1
|
Nakai M, Kinjo H, Takatsuka J, Shiotsuki T, Kamita SG, Kunimi Y. Entomopoxvirus infection induces changes in both juvenile hormone and ecdysteroid levels in larval Mythimna separata. J Gen Virol 2015; 97:225-232. [PMID: 26499185 DOI: 10.1099/jgv.0.000325] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Insect viruses are among the most important pathogens of lepidopteran insects. Virus-infected larvae often show developmental defects including a prolonged larval period and a failure to pupate, but the mechanisms by which insect viruses regulate host development need further investigation. In this study, the regulation of host endocrinology by a lepidopteran entomopoxvirus (EPV), Mythimna separata EPV (MySEV), was examined. When fourth instar M. separata were inoculated with MySEV occlusion bodies, pupation was prevented and the insects died during the final (sixth) larval instar. Liquid chromatography-MS analysis revealed that juvenile hormone (JH) titres in the haemolymph of MySEV-infected sixth instars were higher than those in mock-infected larvae. JH esterase (JHE) activity was also examined by kinetic assay using a colorimetric substrate. The level of JHE activity in the haemolymph of MySEV-infected larvae was generally lower than that found in mock-infected larvae. In contrast, ecdysteroid titre in the haemolymph of final-instar MySEV-infected larvae was lower than that found in mock-infected larvae when measured by radioimmunoassay. A statistically significant difference in the release of ecdysteroids from prothoracic glands (PGs) that were dissected from MySEV- or mock-infected sixth instar Day 3 larvae was not found following prothoracicotropic hormone (PTTH) exposure. Our results indicate that the release of ecdysteroids was reduced not by infection of the PGs by MySEV, but by reduced PTTH production from the brain. Taken together our study suggests that EPVs retard host development by both reducing ecdysone titre and maintaining status quo levels of JH by preventing its metabolism.
Collapse
Affiliation(s)
- Madoka Nakai
- Tokyo University of Agriculture and Technology, Saiwai, , Fuchu, Tokyo 183-8509, Japan
| | - Hirotoshi Kinjo
- Tokyo University of Agriculture and Technology, Saiwai, , Fuchu, Tokyo 183-8509, Japan
| | - Jun Takatsuka
- Forestry and Forest Products Research Institute, Matsunosato, Tsukuba, Ibaraki 305-8687, Japan
| | - Takahiro Shiotsuki
- National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305, Japan
| | - Shizuo G Kamita
- Department of Entomology and Nematology, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Yasuhisa Kunimi
- Tokyo University of Agriculture and Technology, Saiwai, , Fuchu, Tokyo 183-8509, Japan
| |
Collapse
|
2
|
Saito Y, Kamita SG, Hammock BD, Kunimi Y, Inoue MN, Nakai M. Juvenile hormone (JH) esterase activity but not JH epoxide hydrolase activity is downregulated in larval Adoxophyes honmai following nucleopolyhedroviruses infection. JOURNAL OF INSECT PHYSIOLOGY 2015; 80:71-80. [PMID: 25727179 DOI: 10.1016/j.jinsphys.2015.02.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Revised: 02/10/2015] [Accepted: 02/13/2015] [Indexed: 06/04/2023]
Abstract
Juvenile hormones (JHs) and ecdysteroids are critical insect developmental hormones. JH esterase (JHE) and JH epoxide hydrolase (JHEH) are JH-selective enzymes that metabolize JH and thus regulate the titer of JH. Baculoviruses are known to alter host endocrine regulation. The nucleopolyhedroviruses, AdhoNPV and AdorNPV, are known to have slow and fast killing activity against Adoxophyes honmai (Lepidoptera: Tortricidae), respectively. Here we found that when penultimate (4th) instar A. honmai are inoculated with AdhoNPV or AdorNPV, the mean survival time is 9.7 and 8.2 days, respectively. The larvae molted once but did not pupate. The AdhoNPV- or AdorNPV-infected larvae did not show a dramatic increase in JHE activity as was found in mock-infected larvae, instead they showed a marked decrease in JHE activity. In contrast, both viral infections had no effect on JHEH activity. In order to further characterize the JHE activity, the JHE-coding sequence of A. honmai (ahjhe) was cloned and confirmed to encode a biologically active JHE. Quantitative real-time PCR analysis of ahjhe expression in 4th and 5th instar A. honmai revealed that AdhoNPV and AdorNPV are able to reduce ahjhe expression levels.
Collapse
Affiliation(s)
- Yasumasa Saito
- Department of Biological Production Science, United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan; Department of Entomology and Nematology, and Comprehensive Cancer Center, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Shizuo G Kamita
- Department of Entomology and Nematology, and Comprehensive Cancer Center, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Bruce D Hammock
- Department of Entomology and Nematology, and Comprehensive Cancer Center, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Yasuhisa Kunimi
- Department of Biological Production Science, United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Maki N Inoue
- Department of Biological Production Science, United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Madoka Nakai
- Department of Biological Production Science, United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan.
| |
Collapse
|
3
|
Li Z, Lu Z, Wang X, Zhang S, Zhang Q, Liu X. Digital gene expression analysis of Helicoverpa armigera in the early stage of infection with Helicoverpa armigera nucleopolyhedrovirus. J Invertebr Pathol 2015; 132:66-76. [PMID: 26296928 DOI: 10.1016/j.jip.2015.08.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 08/12/2015] [Accepted: 08/18/2015] [Indexed: 10/23/2022]
Abstract
Helicoverpa armigera single nucleocapsid nucleopolyhedrovirus (HearNPV) is an obligatory and lethal parasite of the cotton bollworm and has been extensively used in China for the control of this notorious pest. Digital gene expression (DGE) analysis was adopted for an overall comparison of transcriptome profiling between HearNPV-infected and control healthy Helicoverpa armigera larvae during an early stage post-inoculation. A total of 908 differentially expressed genes (DEGs) were identified, of which 136 were up-regulated and 597 were down-regulated. GO category and KEGG pathway analysis demonstrated that the identified DEGs involved in ribosome biogenesis, aminoacyl-tRNA biosynthesis, protein processing in endoplasmic reticulum, biosynthesis of valine, leucine, isoleucine and the spliceosome were significantly down-regulated, whereas genes involved in pancreatic secretion, protein digestion and absorption and salivary secretion showed obviously up-regulated transcription. The DEGs were verified by quantitative real-time PCR, and genes that participated in defensive response, nutritional digestion and developmental regulation exhibited specific expression patterns in a continuous time-course assessment. These results provide basic data for future research on the molecular mechanism of HearNPV infection and the interactions between lepidopteran hosts and their specific NPV parasites.
Collapse
Affiliation(s)
- Zhen Li
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Zhenqiang Lu
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Xiu Wang
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Songdou Zhang
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Qingwen Zhang
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Xiaoxia Liu
- Department of Entomology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
4
|
Maslinic Acid, a Triterpene from Olive, Affects the Antioxidant and Mitochondrial Status of B16F10 Melanoma Cells Grown under Stressful Conditions. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:272457. [PMID: 26236377 PMCID: PMC4508474 DOI: 10.1155/2015/272457] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Accepted: 06/14/2015] [Indexed: 01/29/2023]
Abstract
Maslinic acid (MA) is a natural compound whose structure corresponds to a pentacyclic triterpene. It is abundant in the cuticular lipid layer of olives. MA has many biological and therapeutic properties related to health, including antitumor, anti-inflammatory, antimicrobial, antiparasitic, antihypertensive, and antioxidant activities. However, no studies have been performed to understand the molecular mechanism induced by this compound in melanoma cancer. The objective of this study was to examine the effect of MA in melanoma (B16F10) cells grown in the presence or absence of fetal bovine serum (FBS). We performed cell proliferation measurements, and the reactive oxygen species (ROS) measurements using dihydrorhodamine 123 (DHR 123) and activities of catalase, glucose 6-phosphate dehydrogenase, glutathione S-transferase, and superoxide dismutase. These changes were corroborated by expression assays. FBS absence reduced cell viability decreasing IC50 values of MA. The DHR 123 data showed an increase in the ROS level in the absence of FBS. Furthermore, MA had an antioxidant effect at lower assayed levels measured as DHR and antioxidant defense. However, at higher dosages MA induced cellular damage by apoptosis as seen in the results obtained.
Collapse
|
5
|
Ridgeway JA, Timm AE. Reference gene selection for quantitative real-time PCR normalization in larvae of three species of Grapholitini (Lepidoptera: Tortricidae). PLoS One 2015; 10:e0129026. [PMID: 26030743 PMCID: PMC4450875 DOI: 10.1371/journal.pone.0129026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 05/04/2015] [Indexed: 12/02/2022] Open
Abstract
Despite the agricultural importance of species in the Grapholitini (Lepidoptera: Tortricidae), and the value of gene expression analysis for improved population management, few gene expression studies based on quantitative real-time PCR (qPCR) have been conducted for this tribe. Part of the reason for this lack of information is that suitable reference genes, which are fundamental for accurate normalization of qPCR studies, have not been identified for the tribe. Thus, the expression stability of six potential reference genes (ACT, AK, COI, EF1, ENO and TUB) was assessed in three different tissues (whole body, midgut and cuticle) of Cryptophlebia peltastica (Meyrick), Cydia pomonella (L.) and Thaumatotibia leucotreta (Meyrick). Additionally, these reference genes were tested using T. leucotreta at different temperatures (15°C, 25°C and 35°C) with and without baculovirus infection. Suitable reference genes were identified for the whole body and midgut tissue of all three species, and for cuticle tissue of Cy. pomonella and T. leucotreta. When T. leucotreta was infected with the virus at all temperature conditions ACT, AK and EF1 were found to be the most suitable reference genes for experimental normalization. In general, for all tissue types, species and stress conditions, AK and EF1 were the best-performing reference genes. However, even though the three species analysed were closely related and within the same tribe, each species required varying gene combinations for suitable normalization. This study provides the first reference gene evaluation for the Tortricidae, and paves the way for future qPCR analysis in Tortricidae.
Collapse
Affiliation(s)
- Jaryd A. Ridgeway
- Department of Zoology and Entomology, Rhodes University, Grahamstown, South Africa
| | - Alicia E. Timm
- Department of Zoology and Entomology, Rhodes University, Grahamstown, South Africa
| |
Collapse
|
6
|
Ridgeway JA, Timm AE. Comparison of RNA isolation methods from insect larvae. JOURNAL OF INSECT SCIENCE (ONLINE) 2014; 14:268. [PMID: 25527580 PMCID: PMC5634029 DOI: 10.1093/jisesa/ieu130] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 04/16/2014] [Indexed: 06/04/2023]
Abstract
Isolating RNA from insects is becoming increasingly important in molecular entomology. Four methods including three commercial kits RNeasy Mini Kit (Qiagen), SV Total RNA isolation system (Promega), TRIzol reagent (Invitrogen), and a cetyl trimethylammonium bromide (CTAB)-based method were compared regarding their ability to isolate RNA from whole-body larvae of Thaumatotibia leucotreta (Meyrick), Thanatophilus micans (F.), Plutella xylostella (L.), and Tenebrio molitor (L.). A difference was observed among the four methods regarding RNA quality but not quantity. However, RNA quality and quantity obtained was not dependent on the insect species. The CTAB-based method produced low-quality RNA and the Trizol reagent produced partially degraded RNA, whereas the RNeasy Mini Kit and SV Total RNA isolation system produced RNA of consistently high quality. However, after reverse transcription to cDNA, RNA produced using all four extraction methods could be used to successfully amplify a 708 bp fragment of the cytochrome oxidase I gene. Of the four methods, the SV Total RNA isolation system showed the least amount of DNA contamination with the highest RNA integrity number and is thus recommended for stringent applications where high-quality RNA is required. This is the first comparison of RNA isolation methods among different insect species and the first to compare RNA isolation methods in insects in the last 20 years.
Collapse
Affiliation(s)
- J A Ridgeway
- Department of Zoology and Entomology, Rhodes University, P.O. Box 94, Grahamstown 6139, South Africa
| | - A E Timm
- Department of Zoology and Entomology, Rhodes University, P.O. Box 94, Grahamstown 6139, South Africa
| |
Collapse
|
7
|
Nguyen Q, Nielsen LK, Reid S. Genome scale transcriptomics of baculovirus-insect interactions. Viruses 2013; 5:2721-47. [PMID: 24226166 PMCID: PMC3856412 DOI: 10.3390/v5112721] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 10/28/2013] [Accepted: 11/04/2013] [Indexed: 01/25/2023] Open
Abstract
Baculovirus-insect cell technologies are applied in the production of complex proteins, veterinary and human vaccines, gene delivery vectors' and biopesticides. Better understanding of how baculoviruses and insect cells interact would facilitate baculovirus-based production. While complete genomic sequences are available for over 58 baculovirus species, little insect genomic information is known. The release of the Bombyx mori and Plutella xylostella genomes, the accumulation of EST sequences for several Lepidopteran species, and especially the availability of two genome-scale analysis tools, namely oligonucleotide microarrays and next generation sequencing (NGS), have facilitated expression studies to generate a rich picture of insect gene responses to baculovirus infections. This review presents current knowledge on the interaction dynamics of the baculovirus-insect system' which is relatively well studied in relation to nucleocapsid transportation, apoptosis, and heat shock responses, but is still poorly understood regarding responses involved in pro-survival pathways, DNA damage pathways, protein degradation, translation, signaling pathways, RNAi pathways, and importantly metabolic pathways for energy, nucleotide and amino acid production. We discuss how the two genome-scale transcriptomic tools can be applied for studying such pathways and suggest that proteomics and metabolomics can produce complementary findings to transcriptomic studies.
Collapse
Affiliation(s)
- Quan Nguyen
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia.
| | | | | |
Collapse
|
8
|
Nguyen Q, Chan LCL, Nielsen LK, Reid S. Genome scale analysis of differential mRNA expression of Helicoverpa zea insect cells infected with a H. armigera baculovirus. Virology 2013; 444:158-70. [PMID: 23827436 DOI: 10.1016/j.virol.2013.06.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 05/28/2013] [Accepted: 06/05/2013] [Indexed: 12/16/2022]
Abstract
Knowledge of baculovirus-insect host interactions at a genome-scale level is important for developing a number of baculovirus-based applications, but the gathering of such knowledge is hindered by the lack of genomic sequences in most insect hosts. In this study, expression kinetics of 24,206 Helicoverpa zea insect transcripts and 134 Helicoverpa armigera nucleopolyhedrovirus (HearNPV) genes at 0, 12, 24 and 48 h post-infection (hpi) were simultaneously analyzed using microarrays, which were developed from sequences obtained by deep transcriptome sequencing. Host genes in pathways important for infection such as those for energy generation, anti-viral peptides, apoptosis, detoxification, DNA polymerase activities, RNA polymerase activities, translation initiation, protein processing and cell cycle arrest were identified. Differential expression was linked to changes in the number of intracellular and extracellular viral genomes and occlusion bodies. The first comprehensive elucidation of HearNPV-H. zea expression kinetics was obtained.
Collapse
Affiliation(s)
- Quan Nguyen
- Australian Institute for Bioengineering and Nanotechnology, Building 75, Corner College/Cooper Road, The University of Queensland, St. Lucia, Qld 4072, Australia.
| | | | | | | |
Collapse
|
9
|
Ikeda M, Yamada H, Hamajima R, Kobayashi M. Baculovirus genes modulating intracellular innate antiviral immunity of lepidopteran insect cells. Virology 2013; 435:1-13. [DOI: 10.1016/j.virol.2012.10.016] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 10/08/2012] [Accepted: 10/08/2012] [Indexed: 12/11/2022]
|
10
|
Mengual Gómez DL, Belaich MN, Rodríguez VA, Ghiringhelli PD. Effects of fetal bovine serum deprivation in cell cultures on the production of Anticarsia gemmatalis multinucleopolyhedrovirus. BMC Biotechnol 2010; 10:68. [PMID: 20843354 PMCID: PMC2949788 DOI: 10.1186/1472-6750-10-68] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Accepted: 09/15/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Anticarsia gemmatalis is a pest in South America's soybean crops, which could be controlled by the Multinucleopolyhedrovirus of A. gemmatalis (AgMNPV). Currently, its commercial production is based on infected larvae. However, the possibility of using modified baculoviruses in Integrated Pest Management programs has stimulated an interest to develop alternative multiplication processes. This study evaluated the AgMNPV production in UFL-Ag-286 cells previously deprived Fetal Bovine Serum. RESULTS Culture media containing 1% FBS during the previous 48 hours achieved a synchronized condition where 90% of cells were found in G0/G1 stage, showing the presence of non-filamentous actin. All characteristics were estimated from cellular viability tests, cell actin detection trials and flow cytometer cell cycle analysis. AgMNPV production was tested by transcript studies and budded viruses (BVs) and occlusion bodies (OBs) yield quantitation. Results showed that the productivity in FBS deprived cells was 9.8 times more in BVs and 3.8 times more in OBs with respect to non-treated cells. CONCLUSIONS UFL-Ag-286 cells previously deprived in FBS shown to be a better host for AgMNPV propagation, increasing the useful for both in vitro bioinsecticide production and applications such as recombinant protein expression or gene delivery.
Collapse
Affiliation(s)
- Diego L Mengual Gómez
- Laboratorio de Ingeniería Genética y Biología Celular y Molecular, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes Roque Saenz Peña 352, CP B1876BXD Bernal, Argentina
| | | | | | | |
Collapse
|
11
|
Popham HJR, Grasela JJ, Goodman CL, McIntosh AH. Baculovirus infection influences host protein expression in two established insect cell lines. JOURNAL OF INSECT PHYSIOLOGY 2010; 56:1237-1245. [PMID: 20362582 DOI: 10.1016/j.jinsphys.2010.03.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2009] [Revised: 03/12/2010] [Accepted: 03/20/2010] [Indexed: 05/29/2023]
Abstract
We identified host proteins that changed in response to host cell susceptibility to baculovirus infection. We used three baculovirus-host cell systems utilizing two cell lines derived from pupal ovaries, Hz-AM1 (from Helicoverpa zea) and Hv-AM1 (from Heliothis virescens). Hv-AM1 cells are permissive to Autographa californica multiple nucleopolyhedrovirus (AcMNPV) and semi-permissive to H. zea single nucleopolyhedrovirus (HzSNPV). Hz-AM1 cells are non-permissive to AcMNPV. We challenged each cell line with baculovirus infection and after 24h determined protein identities by MALDI TOF/TOF mass spectrometry. For Hv-AM1 cells, 21 proteins were identified, and for Hz-AM1 cells, 19 proteins were newly identified (with 8 others having been previously identified). In the permissive relationship, 18 of the proteins changed in expression by 70% or more in AcMNPV infected Hv-AM1 cells as compared with non-infected controls; 12 were significantly decreased and 6 cellular proteins were significantly increased. We also identified 3 virus-specific proteins. In the semi-permissive infections, eight proteins decreased by 2-fold or more. Non-permissive interactions did not lead to substantial changes in host cell protein expression. We hypothesize that some of these proteins act in determining host cell specificity for baculoviruses.
Collapse
Affiliation(s)
- Holly J R Popham
- USDA - Agricultural Research Service, Biological Control of Insects Research Laboratory, Columbia, MO 65203, USA.
| | | | | | | |
Collapse
|
12
|
Young V, Sneddon K, Ward V. Establishment of a neonate cell line from Epiphyas postvittana (Walker) (Lepidoptera: Tortricidae) that supports replication of E. postvittana nucleopolyhedrovirus. J Invertebr Pathol 2010; 104:147-9. [DOI: 10.1016/j.jip.2010.02.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Revised: 02/04/2010] [Accepted: 02/12/2010] [Indexed: 11/28/2022]
|