaeding KE, Ferree PM. Impact of a selfish B chromosome on chromatin dynamics and nuclear organization in Nasonia. J Cell Sci 2012; 125:5241-9. [PMID: 22899710 DOI: 10.1242/jcs.113423] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
B chromosomes are centric chromosomal fragments present in thousands of eukaryotic genomes. Because most B chromosomes are non-essential, they can be lost without consequence. In order to persist, however, some B chromosomes can impose strong forms of intra-genomic conflict. An extreme case is the paternal sex ratio (PSR) B chromosome in the jewel wasp Nasonia vitripennis. Transmitted solely via the sperm, PSR 'imprints' the paternal chromatin so that it is destroyed during the first mitosis of the embryo. Owing to the haplo-diploid reproduction of N. vitripennis, PSR-induced loss of the paternal chromatin converts embryos that should become females into PSR-transmitting males. This conversion is key to the persistence of PSR, although the underlying mechanisms are largely unexplored. We assessed how PSR affects the paternal chromatin and then investigated how PSR is transmitted efficiently at the cellular level. We found that PSR does not affect progression of the paternal chromatin through the cell cycle but, instead, alters its normal Histone H3 phosphorylation and loading of the Condensin complex. PSR localizes to the outer periphery of the paternal nucleus, a position that we propose is crucial for it to escape from the defective paternal set. In sperm, PSR consistently localizes to the extreme anterior tip of the elongated nucleus, while the normal wasp chromosomes localize broadly across the nucleus. Thus, PSR may alter or bypass normal nuclear organizational processes to achieve its position. These findings provide new insights into how selfish genetic elements can impact chromatin-based processes for their survival.
Collapse
Affiliation(s)
- Megan M Swim
- W. M. Keck Science Department of Claremont McKenna, Pitzer and Scripps Colleges, 925 N. Mills Avenue, Claremont, CA 91711, USA
| | | | | |
Collapse
|
11
|
Abstract
B chromosomes are dispensable elements of the genome that do not recombine with the A chromosomes of the regular complement and that follow their own evolutionary pathway. Here, we survey current knowledge on the DNA/chromatin composition, origin, and drive mechanisms of B chromosomes and discuss the potential research applications of supernumerary chromosomes.
Collapse
Affiliation(s)
- Andreas Houben
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | | | | |
Collapse
|
12
|
Poletto AB, Ferreira IA, Martins C. The B chromosomes of the African cichlid fish Haplochromis obliquidens harbour 18S rRNA gene copies. BMC Genet 2010; 11:1. [PMID: 20051104 PMCID: PMC2806386 DOI: 10.1186/1471-2156-11-1] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Accepted: 01/05/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Diverse plant and animal species have B chromosomes, also known as accessory, extra or supernumerary chromosomes. Despite being widely distributed among different taxa, the genomic nature and genetic behavior of B chromosomes are still poorly understood. RESULTS In this study we describe the occurrence of B chromosomes in the African cichlid fish Haplochromis obliquidens. One or two large B chromosome(s) occurring in 39.6% of the analyzed individuals (both male and female) were identified. To better characterize the karyotype and assess the nature of the B chromosomes, fluorescence in situ hybridization (FISH) was performed using probes for telomeric DNA repeats, 18S and 5S rRNA genes, SATA centromeric satellites, and bacterial artificial chromosomes (BACs) enriched in repeated DNA sequences. The B chromosomes are enriched in repeated DNAs, especially non-active 18S rRNA gene-like sequences. CONCLUSION Our results suggest that the B chromosome could have originated from rDNA bearing subtelo/acrocentric A chromosomes through formation of an isochromosome, or by accumulation of repeated DNAs and rRNA gene-like sequences in a small proto-B chromosome derived from the A complement.
Collapse
Affiliation(s)
- Andréia B Poletto
- UNESP - Universidade Estadual Paulista, Instituto de Biociências, Departamento de Morfologia, Botucatu, SP, Brazil
| | - Irani A Ferreira
- UNESP - Universidade Estadual Paulista, Instituto de Biociências, Departamento de Morfologia, Botucatu, SP, Brazil
| | - Cesar Martins
- UNESP - Universidade Estadual Paulista, Instituto de Biociências, Departamento de Morfologia, Botucatu, SP, Brazil
| |
Collapse
|
13
|
Van Vugt JJFA, de Jong H, Stouthamer R. The origin of a selfish B chromosome triggering paternal sex ratio in the parasitoid wasp Trichogramma kaykai. Proc Biol Sci 2009; 276:4149-54. [PMID: 19740887 PMCID: PMC2821346 DOI: 10.1098/rspb.2009.1238] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Accepted: 08/21/2009] [Indexed: 11/12/2022] Open
Abstract
This study uses molecular and cytogenetic methods to determine the origin of a B chromosome in some males of the wasp Trichogramma kaykai. This so-called paternal sex ratio (PSR) chromosome transmits only through sperm and shortly after fertilization triggers degeneration of the paternal genome, while keeping itself intact. The resulting embryos develop into haploid B-chromosome-carrying males. Another PSR chromosome with a very similar mode of action is found in the distantly related wasp Nasonia vitripennis and its origin was traced by transposon similarity to the genus Trichomalopsis, which is closely related to Nasonia. To determine whether both PSR chromosomes have a similar origin we aimed to reveal the origin of the Trichogramma PSR chromosome. Using fluorescent in situ hybridization, we discovered a major satellite repeat on the PSR chromosome, the 45S ribosomal DNA. Analysis of the internal transcribed spacer 2 (ITS2) of this repeat showed the presence of multiple ITS2 sequences on the PSR chromosome resembling either the ITS2 of T. oleae or of T. kaykai. We therefore conclude that the Trichogramma PSR chromosome originates from T. oleae or a T. oleae-like species. Our results are consistent with different origins for the PSR chromosomes in Trichogramma and Nasonia.
Collapse
Affiliation(s)
- Joke J. F. A. Van Vugt
- Laboratory of Entomology, Wageningen University, PO Box 8031, 6700 EH Wageningen, The Netherlands
| | - Hans de Jong
- Laboratory of Genetics, Wageningen University, Arboretumlaan 4, 6703 BD Wageningen, The Netherlands
| | - Richard Stouthamer
- Department of Entomology, University of California, Riverside, CA 92521, USA
| |
Collapse
|
14
|
Martins CCC, Duarte OMP, Waldschmidt AM, de Oliveira Alves RM, Costa MA. New occurrence of B chromosomes in Partamonahelleri (Friese, 1900) (Hymenoptera, Meliponini). Genet Mol Biol 2009; 32:782-5. [PMID: 21637454 PMCID: PMC3036897 DOI: 10.1590/s1415-47572009005000065] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2008] [Accepted: 03/11/2009] [Indexed: 11/22/2022] Open
Abstract
Cytogenetic analyses of the stingless bee Partamona helleri collected in the state of Bahia, Northeast Brazil revealed the chromosome numbers n = 18 in the haploid males and 2n = 35 in the diploid females. All karyotypes displayed one large acrocentric B chromosome, which differs from the minute B chromosomes previously described in the populations from southeastern Brazil. Giemsa staining, C-banding and DAPI/CMA(3) fluorochrome staining also revealed a remarkable interpopulational divergence regarding both the regular karyotype and the B chromosomes. The B chromosomes found in the samples from Jequié, Bahia, were entirely heterochromatic, while those found in Cravolândia, Bahia, displayed a euchromatic portion at the telomeric end of the long arm. CMA (3) labeling sites varied from seven to eight between the two localities in Bahia, due to the presence of an extra GC-rich block in the karyotype of the samples from Jequié. This is the first report of a large B chromosome in P. helleri and reveals the occurrence of a geographic differentiation within this species.
Collapse
|
15
|
van Vugt JJFA, van der Hulst RGM, Pruijssers AJP, Verbaarschot P, Stouthamer R, de Jong H. Comparative AFLP reveals paternal sex ratio chromosome specific DNA sequences in the parasitoid wasp Trichogramma kaykai. Genome 2009; 52:447-55. [PMID: 19448725 DOI: 10.1139/g09-024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The parasitoid wasp Trichogramma kaykai with a haplo-diploid sex determination has a B chromosome called the paternal sex ratio (PSR) chromosome that confers paternal genome loss during early embryogenesis, resulting in male offspring. So far, it is not well known whether the PSR chromosome has unique DNA sequence characteristics. By comparative AFLP fingerprinting of genomic DNA from wasps with and without the PSR chromosome, we isolated DNA from PSR-specific bands. Fourteen of such DNA fragments were analysed to confirm their PSR specificity. Seven were sequenced and two (PT-AFLP 1 and PT-AFLP1 3) were identified as parts of retrotransposon genes based on BLAST searches. Internal primers designed from a third AFLP fragment allowed PCR amplification of a PSR chromosome specific marker, which can be used to screen for the PSR trait in male wasps. Southern analysis revealed a dispersed repetitive nature of this third sequence in the T. kaykai genome, suggesting that it is part of a transposon. A fourth AFLP fragment (PT-AFLP 5) appears to be a large repetitive sequence on the PSR chromosome. This sequence is also found in the genome of both T. kaykai and the closely related species Trichogramma deion, but its distribution on the PSR chromosome strongly resembles that of T. deion rather than that of T. kaykai. Our results provide further insight into the repetitive nature of sequences comprising B chromosomes and their similarities with their host and closely related species.
Collapse
Affiliation(s)
- Joke J F A van Vugt
- Laboratory of Entomology, Wageningen University, P.O. Box 8031, 6700 EH Wageningen, The Netherlands
| | | | | | | | | | | |
Collapse
|
16
|
McAllister BF, Beukeboom LW, Werren JH. Mapping of paternal-sex-ratio deletion chromosomes localizes multiple regions involved in expression and transmission. Heredity (Edinb) 2004; 92:5-13. [PMID: 14508498 DOI: 10.1038/sj.hdy.6800355] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The paternal-sex-ratio (PSR) chromosome in the parasitic wasp Nasonia vitripennis is a submetacentric supernumerary (B chromosome). Males transmit PSR, but after fertilization it causes the loss of the paternal autosomes. Paternal genome loss caused by PSR results in the conversion of a female (diploid) zygote into a male (haploid) under haplodiploid sex determination. In this study, site-specific markers were developed to assay deletion derivatives of PSR. Both polymerase chain reaction and Southern hybridization were used to detect the presence/absence of 16 single-site markers on a set of 20 functional and nine nonfunctional deletion chromosomes. Based on the pattern of marker loss on the deletion chromosomes, the basic organization of PSR was revealed. Two sets of markers were deleted independently, apparently representing the two arms of the submetacentric chromosome. The presence or absence of specific regions was examined in relation to phenotypic characteristics of the deletion chromosomes; ability to cause paternal genome loss, and stability in mitotic cell divisions. Rather than identifying a single region on PSR as being responsible for PSR function, the results suggest that the retention of one of two chromosomal regions is sufficient for causing paternal genome loss. Furthermore, a region was identified that is tightly correlated with mitotic stability, as measured from chromosomal transmission rates. Functional chromosomes with short-arm deletions had high (approximately 100%) transmission rates, whereas functional chromosomes with long-arm deletions had low (approximately 85%) transmission rates.
Collapse
Affiliation(s)
- B F McAllister
- Department of Biological Sciences, 138 Biology Building, University of Iowa, Iowa City, IA 52242, USA.
| | | | | |
Collapse
|
17
|
Bakkali M, Camacho JPM. The B chromosome polymorphism of the grasshopper Eyprepocnemis plorans in North Africa: III. Mutation rate of B chromosomes. Heredity (Edinb) 2004; 92:428-33. [PMID: 14997182 DOI: 10.1038/sj.hdy.6800437] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
B chromosome variation in nine Moroccan populations of the grasshopper Eyprepocnemis plorans was analysed for 3 consecutive years. In addition to B1, which was the predominant B chromosome in all nine populations, we found 15 other B variants, albeit at very low frequency. Eight variants were found in adults caught in the wild, four appeared in adults reared in the laboratory and seven were found in embryo progeny of controlled crosses between a 0B male and a B-carrying female. Some variants were found in more than one kind of material. At least the seven B variants that appeared in embryo progeny of females carrying a different B type arose de novo through mutation of the maternal B chromosome. The mutation rate of B chromosomes was 0.73%, on average, which explains the high variety of morphs and banding patterns found. The most frequent de novo mutations observed in these chromosomes were centromere misdivision with or without chromatid nondisjunction, which generates iso-B-chromosomes or telocentric Bs, respectively, as well as translocations with A and B chromosomes and deletions. But the whole variation observed, including that found in adult individuals, suggests that other mutations such as duplications, inversions and centric fusions do usually affect B chromosomes. Finally, B chromosome mutation rate was remarkably similar in both Moroccan and Spanish populations, which suggests that it might be dependent on B chromosome intrinsic factors.
Collapse
Affiliation(s)
- M Bakkali
- Departamento de Genética, Facultad de Ciencias, Universidad de Granada, Granada 18071, Spain
| | | |
Collapse
|
18
|
Ziegler CG, Lamatsch DK, Steinlein C, Engel W, Schartl M, Schmid M. The giant B chromosome of the cyprinid fish Alburnus alburnus harbours a retrotransposon-derived repetitive DNA sequence. Chromosome Res 2003; 11:23-35. [PMID: 12675303 DOI: 10.1023/a:1022053931308] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The cyprinid fish Alburnus alburnus possesses one of the largest supernumerary chromosomes in all vertebrates. In the present study, amplified fragment length polymorphism analyses (AFLP) and fluorescence in-situ hybridization (FISH) were performed in order to characterize these extraordinary chromosomes in detail. Sequence analysis of the B chromosome-specific DNA revealed a strong homology to a Drosophila Gypsy/Ty3 retrotransposon and also to a medaka (Oryzias latipes) one. The sequence is highly abundant on the B chromosome but undetectable in the normal A chromosome complement. It is also absent from the B chromosome of the closely related species, Rutilus rutilus, suggesting a specific spreading of the mobile element during evolution of the giant supernumerary chromosome within A. alburnus. Meitotic chromosomes were in-situ hybridized with the B chromosome-specific probe, documenting that the additional chromosome behaves as an autopaired ring chromosome in diakineses. Our results suggest that the supernumerary chromosome of A. alburnus is not derived from the normal chromosome complement but has evolved independently.
Collapse
Affiliation(s)
- C G Ziegler
- Department of Human Genetics, Biocenter, University of Wuerzburg, Wuerzburg, Germany
| | | | | | | | | | | |
Collapse
|
19
|
Mestriner CA, Galetti PM, Valentini SR, Ruiz IR, Abel LD, Moreira-Filho O, Camacho JP. Structural and functional evidence that a B chromosome in the characid fish Astyanax scabripinnis is an isochromosome. Heredity (Edinb) 2000; 85 ( Pt 1):1-9. [PMID: 10971685 DOI: 10.1046/j.1365-2540.2000.00702.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Astyanax scabripinnis possesses a widespread polymorphism for metacentric B chromosomes as large as the largest chromosome pair in the A complement. On the basis of C-banding pattern, it was hypothesized that these B chromosomes are isochromosomes that have arisen by means of centromere misdivision and chromatid nondisjunction. In the present paper we test this hypothesis by analysing (i) the localization of a repetitive DNA sequence on both B chromosome arms, and (ii) synaptonemal complex formation, in order to test the functional homology of both arms. Genomic DNA digested with KpnI and analysed by gel electrophoresis showed fragments in a ladder-like pattern typical of tandemly repetitive DNA. These fragments were cloned and their tandem organization in the genome was confirmed. A 51-bp long consensus sequence, which was AT-rich (59%) and contained a variable region and two imperfect reverse sequences, was obtained. Fluorescence in situ hybridization (FISH) localized this repetitive DNA into noncentromeric constitutive heterochromatin which encompasses the terminal region of some acrocentric chromosomes, the NOR region, and interstitial polymorphic heterochromatin in chromosome 24. Most remarkably, tandem repeats were almost symmetrically placed in the two arms of the B chromosome, with the exception of two additional small clusters proximally located on the slightly longer arm. Synaptonemal complex (SC) analysis showed 26 completely paired SCs in males with 1B. The ring configuration of the B univalent persisting until metaphase I suggests that the two arms formed chiasmata. All these data provided strong support for the hypothesis that the B chromosome is an isochromosome.
Collapse
Affiliation(s)
- C A Mestriner
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, via Washington Luiz, Km 235 Caixa Postal 676, 13565-905 São Carlos, SP, Brazil
| | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
B chromosomes are extra chromosomes to the standard complement that occur in many organisms. They can originate in a number of ways including derivation from autosomes and sex chromosomes in intra- and interspecies crosses. Their subsequent molecular evolution resembles that of univalent sex chromosomes, which involves gene silencing, heterochromatinization and the accumulation of repetitive DNA and transposons. B-chromosome frequencies in populations result from a balance between their transmission rates and their effects on host fitness. Their long-term evolution is considered to be the outcome of selection on the host genome to eliminate B chromosomes or suppress their effects and on the B chromosome's ability to escape through the generation of new variants. Because B chromosomes interact with the standard chromosomes, they can play an important role in genome evolution and may be useful for studying molecular evolutionary processes.
Collapse
Affiliation(s)
- J P Camacho
- Departamento de Genética, Universidad de Granada, Spain.
| | | | | |
Collapse
|
21
|
Abstract
Here we examine the potential for interspecific movement of a supernumerary or B chromosome and its subsequent stability. B chromosomes differ from autosomes in that they are nonvital, nonpairing chromosomes which vary in number between conspecific individuals. According to one generally accepted hypothesis, B chromosomes originate from the autosomes of their host. However, previous comparisons of B chromosome and host autosome sequences have suggested an additional evolutionary route: that B chromosomes originating in one species may be subsequently transferred into another species via interspecific hybridization. To examine B chromosome movement, hybrid crosses were utilized to introduce the paternal sex ratio chromosome (PSR) of Nasonia vitripennis into N. giraulti and N. longicornis. The results demonstrate that these transfers occur at high rates and that the meiotic drive system of PSR continues to function in both species, resulting in the maintenance of PSR at high frequencies. The relevance of these results to origin hypotheses of PSR is discussed here, as are the potential ecological effects of naturally occurring PSR movement and the potential applied uses of the mechanisms of PSR.
Collapse
Affiliation(s)
- S L Dobson
- Department of Environmental Science, Policy and Management, University of California, Berkeley 94720, USA.
| | | |
Collapse
|