1
|
Leroux A, Roque M, Casas E, Leng J, Guibert C, L'Azou B, Oliveira H, Amédée J, Paiva Dos Santos B. The effect of CGRP and SP and the cell signaling dialogue between sensory neurons and endothelial cells. Biol Res 2024; 57:65. [PMID: 39261966 PMCID: PMC11389267 DOI: 10.1186/s40659-024-00538-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 08/19/2024] [Indexed: 09/13/2024] Open
Abstract
Increasing evidences demonstrate the role of sensory innervation in bone metabolism, remodeling and repair, however neurovascular coupling in bone is rarely studied. Using microfluidic devices as an indirect co-culture model to mimic in vitro the physiological scenario of innervation, our group demonstrated that sensory neurons (SNs) were able to regulate the extracellular matrix remodeling by endothelial cells (ECs), in particular through sensory neuropeptides, i.e. calcitonin gene-related peptide (CGRP) and substance P (SP). Nonetheless, still little is known about the cell signaling pathways and mechanism of action in neurovascular coupling. Here, in order to characterize the communication between SNs and ECs at molecular level, we evaluated the effect of SNs and the neuropeptides CGRP and SP on ECs. We focused on different pathways known to play a role on endothelial functions: calcium signaling, p38 and Erk1/2; the control of signal propagation through Cx43; and endothelial functions through the production of nitric oxide (NO). The effect of SNs was evaluated on ECs Ca2+ influx, the expression of Cx43, endothelial nitric oxide synthase (eNOS) and nitric oxide (NO) production, p38, ERK1/2 as well as their phosphorylated forms. In addition, the role of CGRP and SP were either analyzed using respective antagonists in the co-culture model, or by adding directly on the ECs monocultures. We show that capsaicin-stimulated SNs induce increased Ca2+ influx in ECs. SNs stimulate the increase of NO production in ECs, probably involving a decrease in the inhibitory eNOS T495 phosphorylation site. The neuropeptide CGRP, produced by SNs, seems to be one of the mediators of this effect in ECs since NO production is decreased in the presence of CGRP antagonist in the co-culture of ECs and SNs, and increased when ECs are stimulated with synthetic CGRP. Taken together, our results suggest that SNs play an important role in the control of the endothelial cell functions through CGRP production and NO signaling pathway.
Collapse
Affiliation(s)
- Alice Leroux
- Univ. Bordeaux, INSERM, BIOTIS, Bordeaux, U1026, F-33000, France
| | - Micaela Roque
- Univ. Bordeaux, INSERM, BIOTIS, Bordeaux, U1026, F-33000, France
| | - Elina Casas
- Univ. Bordeaux, INSERM, BIOTIS, Bordeaux, U1026, F-33000, France
| | - Jacques Leng
- Univ. Bordeaux, CNRS, UMR 5258, Solvay, Pessac, LOF, F-33006, France
| | - Christelle Guibert
- INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, Pessac, F-33604, France
- Univ. Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, Bordeaux, F-33000, France
| | - Beatrice L'Azou
- Univ. Bordeaux, INSERM, BIOTIS, Bordeaux, U1026, F-33000, France
| | - Hugo Oliveira
- Univ. Bordeaux, INSERM, BIOTIS, Bordeaux, U1026, F-33000, France
| | - Joëlle Amédée
- Univ. Bordeaux, INSERM, BIOTIS, Bordeaux, U1026, F-33000, France
| | - Bruno Paiva Dos Santos
- Univ. Bordeaux, INSERM, BIOTIS, Bordeaux, U1026, F-33000, France.
- Univ. Paris Cité, URP2496-BRIO Pathologies Imagerie et Biothérapies Orofaciales, Montrouge, F-92120, France.
| |
Collapse
|
2
|
Zhan C, Huang M, Yang X, Hou J. Dental nerves: a neglected mediator of pulpitis. Int Endod J 2020; 54:85-99. [PMID: 32880979 DOI: 10.1111/iej.13400] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 08/26/2020] [Indexed: 12/18/2022]
Abstract
As one of the most densely innervated tissues, the dental pulp contains abundant nerve fibres, including sensory, sympathetic and parasympathetic nerve fibres. Studies in animal models and human patients with pulpitis have revealed distinct alterations in protein expression and histological appearance in all types of dental nerve fibres. Various molecules secreted by neurons, such as classical neurotransmitters, neuropeptides and amino acids, not only contribute to the induction, sensitization and maintenance of tooth pain, but also regulate non-neuronal cells, including fibroblasts, odontoblasts, immune cells and vascular endothelial cells. Dental nerves are particularly important for the microcirculatory and immune responses in pulpitis via their release of a variety of functional substances. Further, nerve fibres are found to be involved in dental soft and hard tissue repair. Thus, understanding how dental nerves participate in pulpitis could have important clinical ramifications for endodontic treatment. In this review, the roles of dental nerves in regulating pulpal inflammatory processes are highlighted and their implications for future research on this topic are discussed.
Collapse
Affiliation(s)
- C Zhan
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - M Huang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - X Yang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - J Hou
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
3
|
An S. Nitric Oxide in Dental Pulp Tissue: From Molecular Understanding to Clinical Application in Regenerative Endodontic Procedures. TISSUE ENGINEERING PART B-REVIEWS 2020; 26:327-347. [PMID: 32131706 DOI: 10.1089/ten.teb.2019.0316] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Nitric oxide (NO), which is synthesized by the enzyme NO synthase (NOS), is a versatile endogenous molecule with multiple biological effects on many tissues and organs. In dental pulp tissue, NO has been found to play multifaceted roles in regulating physiological activities, inflammation processes, and tissue repair events, such as cell proliferation, neuronal degeneration, angiogenesis, and odontoblastic differentiation. However, there is a deficiency of detailed discussion on the NO-mediated interactions between inflammation and reparative/regenerative responses in wounded dental pulp tissue, which is a central determinant of ultimate clinical outcomes. Thus, the purpose of this review is to outline the current molecular understanding on the roles of Janus-faced molecule NO in dental pulp physiology, inflammation, and reparative activities. Based on this knowledge, advanced physicochemical techniques designed to manipulate the therapeutic potential of NOS and NO production in endodontic regeneration procedures are further discussed. Impact statement The interaction between inflammation and reparative/regenerative responses is very important for regenerative endodontic procedures, which are biologically based approaches intended to replace damaged tissues. Inside dental pulp tissue, endogenous nitric oxide (NO) is generated mainly by immunocompetent cells and dental pulp cells and mediates not only inflammatory/immune activities but also signaling cascades that regulate tissue repair and reconstruction, indicating its involvement in both tissue destruction and regeneration. Thus, it is feasible that NO acts as one of the indicators and modulators in dental pulp repair or regeneration under physiological and pathological conditions.
Collapse
Affiliation(s)
- Shaofeng An
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, P.R. China.,Guangdong Province Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, P.R. China
| |
Collapse
|