1
|
Lin CC, Chen YH, Guan TC, Chang SW, Pai H, Chou SJ, Tsai HP. Expression of foreign proteins by antimicrobial peptide gene promoters in mosquitoes. JOURNAL OF MEDICAL SCIENCES 2019. [DOI: 10.4103/jmedsci.jmedsci_194_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
2
|
Chaverra-Rodriguez D, Macias VM, Hughes GL, Pujhari S, Suzuki Y, Peterson DR, Kim D, McKeand S, Rasgon JL. Targeted delivery of CRISPR-Cas9 ribonucleoprotein into arthropod ovaries for heritable germline gene editing. Nat Commun 2018; 9:3008. [PMID: 30068905 PMCID: PMC6070532 DOI: 10.1038/s41467-018-05425-9] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 07/06/2018] [Indexed: 11/09/2022] Open
Abstract
Cas9-mediated gene editing is a powerful tool for addressing research questions in arthropods. Current approaches rely upon delivering Cas9 ribonucleoprotein (RNP) complex by embryonic microinjection, which is challenging, is limited to a small number of species, and is inefficient even in optimized taxa. Here we develop a technology termed Receptor-Mediated Ovary Transduction of Cargo (ReMOT Control) to deliver Cas9 RNP to the arthropod germline by injection into adult female mosquitoes. We identify a peptide (P2C) that mediates transduction of Cas9 RNP from the female hemolymph to the developing mosquito oocytes, resulting in heritable gene editing of the offspring with efficiency as high as 0.3 mutants per injected mosquito. We demonstrate that P2C functions in six mosquito species. Identification of taxa-specific ovary-specific ligand-receptor pairs may further extend the use of ReMOT Control for gene editing in novel species.
Collapse
Affiliation(s)
- Duverney Chaverra-Rodriguez
- Department of Entomology, The Huck Institutes of the Life Sciences, and the Center for infectious Disease Dynamics, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Vanessa M Macias
- Department of Entomology, The Huck Institutes of the Life Sciences, and the Center for infectious Disease Dynamics, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Grant L Hughes
- Department of Entomology, The Huck Institutes of the Life Sciences, and the Center for infectious Disease Dynamics, The Pennsylvania State University, University Park, PA, 16802, USA.,Department of Pathology, Institute for Human Infections and Immunity, Center for Tropical Diseases, Center for Biodefense and Emerging Infectious Disease, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Sujit Pujhari
- Department of Entomology, The Huck Institutes of the Life Sciences, and the Center for infectious Disease Dynamics, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Yasutsugu Suzuki
- Department of Entomology, The Huck Institutes of the Life Sciences, and the Center for infectious Disease Dynamics, The Pennsylvania State University, University Park, PA, 16802, USA.,Institut Pasteur, Viruses and RNA Interference Unit, CNRS Unité Mixte de Recherche, 3569, Paris, France
| | - David R Peterson
- Department of Entomology, The Huck Institutes of the Life Sciences, and the Center for infectious Disease Dynamics, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Donghun Kim
- Department of Entomology, The Huck Institutes of the Life Sciences, and the Center for infectious Disease Dynamics, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Sage McKeand
- Department of Entomology, The Huck Institutes of the Life Sciences, and the Center for infectious Disease Dynamics, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Jason L Rasgon
- Department of Entomology, The Huck Institutes of the Life Sciences, and the Center for infectious Disease Dynamics, The Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
3
|
Criscione F, O'Brochta DA, Reid W. Genetic technologies for disease vectors. CURRENT OPINION IN INSECT SCIENCE 2015; 10:90-97. [PMID: 29588019 DOI: 10.1016/j.cois.2015.04.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 04/17/2015] [Accepted: 04/20/2015] [Indexed: 06/08/2023]
Abstract
The first genetic technologies for insect vectors of disease were introduced 20 years ago. As of today there are 12 classes of genetic technologies used as functional genomic tools for insect vectors of important diseases. Although the applications of genetic technologies in insect disease vectors have been conducted primarily in mosquitoes, other insect systems could benefit from current technologies. While the various technological platforms are likely to function in diverse arthropods, the delivery of these technologies to cells and tissues of interest is the major technical constraint that limits their widespread adoption. Increased community resources of various types would enhance the adoption of these technologies and potentially eliminate technical limitations.
Collapse
Affiliation(s)
- Frank Criscione
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, 9600 Gudelsky Drive, Rockville, MD 20850, United States.
| | - David A O'Brochta
- Institute for Bioscience and Biotechnology Research, Department of Entomology, University of Maryland, College Park, 9600 Gudelsky Drive, Rockville, MD 20850, United States.
| | - William Reid
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, 9600 Gudelsky Drive, Rockville, MD 20850, United States.
| |
Collapse
|
4
|
Merkling SH, Bronkhorst AW, Kramer JM, Overheul GJ, Schenck A, Van Rij RP. The epigenetic regulator G9a mediates tolerance to RNA virus infection in Drosophila. PLoS Pathog 2015; 11:e1004692. [PMID: 25880195 PMCID: PMC4399909 DOI: 10.1371/journal.ppat.1004692] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 01/21/2015] [Indexed: 01/01/2023] Open
Abstract
Little is known about the tolerance mechanisms that reduce the negative effects of microbial infection on host fitness. Here, we demonstrate that the histone H3 lysine 9 methyltransferase G9a regulates tolerance to virus infection by shaping the response of the evolutionary conserved Jak-Stat pathway in Drosophila. G9a-deficient mutants are more sensitive to RNA virus infection and succumb faster to infection than wild-type controls, which was associated with strongly increased Jak-Stat dependent responses, but not with major differences in viral load. Genetic experiments indicate that hyperactivated Jak-Stat responses are associated with early lethality in virus-infected flies. Our results identify an essential epigenetic mechanism underlying tolerance to virus infection. Multicellular organisms deploy various strategies to fight microbial infections. Invading pathogens may be eradicated directly by antimicrobial effectors of the immune system. Another strategy consists of increasing the tolerance of the host to infection, for example, by limiting the adverse effects of the immune response. The molecular mechanisms underlying this novel concept remain largely uncharacterized. Here, we demonstrate that the epigenetic regulator G9a mediates tolerance to virus infection in Drosophila. We found that G9a-deficient flies succumb faster than control flies to infection with RNA viruses, but that the viral burden did not significantly differ. Unexpectedly, mutant flies express higher levels of genes that are regulated by the Jak-Stat signaling pathway, which in other studies was found to be important for antiviral defense. Exploiting the genetic toolbox in Drosophila, we demonstrate that Jak-Stat hyperactivation induces early mortality after virus infection. Precise control of immune pathways is essential to ensure efficient immunity, while preventing damage due to excessive immune responses. Our results indicate that G9a, an epigenetic modifier, dampens Jak-Stat responses to prevent immunopathology. Therefore, we propose epigenetic regulation of immunity as a new paradigm for disease tolerance.
Collapse
Affiliation(s)
- Sarah H. Merkling
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Alfred W. Bronkhorst
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jamie M. Kramer
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Gijs J. Overheul
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Annette Schenck
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ronald P. Van Rij
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
- * E-mail:
| |
Collapse
|
5
|
Zhang G, He LS, Wong YH, Yu L, Qian PY. siRNA transfection in the barnacle Amphibalanus amphitrite larvae. J Exp Biol 2015; 218:2505-9. [DOI: 10.1242/jeb.120113] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 06/15/2015] [Indexed: 01/20/2023]
Abstract
RNA interference (RNAi) provides an efficient and specific technique for functional genomic studies. Yet, no successful application of RNAi has been reported in barnacles. In this study, siRNA against p38 MAPK was synthesized and then transfected into A. amphitrite larvae at either nauplius or cyprid stage, or both. Effects of siRNA transfection on p38 MAPK level were hardly detectable in the cyprids that their corresponding nauplii were transfected. In contrast, larvae that were transfected at cyprid stage showed lower level of p38 MAPK than the blank and reagent controls. However, significantly decreased level of phosphorylated p38 MAPK (pp38 MAPK) and reduced settlement rate were observed only in the “Double Transfection”, in which larvae were exposed to siRNA solution at both the nauplius and cyprid stages. Relatively longer transfection time and more cells of the larvae exposed to siRNA directly might explain the higher efficiency in the “Double Transfection”.
Collapse
Affiliation(s)
- Gen Zhang
- Environmental Science Programs, School of Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
- KAUST Global Collaborative Research Program, Division of Life Science, School of Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Li-sheng He
- KAUST Global Collaborative Research Program, Division of Life Science, School of Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
- Sanya Institute of Deep-sea Science and Engineering, Chinese Academy of Science, No. 62, Fenghuang Road, Sanya City, Hainan Province, China, 572000
| | - Yue Him Wong
- KAUST Global Collaborative Research Program, Division of Life Science, School of Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Li Yu
- Environmental Science Programs, School of Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
- KAUST Global Collaborative Research Program, Division of Life Science, School of Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Pei-yuan Qian
- Environmental Science Programs, School of Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
- KAUST Global Collaborative Research Program, Division of Life Science, School of Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| |
Collapse
|
6
|
Zhao B, Kokoza VA, Saha TT, Wang S, Roy S, Raikhel AS. Regulation of the gut-specific carboxypeptidase: a study using the binary Gal4/UAS system in the mosquito Aedes aegypti. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2014; 54:1-10. [PMID: 25152428 PMCID: PMC4426967 DOI: 10.1016/j.ibmb.2014.08.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 07/31/2014] [Accepted: 08/03/2014] [Indexed: 05/26/2023]
Abstract
Pathogen transmission by mosquitoes is tightly linked to blood feeding which, in turn, is required for egg development. Studies of these processes would greatly benefit from genetic methods, such as the binary Gal4/UAS system. The latter has been well established for model organisms, but its availability is limited for mosquitoes. The objective of this study was to develop the blood-meal-activated, gut-specific Gal4/UAS system for the yellow-fever mosquito Aedes aegypti and utilize it to investigate the regulation of gut-specific gene expression. A 1.1-kb, 5(') upstream region of the carboxypeptidase A (CP) gene was used to genetically engineer the CP-Gal4 driver mosquito line. The CP-Gal4 specifically activated the Enhanced Green Fluorescent Protein (EGFP) reporter only after blood feeding in the gut of the CP-Gal4 > UAS-EGFP female Ae. aegypti. We used this system to study the regulation of CP gene expression. In vitro treatments with either amino acids (AAs) or insulin stimulated expression of the CP-Gal4 > UAS-EGFP transgene; no effect was observed with 20-hydroxyecdysone (20E) treatments. The transgene activation by AAs and insulin was blocked by rapamycin, the inhibitor of the Target-of-Rapamycin (TOR) kinase. RNA interference (RNAi) silence of the insulin receptor (IR) reduced the expression of the CP-Gal4 > UAS-EGFP transgene. Thus, in vitro and in vivo experiments have revealed that insulin and TOR pathways control expression of the digestive enzyme CP. In contrast, 20E, the major regulator of post-blood-meal vitellogenic events in female mosquitoes, has no role in regulating the expression of this gene. This novel CP-Gal4/UAS system permits functional testing of midgut-specific genes that are involved in blood digestion and interaction with pathogens in Ae. aegypti mosquitoes.
Collapse
Affiliation(s)
- Bo Zhao
- Department of Entomology, University of California Riverside, Riverside, CA 92521, USA; Graduate Program in Genetics, Genomics and Bioinformatics, University of California Riverside, Riverside, CA 92521, USA.
| | - Vladimir A Kokoza
- Department of Entomology, University of California Riverside, Riverside, CA 92521, USA; The Institute for Integrative Genome Biology, University of California Riverside, Riverside, CA 92521, USA.
| | - Tusar T Saha
- Department of Entomology, University of California Riverside, Riverside, CA 92521, USA; The Institute for Integrative Genome Biology, University of California Riverside, Riverside, CA 92521, USA.
| | - Stephanie Wang
- Honors Undergraduate Program, University of California Riverside, Riverside, CA 92521, USA.
| | - Sourav Roy
- Department of Entomology, University of California Riverside, Riverside, CA 92521, USA; The Institute for Integrative Genome Biology, University of California Riverside, Riverside, CA 92521, USA.
| | - Alexander S Raikhel
- Department of Entomology, University of California Riverside, Riverside, CA 92521, USA; The Institute for Integrative Genome Biology, University of California Riverside, Riverside, CA 92521, USA.
| |
Collapse
|
7
|
Establishment of Efficient Microinjection System in the Porcine Embryos. JOURNAL OF ANIMAL REPRODUCTION AND BIOTECHNOLOGY 2014. [DOI: 10.12750/jet.2014.29.1.59] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
8
|
Akbari OS, Papathanos PA, Sandler JE, Kennedy K, Hay BA. Identification of germline transcriptional regulatory elements in Aedes aegypti. Sci Rep 2014; 4:3954. [PMID: 24492376 PMCID: PMC3912481 DOI: 10.1038/srep03954] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 01/16/2014] [Indexed: 12/18/2022] Open
Abstract
The mosquito Aedes aegypti is the principal vector for the yellow fever and dengue viruses, and is also responsible for recent outbreaks of the alphavirus chikungunya. Vector control strategies utilizing engineered gene drive systems are being developed as a means of replacing wild, pathogen transmitting mosquitoes with individuals refractory to disease transmission, or bringing about population suppression. Several of these systems, including Medea, UD(MEL), and site-specific nucleases, which can be used to drive genes into populations or bring about population suppression, utilize transcriptional regulatory elements that drive germline-specific expression. Here we report the identification of multiple regulatory elements able to drive gene expression specifically in the female germline, or in the male and female germline, in the mosquito Aedes aegypti. These elements can also be used as tools with which to probe the roles of specific genes in germline function and in the early embryo, through overexpression or RNA interference.
Collapse
Affiliation(s)
- Omar S Akbari
- 1] Division of Biology, MC 156-29, California Institute of Technology, Pasadena, CA 91125, USA [2]
| | - Philippos A Papathanos
- 1] Division of Biology, MC 156-29, California Institute of Technology, Pasadena, CA 91125, USA [2]
| | - Jeremy E Sandler
- Division of Biology, MC 156-29, California Institute of Technology, Pasadena, CA 91125, USA
| | - Katie Kennedy
- Division of Biology, MC 156-29, California Institute of Technology, Pasadena, CA 91125, USA
| | - Bruce A Hay
- Division of Biology, MC 156-29, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
9
|
Puthiyakunnon S, Yao Y, Li Y, Gu J, Peng H, Chen X. Functional characterization of three MicroRNAs of the Asian tiger mosquito, Aedes albopictus. Parasit Vectors 2013; 6:230. [PMID: 23924583 PMCID: PMC3750763 DOI: 10.1186/1756-3305-6-230] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 08/05/2013] [Indexed: 12/21/2022] Open
Abstract
Background Temporal and stage specific expression of microRNAs (miRNAs) in embryos, larvae, pupae and adults of Aedes albopictus showed differential expression levels across the four developmental stages, indicating their potential regulatory roles in mosquito development. The functional characterization of these miRNAs was not known. Accordingly our study evaluated the functional characterization of three miRNAs, which are temporally up-regulated in the various developmental stages of Ae. albopictus mosquitoes. Methods miRNA mimics, inhibitors and negative controls were designed and their knock-in and knock-down efficiency were analyzed by qRT-PCR after transfecting the mosquito cell lines C6/36, and also by injecting in their specific developmental stages. The functional role of each individual miRNA was analyzed with various parameters of development such as, hatching rate and hatching time in embryos, eclosion rate in larvae, longevity and fecundity in the adult mosquitoes. Results The knock-in with the specifically designed miRNA mimics showed increased levels of expression of miRNA compared with their normal controls. We confirmed these findings using qRT-PCR, both by in vitro expression in C6/36 mosquito cell lines after transfection as well as in in vivo expression in developmental stages of mosquitoes by microinjection. The knock-down of expression with the corresponding inhibitors showed a considerable decrease in the expression levels of these miRNAs and obvious functional effects in Ae. albopictus development, detected by a decrease in the hatching rate of embryos and eclosion rate in larvae and a marked reduction in longevity and fecundity in adults. Conclusion This study carried out by knock-in and knock-down of specifically and temporally expressed miRNAs in Ae. albopictus by microinjection is a novel study to delineate the importance of the miRNA expression in regulating mosquito development. The knock-down and loss of function of endogenously expressed miRNAs by the miRNA inhibitors in specific developmental stages had considerable effects on development, but enhancement of their gain of function was not observed on knock-in of these specific miRNAs. Hence, our study indicates that an optimal level of endogenous expression of miRNA is indispensable for the normal development and maintenance of the vectorial population density and pathogen transmissibility of this mosquito vector.
Collapse
Affiliation(s)
- Santhosh Puthiyakunnon
- Key Laboratory of Prevention and Control for Emerging Infectious Diseases of Guangdong Higher Institutes, Department of Pathogen Biology, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou North Avenue No.1838, Guangzhou, China
| | | | | | | | | | | |
Collapse
|
10
|
Miller SC, Miyata K, Brown SJ, Tomoyasu Y. Dissecting systemic RNA interference in the red flour beetle Tribolium castaneum: parameters affecting the efficiency of RNAi. PLoS One 2012; 7:e47431. [PMID: 23133513 PMCID: PMC3484993 DOI: 10.1371/journal.pone.0047431] [Citation(s) in RCA: 146] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Accepted: 09/17/2012] [Indexed: 11/29/2022] Open
Abstract
The phenomenon of RNAi, in which the introduction of dsRNA into a cell triggers the destruction of the corresponding mRNA resulting in a gene silencing effect, is conserved across a wide array of plant and animal phyla. However, the mechanism by which the dsRNA enters a cell, allowing the RNAi effect to occur throughout a multicellular organism (systemic RNAi), has only been studied extensively in certain plants and the nematode Caenorhabditis elegans. In recent years, RNAi has become a popular reverse genetic technique for gene silencing in many organisms. Although many RNAi techniques in non-traditional model organisms rely on the systemic nature of RNAi, little has been done to analyze the parameters required to obtain a robust systemic RNAi response. The data provided here show that the concentration and length of dsRNA have profound effects on the efficacy of the RNAi response both in regard to initial efficiency and duration of the effect in Tribolium castaneum. In addition, our analyses using a series of short dsRNAs and chimeric dsRNA provide evidence that dsRNA cellular uptake (and not the RNAi response itself) is the major step affected by dsRNA size in Tribolium. We also demonstrate that competitive inhibition of dsRNA can occur when multiple dsRNAs are injected together, influencing the effectiveness of RNAi. These data provide specific information essential to the design and implementation of RNAi based studies, and may provide insight into the molecular basis of the systemic RNAi response in insects.
Collapse
Affiliation(s)
- Sherry C. Miller
- Division of Biology, Kansas State University, Manhattan, Kansas, United States of America
- K-State Arthropod Genomics Center, Kansas State University, Manhattan, Kansas, United States of America
| | - Keita Miyata
- Department of Zoology, Miami University, Oxford, Ohio, United States of America
| | - Susan J. Brown
- Division of Biology, Kansas State University, Manhattan, Kansas, United States of America
- K-State Arthropod Genomics Center, Kansas State University, Manhattan, Kansas, United States of America
| | - Yoshinori Tomoyasu
- Department of Zoology, Miami University, Oxford, Ohio, United States of America
- * E-mail:
| |
Collapse
|
11
|
Peng R, Fu Q, Hong H, Schwaegler T, Lan Q. THAP and ATF-2 regulated sterol carrier protein-2 promoter activities in the larval midgut of the yellow fever mosquito, Aedes aegypti. PLoS One 2012; 7:e46948. [PMID: 23056538 PMCID: PMC3464256 DOI: 10.1371/journal.pone.0046948] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 09/10/2012] [Indexed: 11/29/2022] Open
Abstract
Expression of sterol carrier protein-2 (SCP-2) in Aedes aegypti shows a distinct temporal/spatial pattern throughout the life cycle. In order to identify the transcription factors responsible for the larval temporal/spatial regulation of AeSCP-2 transcription, AeSCP-2 promoter activities were studied in vivo via transient transfection of promoter/reporter gene assays. Regulatory sequences upstream −1.3 kb of the transcription start site of AeSCP-2 were found to be critical for the in vivo temporal/spatial promoter activity. Interestingly, the −1.6 kb promoter sequence efficiently drove the larval midgut-specific siRNA expression, indicating that the −1.6 kb upstream sequence is sufficient for temporal/spatial AeSCP-2 transcriptional activity. Four transcription factors were identified in the midgut nuclear extract from feeding larvae via labeled −1.6/−1.3 kb DNA probe pull-down and proteomic analysis. Co-transfection of the promoter/reporter gene with inducible siRNA expression of each transcription factor was performed to confirm the regulatory function of individual transcription factor on AeSCP-2 transcriptional activities in the larval midgut. The results indicate that two of the identified transcription factors, Thanatos-associated protein (THAP) and activating transcription factor-2 (ATF-2), antagonistically control AeSCP-2 transcriptional activity in the midgut of feeding larvae via the regulatory sequences between −1.6 to −1.3 kb 5′ upstream of the transcription start site. In vivo expression knockdown of THAP and ATF-2 resulted in significant changes in developmental progression, which may be partially due to their effects on AeSCP-2 expression.
Collapse
Affiliation(s)
- Rong Peng
- College of Life Sciences, Central China Normal University, Wuhan, Hubei, China
- * E-mail: (RP); (QL)
| | - Qiang Fu
- Department of Entomology, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Huazhu Hong
- College of Life Sciences, Central China Normal University, Wuhan, Hubei, China
| | - Tyler Schwaegler
- Department of Entomology, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Que Lan
- Department of Entomology, University of Wisconsin, Madison, Wisconsin, United States of America
- * E-mail: (RP); (QL)
| |
Collapse
|
12
|
Alterations in the Aedes aegypti transcriptome during infection with West Nile, dengue and yellow fever viruses. PLoS Pathog 2011; 7:e1002189. [PMID: 21909258 PMCID: PMC3164632 DOI: 10.1371/journal.ppat.1002189] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Accepted: 06/20/2011] [Indexed: 11/19/2022] Open
Abstract
West Nile (WNV), dengue (DENV) and yellow fever (YFV) viruses are (re)emerging, mosquito-borne flaviviruses that cause human disease and mortality worldwide. Alterations in mosquito gene expression common and unique to individual flaviviral infections are poorly understood. Here, we present a microarray analysis of the Aedes aegypti transcriptome over time during infection with DENV, WNV or YFV. We identified 203 mosquito genes that were ≥5-fold differentially up-regulated (DUR) and 202 genes that were ≥10-fold differentially down-regulated (DDR) during infection with one of the three flaviviruses. Comparative analysis revealed that the expression profile of 20 DUR genes and 15 DDR genes was quite similar between the three flaviviruses on D1 of infection, indicating a potentially conserved transcriptomic signature of flaviviral infection. Bioinformatics analysis revealed changes in expression of genes from diverse cellular processes, including ion binding, transport, metabolic processes and peptidase activity. We also demonstrate that virally-regulated gene expression is tissue-specific. The overexpression of several virally down-regulated genes decreased WNV infection in mosquito cells and Aedes aegypti mosquitoes. Among these, a pupal cuticle protein was shown to bind WNV envelope protein, leading to inhibition of infection in vitro and the prevention of lethal WNV encephalitis in mice. This work provides an extensive list of targets for controlling flaviviral infection in mosquitoes that may also be used to develop broad preventative and therapeutic measures for multiple flaviviruses. Dengue (DENV), West Nile (WNV) and Yellow Fever (YFV) viruses are responsible for severe human disease and mortality worldwide. There is no vaccine available for dengue or West Nile virus and no specific antiviral is available for any of these viral infections. These viruses are transmitted to humans through the bite of a mosquito vector. Understanding the effects of viral infection on gene expression in the mosquito is crucial to the development of effective antiviral treatments for mosquitoes and may enable researchers to interrupt the human-insect infection cycle. Here we investigate the alterations in gene expression across the entire Aedes aegypti genome during infection with DENV, YFV and WNV over time. We describe several genes that share a similar expression profile during infection with all three viruses. We also use a WNV mosquito cell, mosquito and mouse model to show that virally downregulated genes are inhibitory to infection when overexpressed and that viral regulation of mosquito genes is tissue-specific. Our results provide an extensive amount of data highlighting viral gene targets in the mosquito during infection. This data may also be used to develop broad-spectrum anti-flaviviral treatments in mosquitoes.
Collapse
|
13
|
Cheng G, Liu L, Wang P, Zhang Y, Zhao YO, Colpitts TM, Feitosa F, Anderson JF, Fikrig E. An in vivo transfection approach elucidates a role for Aedes aegypti thioester-containing proteins in flaviviral infection. PLoS One 2011; 6:e22786. [PMID: 21818390 PMCID: PMC3144946 DOI: 10.1371/journal.pone.0022786] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Accepted: 07/04/2011] [Indexed: 02/07/2023] Open
Abstract
Mosquitoes transmit pathogens that cause infectious diseases of global importance. Techniques to easily introduce genes into mosquitoes, however, limit investigations of the interaction between microbes and their arthropod vectors. We now show that a cationic liposome significantly enhances delivery and expression of plasmid DNA in Aedes aegypti and Anopheles gambiae mosquitoes. We then introduced the genes for Ae. aegypti thioester-containing proteins (AeTEPs), which are involved in the control of flaviviral infection, into mosquitoes using this technique. In vivo transfection of AeTEP-1 into Ae. aegypti significantly reduced dengue virus infection, suggesting that the approach can further our understanding of pathogen-mosquito interactions.
Collapse
Affiliation(s)
- Gong Cheng
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Lei Liu
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Penghua Wang
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Yue Zhang
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Yang O. Zhao
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Tonya M. Colpitts
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Fabiana Feitosa
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - John F. Anderson
- Department of Entomology, Connecticut Agricultural Experiment Station, New Haven, Connecticut, United States of America
| | - Erol Fikrig
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
- * E-mail:
| |
Collapse
|
14
|
Gu J, Liu M, Deng Y, Peng H, Chen X. Development of an efficient recombinant mosquito densovirus-mediated RNA interference system and its preliminary application in mosquito control. PLoS One 2011; 6:e21329. [PMID: 21698129 PMCID: PMC3116905 DOI: 10.1371/journal.pone.0021329] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Accepted: 05/26/2011] [Indexed: 11/18/2022] Open
Abstract
The Aedes aegypti densovirus (AeDNV) has potential as a delivery vector for foreign nucleic acids into mosquito cells. In this study, we investigated the ability of plasmids containing recombinant viral transducing genome to induce RNA interference (RNAi) effects in C6/C36 cells. We then evaluated the efficiency of a recombinant AeDNV vector to induce RNAi in Aedes albopictus larvae. We found that the expression of V-ATPase was inhibited by up to 90% at 96 h post-transfection in transfected C6/C36 cells. In addition, the bioinsecticidal activities of various RNAi-expressing AeDNV vectors used to infect Ae. albopictus larvae were also tested. We found that when Ae. albopictus larvae were infected with recombinant AeDNV, expression of V-ATPase was downregulated by nearly 70% compared to controls. Furthermore, the median survival time bioassays demonstrated that recombinant AeDNV caused more serious pathogenic effects than the wild type virus. This is the first report showing that recombinant virus plasmid and corresponding recombinant AeDNV can be used as an effective in vitro and in vivo RNAi delivery system, respectively.
Collapse
Affiliation(s)
- Jinbao Gu
- Key Laboratory of Prevention and Control of Emerging Infectious Diseases of Guangdong Higher Education Institutes, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Min Liu
- Key Laboratory of Prevention and Control of Emerging Infectious Diseases of Guangdong Higher Education Institutes, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Yuhua Deng
- Key Laboratory of Prevention and Control of Emerging Infectious Diseases of Guangdong Higher Education Institutes, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Hongjuan Peng
- Key Laboratory of Prevention and Control of Emerging Infectious Diseases of Guangdong Higher Education Institutes, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiaoguang Chen
- Key Laboratory of Prevention and Control of Emerging Infectious Diseases of Guangdong Higher Education Institutes, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, Guangdong, China
- * E-mail:
| |
Collapse
|
15
|
Peng R, Maklokova VI, Chandrashekhar JH, Lan Q. In vivo functional genomic studies of sterol carrier protein-2 gene in the yellow fever mosquito. PLoS One 2011; 6:e18030. [PMID: 21437205 PMCID: PMC3060925 DOI: 10.1371/journal.pone.0018030] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Accepted: 02/18/2011] [Indexed: 11/19/2022] Open
Abstract
A simple and efficient DNA delivery method to introduce extrachromosomal DNA into mosquito embryos would significantly aid functional genomic studies. The conventional method for delivery of DNA into insects is to inject the DNA directly into the embryos. Taking advantage of the unique aspects of mosquito reproductive physiology during vitellogenesis and an in vivo transfection reagent that mediates DNA uptake in cells via endocytosis, we have developed a new method to introduce DNA into mosquito embryos vertically via microinjection of DNA vectors in vitellogenic females without directly manipulating the embryos. Our method was able to introduce inducible gene expression vectors transiently into F0 mosquitoes to perform functional studies in vivo without transgenic lines. The high efficiency of expression knockdown was reproducible with more than 70% of the F0 individuals showed sufficient gene expression suppression (<30% of the controls' levels). At the cohort level, AeSCP-2 expression knockdown in early instar larvae resulted in detectable phenotypes of the expression deficiency such as high mortality, lowered fertility, and distorted sex ratio after induction of AeSCP-2 siRNA expression in vivo. The results further confirmed the important role of AeSCP-2 in the development and reproduction of A. aegypti. In this study, we proved that extrachromosomal transient expression of an inducible gene from a DNA vector vertically delivered via vitellogenic females can be used to manipulate gene expression in F0 generation. This new method will be a simple and efficient tool for in vivo functional genomic studies in mosquitoes.
Collapse
Affiliation(s)
- Rong Peng
- College of Life Sciences, Central China Normal University, Wuhan, Hubei, China
- Department of Entomology, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Vilena I. Maklokova
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin, Madison, Wisconsin, United States of America
| | | | - Que Lan
- Department of Entomology, University of Wisconsin, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
16
|
GROSS TIFFANYL, MYLES KEVINM, ADELMAN ZACHN. Identification and characterization of heat shock 70 genes in Aedes aegypti (Diptera: Culicidae). JOURNAL OF MEDICAL ENTOMOLOGY 2009; 46:496-504. [PMID: 19496419 PMCID: PMC2702248 DOI: 10.1603/033.046.0313] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Heat shock genes are highly evolutionarily conserved and are expressed to varying degrees in all organisms in response to stress. Heat shock 70 (hsp70) genes have been well characterized in a number of organisms, most notably Drosophila melanogaster, but not as yet for any of the major arthropod-borne viral mosquito vectors. To identify hsp70 genes in the yellow fever mosquito, Aedes aegypti (Diptera: Culicidae), basic local alignment searches of the Ae. aegypti genome were performed using D. melanogaster Hsp70 protein sequences as query. Two clusters of six previously unannotated AaHsp70 genes were identified and found to be organized into three pairs of nearly identical open reading frames, which mapped to two genomic scaffolds. Consistent with a designation as heat shock genes, no detectable level of expression of AaHsp70 genes was observed under normal rearing conditions (28 degrees C), with robust expression observed with a heat shock of 37-39 degrees C. Northern analysis showed heat-inducible expression of putative AaHsp70 genes at all life stages and in all tissues tested in a time- and temperature-dependent manner. Monitoring of AaHsp70 gene expression levels in field-caught Ae. aegypti may serve as a general marker for stress. In addition, promoter sequences from AaHsp70 genes may be used to control the expression of transgenes in an inducible manner.
Collapse
|
17
|
Awolola TS, Oduola OA, Strode C, Koekemoer LL, Brooke B, Ranson H. Evidence of multiple pyrethroid resistance mechanisms in the malaria vector Anopheles gambiae sensu stricto from Nigeria. Trans R Soc Trop Med Hyg 2008; 103:1139-45. [PMID: 18829056 DOI: 10.1016/j.trstmh.2008.08.021] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2008] [Revised: 08/15/2008] [Accepted: 08/15/2008] [Indexed: 10/21/2022] Open
Abstract
Pyrethroid insecticide resistance in Anopheles gambiae sensu stricto is a major concern to malaria vector control programmes. Resistance is mainly due to target-site insensitivity arising from a single point mutation, often referred to as knockdown resistance (kdr). Metabolic-based resistance mechanisms have also been implicated in pyrethroid resistance in East Africa and are currently being investigated in West Africa. Here we report the co-occurrence of both resistance mechanisms in a population of An. gambiae s.s. from Nigeria. Bioassay, synergist and biochemical analysis carried out on resistant and susceptible strains of An. gambiae s.s. from the same geographical area revealed >50% of the West African kdr mutation in the resistant mosquitoes but <3% in the susceptible mosquitoes. Resistant mosquitoes synergized using pyperonyl butoxide before permethrin exposure showed a significant increase in mortality compared with the non-synergized. Biochemical assays showed an increased level of monooxygenase but not glutathione-S-transferase or esterase activities in the resistant mosquitoes. Microarray analysis using the An. gambiae detox-chip for expression of detoxifying genes showed five over-expressed genes in the resistant strain when compared with the susceptible one. Two of these, CPLC8 and CPLC#, are cuticular genes not implicated in pyrethroid metabolism in An. gambiae s.s, and could constitute a novel set of candidate genes that warrant further investigation.
Collapse
Affiliation(s)
- T S Awolola
- Nigerian Institute of Medical Research, Yaba, Lagos, Nigeria.
| | | | | | | | | | | |
Collapse
|
18
|
Scaraffia PY, Tan G, Isoe J, Wysocki VH, Wells MA, Miesfeld RL. Discovery of an alternate metabolic pathway for urea synthesis in adult Aedes aegypti mosquitoes. Proc Natl Acad Sci U S A 2008; 105:518-23. [PMID: 18182492 PMCID: PMC2206568 DOI: 10.1073/pnas.0708098105] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2007] [Indexed: 11/18/2022] Open
Abstract
We demonstrate the presence of an alternate metabolic pathway for urea synthesis in Aedes aegypti mosquitoes that converts uric acid to urea via an amphibian-like uricolytic pathway. For these studies, female mosquitoes were fed a sucrose solution containing (15)NH4Cl, [5-(15)N]-glutamine, [(15)N]-proline, allantoin, or allantoic acid. At 24 h after feeding, the feces were collected and analyzed in a mass spectrometer. Specific enzyme inhibitors confirmed that mosquitoes incorporate (15)N from (15)NH4Cl into [5-(15)N]-glutamine and use the (15)N of the amide group of glutamine to produce labeled uric acid. More importantly, we found that [(15)N2]-uric acid can be metabolized to [(15)N]-urea and be excreted as nitrogenous waste through an uricolytic pathway. Ae. aegypti express all three genes in this pathway, namely, urate oxidase, allantoinase, and allantoicase. The functional relevance of these genes in mosquitoes was shown by feeding allantoin or allantoic acid, which significantly increased unlabeled urea levels in the feces. Moreover, knockdown of urate oxidase expression by RNA interference demonstrated that this pathway is active in females fed blood or (15)NH4Cl based on a significant increase in uric acid levels in whole-body extracts and a reduction in [(15)N]-urea excretion, respectively. These unexpected findings could lead to the development of metabolism-based strategies for mosquito control.
Collapse
|
19
|
Abstract
Research on gene expression in mosquitoes is motivated by both basic and applied interests. Studies of genes involved in hematophagy, reproduction, olfaction, and immune responses reveal an exquisite confluence of biological adaptations that result in these highly-successful life forms. The requirement of female mosquitoes for a bloodmeal for propagation has been exploited by a wide diversity of viral, protozoan and metazoan pathogens as part of their life cycles. Identifying genes involved in host-seeking, blood feeding and digestion, reproduction, insecticide resistance and susceptibility/refractoriness to pathogen development is expected to provide the bases for the development of novel methods to control mosquito-borne diseases. Advances in mosquito transgenesis technologies, the availability of whole genome sequence information, mass sequencing and analyses of transcriptomes and RNAi techniques will assist development of these tools as well as deepen the understanding of the underlying genetic components for biological phenomena characteristic of these insect species.
Collapse
Affiliation(s)
- Xiao-Guang Chen
- Department of Parasitology, School of Public Health and Tropical Medicine, Southern Medical University, Guang Zhou, GD 510515, People's Republic of China
| | | | | |
Collapse
|