1
|
Lu Y, Song S, Zhang L. Emerging Role for Acyl-CoA Binding Domain Containing 3 at Membrane Contact Sites During Viral Infection. Front Microbiol 2020; 11:608. [PMID: 32322249 PMCID: PMC7156584 DOI: 10.3389/fmicb.2020.00608] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 03/19/2020] [Indexed: 12/12/2022] Open
Abstract
Acyl-coenzyme A binding domain containing 3 (ACBD3) is a multifunctional protein residing in the Golgi apparatus and is involved in several signaling pathways. The current knowledge on ACBD3 has been extended to virology. ACBD3 has recently emerged as a key factor subverted by viruses, including kobuvirus, enterovirus, and hepatitis C virus. The ACBD3-PI4KB complex is critical for the role of ACBD3 in viral replication. In most cases, ACBD3 plays a positive role in viral infection. ACBD3 associates with viral 3A proteins from a variety of Picornaviridae family members at membrane contact sites (MCSs), which are used by diverse viruses to ensure lipid transfer to replication organelles (ROs). In this review, we discuss the mechanisms underlying the involvement of ACBD3 in viral infection at MCSs. Our review will highlight the current research and reveal potential avenues for future research.
Collapse
Affiliation(s)
- Yue Lu
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan, China.,Institute of Basic Medicine, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Siqi Song
- Institute of Basic Medicine, The First Affiliated Hospital of Shandong First Medical University, Jinan, China.,School of Basic Medicine, Qingdao University, Qingdao, China
| | - Leiliang Zhang
- Institute of Basic Medicine, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| |
Collapse
|
2
|
Ijiri TW, Vadnais ML, Huang AP, Lin AM, Levin LR, Buck J, Gerton GL. Thiol changes during epididymal maturation: a link to flagellar angulation in mouse spermatozoa? Andrology 2013; 2:65-75. [PMID: 24254994 DOI: 10.1111/j.2047-2927.2013.00147.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 09/18/2013] [Accepted: 09/20/2013] [Indexed: 12/12/2022]
Abstract
Caput epididymal wild-type spermatozoa and cauda epididymal spermatozoa from mice null for the adenylyl cyclase Adcy10 gene are immotile unless stimulated by a membrane-permeant cyclic AMP analogue. Both types of spermatozoa exhibit flagellar angulation where the head folds back under these conditions. As sperm proteins undergo oxidation of sulfhydryl groups and the flagellum becomes more stable to external forces during epididymal transit, we hypothesized that ADCY10 is involved in a mechanism regulating flagellar stabilization. Although no differences were observed in global sulfhydryl status between caput and cauda epididymal spermatozoa from wild-type or Adcy10-null mice, two-dimensional fluorescence difference gel electrophoresis was performed to identify specific mouse sperm proteins containing sulfhydryl groups that became oxidized during epididymal maturation. A-kinase anchor protein 4, fatty acid-binding protein 9 (FABP9), glutathione S-transferase mu 5 and voltage-dependent anion channel 2 exhibited changes in thiol status between caput and cauda epididymal spermatozoa. The level and thiol status of each of these proteins were quantified in wild-type and Adcy10-null cauda epididymal spermatozoa. No differences in the abundance of any protein were observed; however, FABP9 in Adcy10-null cauda epididymal spermatozoa contained fewer disulfide bonds than wild-type sperm cells. In caput epididymal spermatozoa, FABP9 was detected in the cytoplasmic droplet, principal piece, midpiece, and non-acrosomal area of the head. However, in cauda epididymal spermatozoa, this protein localized to the perforatorium, post-acrosomal region and principal piece. Together, these results suggest that thiol changes during epididymal maturation have a role in the stabilization of the sperm flagellum.
Collapse
Affiliation(s)
- T W Ijiri
- Center for Research on Reproduction and Women's Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Molecular Biosciences, Kyoto Sangyo University, Kyoto, Japan
| | | | | | | | | | | | | |
Collapse
|
3
|
Protein-tyrosine kinase signaling in the biological functions associated with sperm. JOURNAL OF SIGNAL TRANSDUCTION 2012; 2012:181560. [PMID: 23209895 PMCID: PMC3503396 DOI: 10.1155/2012/181560] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Revised: 05/17/2012] [Accepted: 05/31/2012] [Indexed: 01/07/2023]
Abstract
In sexual reproduction, two gamete cells (i.e., egg and sperm) fuse (fertilization) to create a newborn with a genetic identity distinct from those of the parents. In the course of these developmental processes, a variety of signal transduction events occur simultaneously in each of the two gametes, as well as in the fertilized egg/zygote/early embryo. In particular, a growing body of knowledge suggests that the tyrosine kinase Src and/or other protein-tyrosine kinases are important elements that facilitate successful implementation of the aforementioned processes in many animal species. In this paper, we summarize recent findings on the roles of protein-tyrosine phosphorylation in many sperm-related processes (from spermatogenesis to epididymal maturation, capacitation, acrosomal exocytosis, and fertilization).
Collapse
|
4
|
Ijiri TW, Merdiushev T, Cao W, Gerton GL. Identification and validation of mouse sperm proteins correlated with epididymal maturation. Proteomics 2011; 11:4047-62. [PMID: 21805633 DOI: 10.1002/pmic.201100075] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Revised: 06/03/2011] [Accepted: 07/11/2011] [Indexed: 01/16/2023]
Abstract
Sperm need to mature in the epididymis to become capable of fertilization. To understand the molecular mechanisms of mouse sperm maturation, we conducted a proteomic analysis using saturation dye labeling to identify proteins of caput and cauda epididymal sperm that exhibited differences in amounts or positions on two-dimensional gels. Of eight caput epididymal sperm-differential proteins, three were molecular chaperones and three were structural proteins. Of nine cauda epididymal sperm-differential proteins, six were enzymes of energy metabolism. To validate these proteins as markers of epididymal maturation, immunoblotting and immunofluorescence analyses were performed. During epididymal transit, heat shock protein 2 was eliminated with the cytoplasmic droplet and smooth muscle γ-actin exhibited reduced fluorescence from the anterior acrosome while the signal intensity of aldolase A increased, especially in the principal piece. Besides these changes, we observed protein spots, such as glutathione S-transferase mu 5 and the E2 component of pyruvate dehydrogenase complex, shifting to more basic isoelectric points, suggesting post-translational changes such dephosphorylation occur during epididymal maturation. We conclude that most caput epididymal sperm-differential proteins contribute to the functional modification of sperm structures and that many cauda epididymal sperm-differential proteins are involved in ATP production that promotes sperm functions such as motility.
Collapse
Affiliation(s)
- Takashi W Ijiri
- Center for Research on Reproduction and Women's Health, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6080, USA
| | | | | | | |
Collapse
|
5
|
Contri A, Gloria A, Robbe D, De Amicis I, Carluccio A. Characteristics of donkey spermatozoa along the length of the epididymis. Theriogenology 2011; 77:166-73. [PMID: 21872312 DOI: 10.1016/j.theriogenology.2011.07.031] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Revised: 07/14/2011] [Accepted: 07/19/2011] [Indexed: 11/19/2022]
Abstract
In mammals, the epididymis has numerous interrelated functions including absorptive and secretory activity that affect luminal environment and cell membrane, and the maturation and storage of sperm. Spermatozoa acquire their motility and fertilizing ability during their passage through the epididymis and the motility of epididymal spermatozoa should be a balance between the maturation of flagellum and the inhibition of the flagellar machinery. In this study maturational change in sperm characteristics were evaluated in the epididymis of donkey. Spermatozoa collected from four portions of the epididymis (head, cranial corpus, caudal corpus, tail) were compared before and after ejaculation for viability, mitochondrial activity, kinetic parameters, and morphology. A significant increase in the mitochondrial activity along the epididymis was reported, suggesting a possible involvement in the motion mechanism. This should be corroborated by the significant correlation between mitochondrial activity and the total and progressive motility and the increase in velocities of spermatozoa recorded by computer-assisted sperm analysis. The percentage of most of the abnormal spermatozoa were similar in all tracts, with a great variability between jackasses. Only the bent midpiece percentage decreased significantly along epididymis. A significant increase in the percentage of distal cytoplasmic droplets (DCD), and a simultaneous decrease in the proximal cytoplasmic droplets (PCD), was found. The DCD fell down after ejaculation suggesting the late loss of the cytoplasmic residual (DCD) in the donkey, as hypothesized in the stallion. Because the prevalence of PCD were similar in both tail epididymal and ejaculated spermatozoa, a defect of the maturative process in the PCD sperm should be speculated.
Collapse
Affiliation(s)
- A Contri
- Department of Veterinary Clinical Sciences, University of Teramo, Teramo, Italy
| | | | | | | | | |
Collapse
|
6
|
Baker MA, Hetherington L, Curry B, Aitken RJ. Phosphorylation and consequent stimulation of the tyrosine kinase c-Abl by PKA in mouse spermatozoa; its implications during capacitation. Dev Biol 2009; 333:57-66. [PMID: 19560455 DOI: 10.1016/j.ydbio.2009.06.022] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2008] [Revised: 06/18/2009] [Accepted: 06/19/2009] [Indexed: 01/04/2023]
Abstract
Upon ejaculation, spermatozoa undergo a series of post-translational modifications in a process known as capacitation in order to prepare for fertilization. In the absence of capacitation, fertilization cannot occur. Spermatozoa are unusual in that one of the hallmarks of capacitation is a global up-regulation in phosphotyrosine expression, which is known to be mediated upstream by PKA. Little is known about the signaling events downstream of PKA apart from the involvement of SRC, as a key mediator of PKA-induced tyrosine phosphorylation in the sperm tail. Here we describe the presence of c-Abl in mouse spermatozoa. In vitro analysis confirmed that PKA can up-regulate c-Abl kinase activity. In vivo, this tyrosine kinase was found to associate, and become threonine phosphorylated by PKA in the sperm flagellum. By treating spermatozoa with hemolysin we could demonstrate that a significant proportion of the tyrosine phosphorylation associated with capacitation could be suppressed by the c-Abl inhibitor, Gleevac. This is the first report of c-Abl being up-regulated by PKA for any cell type. We present a model, whereby these kinases may operate together with SRC to ensure optimal levels of tyrosine phosphorylation in the sperm flagellum during the attainment of a capacitated state.
Collapse
Affiliation(s)
- Mark A Baker
- ARC Centre of Excellence in Biotechnology and Development, Reproductive Science Group, School of Environmental and Life Sciences, University of Newcastle, NSW 2308, Australia
| | | | | | | |
Collapse
|
7
|
The roles of the epididymis and prostasomes in the attainment of fertilizing capacity by stallion sperm. Anim Reprod Sci 2008; 107:237-48. [DOI: 10.1016/j.anireprosci.2008.04.011] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
8
|
Harrison RAP. Cyclic AMP signalling during mammalian sperm capacitation--still largely terra incognita. Reprod Domest Anim 2003; 38:102-10. [PMID: 12654020 DOI: 10.1046/j.1439-0531.2003.00400.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cyclic AMP is known to play a major role in intracellular signalling during mammalian sperm capacitation. However, despite much research, many of the molecular details of cyclic AMP's involvement remain obscure. In this review, I discuss the following aspects, presenting some original data as illustration where relevant. With respect to cyclic AMP synthesis, uncertainties exist as to the number of forms of adenylyl cyclase that are present in the spermatozoon, whether they are cytosolic or bound to subcellular structures, and which physiological effectors they respond to (e.g. bicarbonate, Ca2+, or receptor-coupled G-proteins). While net intracellular levels of cyclic AMP in spermatozoa depend upon the relative activities of adenylyl cyclase and phosphodiesterase, there are wide between-sample variations within species, both in basal levels and in levels attained after activation of the cyclase (e.g. after sperm treatment with bicarbonate). Moreover, minor changes in bulk cyclic AMP levels can result in large changes in cyclic AMP-dependent functions. Finally, while cyclic AMP levels respond very rapidly to sperm treatment by effectors such as bicarbonate and Ca2+ (key components of capacitating media), there are big discrepancies between the rates of functional response. For example, enhancement of motility and collapse of phospholipid asymmetry take place within a few minutes, whereas more than 1 h of exposure to capacitating conditions is needed for cyclic AMP-dependent protein tyrosine phosphorylation to become detectable or for the sperm population to attain a capacitated state.
Collapse
Affiliation(s)
- R A P Harrison
- Laboratory of Gamete Signalling, The Babraham Institute, Cambridge, UK.
| |
Collapse
|
9
|
Vernet P, Fulton N, Wallace C, Aitken RJ. Analysis of reactive oxygen species generating systems in rat epididymal spermatozoa. Biol Reprod 2001; 65:1102-13. [PMID: 11566731 DOI: 10.1095/biolreprod65.4.1102] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Epididymal sperm maturation culminates in the acquisition of functional competence by testicular spermatozoa. The expression of this functional state is dependent upon a redox-regulated, cAMP-mediated signal transduction cascade that controls the tyrosine phosphorylation status of the spermatozoa during capacitation. Analysis of superoxide anion (O2(-.)) generation by rat epididymal spermatozoa has revealed a two-component process involving electron leakage from the sperm mitochondria at complexes I and II and a plasma membrane NAD(P)H oxidoreductase. Following incubation in a glucose-, lactate-, and pyruvate-free medium (-GLP), O2(-.) generation was suppressed by 86% and 96% in caput and cauda spermatozoa, respectively. The addition of lactate, malate, or succinate to spermatozoa incubated in medium -GLP stimulated O2(-.) generation. This increase could be blocked by rotenone and oligomycin (R/O) in the presence of malate or lactate but not succinate. Stimulation with all three substrates, as well as spontaneous O2(-.) production in +GLP medium, was blocked by the flavoprotein inhibitor, diphenylene iodonium. Diphenylene iodonium, but not R/O, suppressed NAD(P)H-induced lucigenin-dependent chemiluminescence. This NAD(P)H-dependent enzyme resided in the sperm plasma membrane and its activity was regulated by zinc and uncharacterized cytosolic factors. Reverse transcription-polymerase chain reaction analysis indicated that the sperm NAD(P)H oxidoreductase complex is quite distinct from the equivalent leukocyte system.
Collapse
Affiliation(s)
- P Vernet
- MRC Reproductive Biology Unit, Edinburgh EH3 9ET, Scotland, UK
| | | | | | | |
Collapse
|