1
|
Kretov DA. Role of Y-Box Binding Proteins in Ontogenesis. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:S71-S74. [PMID: 35501987 DOI: 10.1134/s0006297922140061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 06/14/2023]
Abstract
Y-box binding proteins (YB proteins) are multifunctional DNA/RNA-binding proteins capable of regulating gene expression at multiple levels. At present, the most studied function of these proteins is the regulation of protein synthesis. Special attention in this review has been paid to the role of YB proteins in the control of mRNA translation and stability at the earliest stages of organism formation, from fertilization to gastrulation. Furthermore, the functions of YB proteins in the formation of germ cells, in which they accumulate in large amounts, are summarized. The review then discusses the contribution of YB proteins to the regulation of gene expression during the differentiation of various types of somatic cells. Finally, future directions in the study of YB proteins and their role in ontogenesis are considered.
Collapse
Affiliation(s)
- Dmitry A Kretov
- Department of Biochemistry, School of Medicine, Boston University, Boston, USA, 02218.
| |
Collapse
|
2
|
Wang X, Wen Y, Zhang J, Swanson G, Guo S, Cao C, Krawetz SA, Zhang Z, Yuan S. MFN2 interacts with nuage-associated proteins and is essential for male germ cell development by controlling mRNA fate during spermatogenesis. Development 2021; 148:dev.196295. [PMID: 33674260 DOI: 10.1242/dev.196295] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 02/26/2021] [Indexed: 01/06/2023]
Abstract
Mitochondria play a crucial role in spermatogenesis and are regulated by several mitochondrial fusion proteins. However, their functional importance associated with their structure formation and mRNA fate regulation during spermatogenesis remains unclear. Here, we show that mitofusin 2 (MFN2), a mitochondrial fusion protein, interacts with nuage-associated proteins (including MIWI, DDX4, TDRKH and GASZ) in mice. Conditional mutation of Mfn2 in postnatal germ cells results in male sterility due to germ cell developmental defects. Moreover, MFN2 interacts with MFN1, another mitochondrial fusion protein with a high-sequence similarity to MFN2, in testes to facilitate spermatogenesis. Simultaneous mutation of Mfn1 and Mfn2 in testes causes very severe infertile phenotypes. Importantly, we show that MFN2 is enriched in polysome fractions of testes and interacts with MSY2, a germ cell-specific DNA/RNA-binding protein, to control gamete-specific mRNA (such as Spata19) translational activity during spermatogenesis. Collectively, our findings demonstrate that MFN2 interacts with nuage-associated proteins and MSY2 to regulate male germ cell development by controlling several gamete-specific mRNA fates.
Collapse
Affiliation(s)
- Xiaoli Wang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yujiao Wen
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Jin Zhang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Grace Swanson
- Department of Obstetrics & Gynecology, Wayne State University, Detroit, MI 48201, USA
| | - Shuangshuang Guo
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Congcong Cao
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Stephen A Krawetz
- Department of Obstetrics & Gynecology, Wayne State University, Detroit, MI 48201, USA
| | - Zhibing Zhang
- Department of Obstetrics & Gynecology, Wayne State University, Detroit, MI 48201, USA.,Department of Physiology, Wayne State University, Detroit, MI 48201, USA
| | - Shuiqiao Yuan
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.,Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, Guangdong 518057, China
| |
Collapse
|
3
|
Phillips BT, Williams JG, Atchley DT, Xu X, Li JL, Adams AL, Johnson KL, Hall TMT. Mass spectrometric identification of candidate RNA-binding proteins associated with Transition Nuclear Protein mRNA in the mouse testis. Sci Rep 2019; 9:13618. [PMID: 31541158 PMCID: PMC6754440 DOI: 10.1038/s41598-019-50052-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 09/05/2019] [Indexed: 11/23/2022] Open
Abstract
Spermatogenesis is a differentiation process that requires dramatic changes to DNA architecture, a process governed in part by Transition Nuclear Proteins 1 and 2 (TNP1 and TNP2). Translation of Tnp1 and Tnp2 mRNAs is temporally disengaged from their transcription. We hypothesized that RNA regulatory proteins associate specifically with Tnp mRNAs to control the delayed timing of their translation. To identify potential regulatory proteins, we isolated endogenous mRNA/protein complexes from testis extract and identified by mass spectrometry proteins that associated with one or both Tnp transcripts. Five proteins showed strong association with Tnp transcripts but had low signal when Actin mRNA was isolated. We visualized the expression patterns in testis sections of the five proteins and found that each of the proteins was detected in germ cells at the appropriate stages to regulate Tnp RNA expression.
Collapse
Affiliation(s)
- Bart T Phillips
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA
| | - Jason G Williams
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA
| | - Dustin T Atchley
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA
| | - Xiaojiang Xu
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA
| | - Jian-Liang Li
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA
| | - Andrea L Adams
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA
| | - Katina L Johnson
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA
| | - Traci M Tanaka Hall
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA.
| |
Collapse
|
4
|
Dou X, Gao J, Gao P, Tang D, Peng D, Mao J, Huang Z, Chen P, Chen H, Ke S, Liang C, Zhang X. Association between RNA-binding protein Ptbp2 and germ cell injury in an experimentally-induced unilateral cryptorchidism murine model. PLoS One 2017; 12:e0186654. [PMID: 29045475 PMCID: PMC5646856 DOI: 10.1371/journal.pone.0186654] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Accepted: 10/03/2017] [Indexed: 01/06/2023] Open
Abstract
RNA binding protein polypyrimidine tract binding protein 2 (Ptbp2) as a key alternative splicing regulator for male germ cell development is well established. However, its expression levels and role in cryptorchidism testes tissues has not been explored. Additionally, the molecular mechanism of heat stress impacts the correct proliferation and differentiation of germ cells is unclear. To investigate whether changes in Ptbp2 expression are correlated with heat stress-induced germ cell injury in testicular tissue, we used a murine model of intraperitoneal cryptorchidism with surgical operation. Here we present compelling evidence that germ cells are severely damaged in mice with unilateral cryptorchidism, with non-obstructive azoospermia. And the Ptbp2 and Pgk2 mRNA levels were significantly decreased in parallel, leading us to conclude that the negative correlation between Ptbp2 levels and germ cell injury in unilateral cryptorchidism murine model. We hypothesize that Ptbp2 is susceptible to heat stress and its disruption has resulted in stability decline of germ cell transcripts Pgk2 mRNA, which consequently lead to germ cell injury in cryptorchidism testes. Thus, we confirm that Ptbp2 is an essential factor in heat stress-induced sperm cell injury and non-obstructive azoospermia.
Collapse
Affiliation(s)
- Xianming Dou
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Jingjing Gao
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Pan Gao
- Department of Urology, the Second Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, China
| | - Dongdong Tang
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Dangwei Peng
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Jun Mao
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Zhenyu Huang
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Peng Chen
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - He Chen
- Department of Laboratory, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Shengwei Ke
- Department of Cell and Developmental Biology, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Chaozhao Liang
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Xiansheng Zhang
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- * E-mail:
| |
Collapse
|
5
|
Keppetipola N, Sharma S, Li Q, Black DL. Neuronal regulation of pre-mRNA splicing by polypyrimidine tract binding proteins, PTBP1 and PTBP2. Crit Rev Biochem Mol Biol 2012; 47:360-78. [PMID: 22655688 DOI: 10.3109/10409238.2012.691456] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Alternative splicing patterns are regulated by RNA binding proteins that assemble onto each pre-mRNA to form a complex RNP structure. The polypyrimidine tract binding protein, PTB, has served as an informative model for understanding how RNA binding proteins affect spliceosome assembly and how changes in the expression of these proteins can control complex programs of splicing in tissues. In this review, we describe the mechanisms of splicing regulation by PTB and its function, along with its paralog PTBP2, in neuronal development.
Collapse
Affiliation(s)
- Niroshika Keppetipola
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA, USA
| | | | | | | |
Collapse
|
6
|
Delbes G, Yanagiya A, Sonenberg N, Robaire B. PABP interacting protein 2A (PAIP2A) regulates specific key proteins during spermiogenesis in the mouse. Biol Reprod 2012; 86:95. [PMID: 22190698 DOI: 10.1095/biolreprod.111.092619] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
During spermiogenesis, expression of the specific proteins needed for proper differentiation of male germ cells is under translational control. We have shown that PAIP2A is a major translational regulator involved in the maturation of male germ cells and male fertility. To identify the proteins controlled by PAIP2A during spermiogenesis, we characterized the proteomic profiles of elongated spermatids from wild-type (WT) mice and mice that were Paip2a/Paip2b double-null mutants (DKO). Elongated spermatid populations were obtained and proteins were extracted and separated on gradient polyacrylamide gels. The gels were digested with trypsin and peptides were identified by mass spectrometry. We identified 632 proteins with at least two unique peptides and a confidence level of 95%. Only 209 proteins were consistently detected in WT or DKO replicates with more than five spectra. Twenty-nine proteins were differentially expressed with at least a 1.5-fold change; 10 and 19 proteins were down- and up-regulated, respectively, in DKO compared to WT mice. We confirmed the significantly different expression levels of three proteins, EIF4G1, AKAP4, and HK1, by Western blot analysis. We have characterized novel proteins that have their expression controlled by PAIP2A; of these, 50% are involved in flagellar structure and sperm motility. Although several proteins affected by abrogation of Paip2a have established roles in reproduction, the roles of many others remain to be determined.
Collapse
Affiliation(s)
- Geraldine Delbes
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
7
|
Idler RK, Yan W. Control of messenger RNA fate by RNA-binding proteins: an emphasis on mammalian spermatogenesis. ACTA ACUST UNITED AC 2011; 33:309-37. [PMID: 21757510 DOI: 10.2164/jandrol.111.014167] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Posttranscriptional status of messenger RNAs (mRNA) can be affected by many factors, most of which are RNA-binding proteins (RBP) that either bind mRNA in a nonspecific manner or through specific motifs, usually located in the 3' untranslated regions. RBPs can also be recruited by small noncoding RNAs (sncRNA), which have been shown to be involved in posttranscriptional regulations and transposon repression (eg, microRNAs or P-element-induced wimpy testis-interacting RNA) as components of the sncRNA effector complex. Non-sncRNA-binding RBPs have much more diverse effects on their target mRNAs. Some can cause degradation of their target transcripts and/or repression of translation, whereas others can stabilize and/or activate translation. The splicing and exportation of transcripts from the nucleus to the cytoplasm are often mediated by sequence-specific RBPs. The mechanisms by which RBPs regulate mRNA transcripts involve manipulating the 3' poly(A) tail, targeting the transcript to polysomes or to other ribonuclear protein particles, recruiting regulatory proteins, or competing with other RBPs. Here, we briefly review the known mechanisms of posttranscriptional regulation mediated by RBPs, with an emphasis on how these mechanisms might control spermatogenesis in general.
Collapse
Affiliation(s)
- R Keegan Idler
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557, USA
| | | |
Collapse
|
8
|
Xu M, Hecht NB. Polypyrimidine tract-binding protein 2 binds to selective, intronic messenger RNA and microRNA targets in the mouse testis. Biol Reprod 2010; 84:435-9. [PMID: 20980688 DOI: 10.1095/biolreprod.110.087114] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Here we use an in vivo cross-linking and immunoprecipitation procedure to detect RNA targets of the multifunctional RNA-binding protein polypyrimidine tract-binding protein (PTBP) 2 in mouse testis. Eleven known mRNAs, including Ptbp2 mRNA, 28 RNAs matching intron sequences, and 12 small RNAs and repeat sequences are identified. The specificity of interaction between PTBP2 and its target RNAs was confirmed using RNA interference with mouse N2A cells. Reduction of PTBP2 levels led to decreases in 7 of 10 of the mRNAs, to the repression of alternative splicing of introns, and to reductions in specific miRNAs.
Collapse
Affiliation(s)
- Mingang Xu
- Center for Research on Reproduction and Women's Health, University of Pennsylvania School of Medicine, 421 Curie Boulevard, Philadelphia, PA 19104-6080, USA
| | | |
Collapse
|
9
|
Bettegowda A, Wilkinson MF. Transcription and post-transcriptional regulation of spermatogenesis. Philos Trans R Soc Lond B Biol Sci 2010; 365:1637-51. [PMID: 20403875 DOI: 10.1098/rstb.2009.0196] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Spermatogenesis in mammals is achieved by multiple players that pursue a common goal of generating mature spermatozoa. The developmental processes acting on male germ cells that culminate in the production of the functional spermatozoa are regulated at both the transcription and post-transcriptional levels. This review addresses recent progress towards understanding such regulatory mechanisms and identifies future challenges to be addressed in this field. We focus on transcription factors, chromatin-associated factors and RNA-binding proteins necessary for spermatogenesis and/or sperm maturation. Understanding the molecular mechanisms that govern spermatogenesis has enormous implications for new contraceptive approaches and treatments for infertility.
Collapse
Affiliation(s)
- Anilkumar Bettegowda
- Department of Reproductive Medicine, University of California, San Diego, 9500 Gilman Drive, MC 0864, La Jolla, CA 92093-0864, USA
| | | |
Collapse
|
10
|
Yanagiya A, Delbes G, Svitkin YV, Robaire B, Sonenberg N. The poly(A)-binding protein partner Paip2a controls translation during late spermiogenesis in mice. J Clin Invest 2010; 120:3389-400. [PMID: 20739757 DOI: 10.1172/jci43350] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Accepted: 07/14/2010] [Indexed: 11/17/2022] Open
Abstract
Translational control plays a key role in late spermiogenesis. A number of mRNAs encoding proteins required for late spermiogenesis are expressed in early spermatids but are stored as translationally inactive messenger ribonucleoprotein particles (mRNPs). The translation of these mRNAs is associated with shortening of their poly(A) tail in late spermiogenesis. Poly(A)-binding protein (Pabp) plays an important role in mRNA stabilization and translation. Three Pabp-interacting proteins, Paip1, Paip2a, and Paip2b, have been described. Paip2a is expressed in late spermatids. To investigate the role of Paip2 in spermiogenesis, we generated mice with knockout of either Paip2a or Paip2b and double-KO (DKO) mice lacking both Paip2a and Paip2b. Paip2a-KO and Paip2a/Paip2b-DKO mice exhibited male infertility. Translation of several mRNAs encoding proteins essential to male germ cell development was inhibited in late spermiogenesis in Paip2a/Paip2b-DKO mice, resulting in defective elongated spermatids. Inhibition of translation in Paip2a/Paip2b-DKO mice was caused by aberrant increased expression of Pabp, which impaired the interaction between eukaryotic initiation factor 4E (eIF4E) and the cap structure at the 5' end of the mRNA. We therefore propose a model whereby efficient mRNA translation in late spermiogenesis occurs at an optimal concentration of Pabp, a condition not fulfilled in Paip2a/Paip2b-DKO mice.
Collapse
Affiliation(s)
- Akiko Yanagiya
- Department of Biochemistry and Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada
| | | | | | | | | |
Collapse
|
11
|
Drosophila polypyrimidine tract-binding protein is necessary for spermatid individualization. Proc Natl Acad Sci U S A 2010; 107:12570-5. [PMID: 20616016 DOI: 10.1073/pnas.1007935107] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Although mammalian polypyrimidine tract-binding (PTB) protein functions in most or all cell types to regulate a wide spectrum of transcripts, Drosophila PTB encodes an abundant male germline-specific mRNA isoform (dmPTB) whose expression correlates with male fertility. The biological function of this isoform is unknown. Using selection-amplification, we show that mammalian and Drosophila PTB have similar RNA sequence preference, suggesting that cell-specific expression rather than unique RNA-binding properties account for the sex-specific function of dmPTB. We also show that the dmPTB protein isoform expressed in the male germline is by far the most abundant isoform, and reduction of its levels correlates with male sterility. Finally, we show that dmPTB expression is necessary for proper spermatid individualization, the terminal step necessary for production of motile sperm. Loss of dmPTB results in severe disruption of the actin cones of the spermatid individualization complex. This represents a cytological defect resulting from PTB loss. We discuss the basis for functional differences between mammalian and Drosophila PTB orthologs.
Collapse
|
12
|
Huang S, Li H, Ding X, Xiong C. Presence and Characterization of Cell-Free Seminal RNA in Healthy Individuals: Implications for Noninvasive Disease Diagnosis and Gene Expression Studies of the Male Reproductive System. Clin Chem 2009; 55:1967-76. [PMID: 19745059 DOI: 10.1373/clinchem.2009.131128] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Abstract
Background: We recently detected cell-free seminal RNA (cfsRNA) and set out to study its concentration, integrity, stability in healthy individuals, and mechanisms for its protection from ribonucleases.
Methods: We quantified cfsRNA by reverse-transcription quantitative real-time PCR (RT-qPCR) targeting of the 5′ region of the ACTB (actin, beta) transcript. cfsRNA integrity was analyzed by microcapillary electrophoresis and by amplification of full-length ACTB and DDX4 [DEAD (Asp-Glu-Ala-Asp) box polypeptide 4] transcripts, including measurement of the relative amounts of different regions of ACTB and DDX4 transcripts. Stability of cfsRNA was measured by time-course analysis of different regions of ACTB and DDX4 transcripts. To investigate whether cfsRNA was protected in complexed forms, we processed seminal plasma in 2 ways: filtration through pores of different sizes and Triton X-100 treatment before RNA recovery.
Results: cfsRNA concentrations varied from 0.87–3.64 mg/L [mean (SD), 1.75 mg/L (0.92 mg/L)]. Most cfsRNA was present in partially degraded forms, with smaller amounts of middle and 3′ amplicons compared with 5′ amplicons. Although the 3′ region of the DDX4 transcript was degraded completely by 90 min, the 5′ regions of ACTB and DDX4 transcripts were stable up to 24 h. Filtration through 0.22-μm pores reduced ACTB and DDX4 mRNA concentrations by 72% and 61%, respectively. Nearly all seminal ACTB and DDX4 mRNA disappeared after Triton X-100 treatment.
Conclusions: Although cfsRNA was partially degraded, it represented diverse transcript species and was abundant, fairly stable, and associated with particles in healthy individuals. cfsRNA may represent a potential noninvasive biomarker of the male reproductive system and of germline epigenetics.
Collapse
Affiliation(s)
- Shiyun Huang
- Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Honggang Li
- Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Tongji Reproductive Medicine Hospital, Wuhan, China
| | - Xiaofang Ding
- Centre of Reproductive Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chengliang Xiong
- Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Tongji Reproductive Medicine Hospital, Wuhan, China
| |
Collapse
|
13
|
Carrell DT. Elucidating the genetics of male infertility: understanding transcriptional and translational regulatory networks involved in spermatogenesis. ACTA ACUST UNITED AC 2008; 31:455-6. [DOI: 10.1111/j.1365-2605.2008.00913.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|