1
|
Lacalle E, Martínez-Martínez S, Fernández-Alegre E, Soriano-Úbeda C, Morrell J, Martínez-Pastor F. Low-density colloid centrifugation removes bacteria from boar semen doses after spiking with selected species. Res Vet Sci 2023; 158:215-225. [PMID: 37031470 DOI: 10.1016/j.rvsc.2023.03.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023]
Abstract
Single-layer centrifugation (SLC) with a low-density colloid is an efficient method for removing contaminating microorganisms from boar semen while recovering most spermatozoa from the original sample. This study tested the performance of this technique, using 50-ml tubes, by spiking commercial semen doses prepared without antibiotics with selected bacterial species followed by storage at 17 °C. The doses were spiked up to 102/ml CFU (colony forming units) of the bacteria Burkholderia ambifaria, Pseudomonas aeruginosa, and Staphylococcus simulans. The semen was processed by SLC (15 ml of sample and 15 ml of colloid) with the colloid Porcicoll at 20% (P20) and 30% (P30), with a spiked control (CTL) and an unspiked control (CTL0), analyzing microbiology and sperm quality on days 0, 3 and 7. SLC completely removed B. ambifaria and S. simulans, considerably reducing P. aeruginosa and overall contamination (especially P30, ∼104 CFU/ml of total contamination on day 7, median). Sperm viability was lower in P20 and P30 samples at day 0, with higher cytoplasmic ROS. Still, results were similar in all groups on day 3 and reversed on day 7, indicating a protective effect of SLC (possibly directly by removal of damaged sperm and indirectly because of lower bacterial contamination). Sperm chromatin was affected by the treatment (lower DNA fragmentation and chromatin decondensation) and storage (higher overall condensation on day 7 as per chromomycin A3 and monobromobimane staining). In conclusion, SLC with low-density colloids can remove most bacteria in a controlled contamination design while potentially improving sperm quality and long-term storage at practical temperatures.
Collapse
|
2
|
H4K5 Butyrylation Coexist with Acetylation during Human Spermiogenesis and Are Retained in the Mature Sperm Chromatin. Int J Mol Sci 2022; 23:ijms232012398. [PMID: 36293256 PMCID: PMC9604518 DOI: 10.3390/ijms232012398] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/30/2022] [Accepted: 10/10/2022] [Indexed: 11/17/2022] Open
Abstract
Male germ cells experience a drastic chromatin remodeling through the nucleo-histone to nucleo-protamine (NH-NP) transition necessary for proper sperm functionality. Post-translational modifications (PTMs) of H4 Lys5, such as acetylation (H4K5ac), play a crucial role in epigenetic control of nucleosome disassembly facilitating protamine incorporation into paternal DNA. It has been shown that butyrylation on the same residue (H4K5bu) participates in temporal regulation of NH-NP transition in mice, delaying the bromodomain testis specific protein (BRDT)-dependent nucleosome disassembly and potentially marking retained nucleosomes. However, no information was available so far on this modification in human sperm. Here, we report a dual behavior of H4K5bu and H4K5ac in human normal spermatogenesis, suggesting a specific role of H4K5bu during spermatid elongation, coexisting with H4K5ac although with different starting points. This pattern is stable under different testicular pathologies, suggesting a highly conserved function of these modifications. Despite a drastic decrease of both PTMs in condensed spermatids, they are retained in ejaculated sperm, with 30% of non-colocalizing nucleosome clusters, which could reflect differential paternal genome retention. Whereas no apparent effect of these PTMs was observed associated with sperm quality, their presence in mature sperm could entail a potential role in the zygote.
Collapse
|
3
|
Rezaei-Gazik M, Vargas A, Amiri-Yekta A, Vitte AL, Akbari A, Barral S, Esmaeili V, Chuffart F, Sadighi-Gilani MA, Couté Y, Eftekhari-Yazdi P, Khochbin S, Rousseaux S, Totonchi M. Direct visualization of pre-protamine 2 detects protamine assembly failures and predicts ICSI success. Mol Hum Reprod 2022; 28:6527641. [PMID: 35150275 DOI: 10.1093/molehr/gaac004] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/24/2022] [Indexed: 11/13/2022] Open
Abstract
Histone-to-protamine transition is an essential step in the generation of fully functional spermatozoa in various mammalian species. In human and mouse, one of the two protamine-encoding genes produces a precursor pre-protamine 2 (pre-PRM2) protein, which is then processed and assembled. Here we design an original approach based on the generation of pre-PRM2-specific antibodies to visualize the unprocessed pre-PRM2 by microscopy, flow cytometry and immunoblotting. Using mouse models with characterized failures in histone-to-protamine replacement, we show that pre-Prm2 retention is tightly linked to nucleosome disassembly. Additionally, in elongating/condensing spermatids, we observe that pre-Prm2 and transition protein are co-expressed spatiotemporally, and their physical interaction suggests that these proteins act simultaneously rather than successively during histone replacement. By using our anti-human pre-PRM2 antibody we also measured pre-PRM2 retention rates in the spermatozoa from 49 men of a series of infertile couples undergoing ICSI, which shed new light on the debated relation between pre-PRM2 retention and sperm parameters. Finally, by monitoring 2-pronuclei (2PN) embryo formation following ICSI, we evaluated the fertilization ability of the sperm in these 49 patients. Our results suggest that the extent of pre-PRM2 retention in sperm, rather than pre-PRM2 accumulation per se, is associated with fertilization failure. Hence, anti-pre-PRM2/pre-Prm2 antibodies are valuable tools which could be used in routine monitoring of sperm parameters in fertility clinics, as well as in experimental research programmes to better understand the obscure process of histone-to-protamine transition.
Collapse
Affiliation(s)
- Maryam Rezaei-Gazik
- Department of Developmental Biology, University of Science and Culture, Tehran, Iran.,Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Alexandra Vargas
- CNRS UMR 5309, Inserm U1209, Université Grenoble Alpes, Institute for Advanced Biosciences, Grenoble, 38700, France
| | - Amir Amiri-Yekta
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.,CNRS UMR 5309, Inserm U1209, Université Grenoble Alpes, Institute for Advanced Biosciences, Grenoble, 38700, France
| | - Anne-Laure Vitte
- CNRS UMR 5309, Inserm U1209, Université Grenoble Alpes, Institute for Advanced Biosciences, Grenoble, 38700, France
| | - Arvand Akbari
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Sophie Barral
- CNRS UMR 5309, Inserm U1209, Université Grenoble Alpes, Institute for Advanced Biosciences, Grenoble, 38700, France
| | - Vahid Esmaeili
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Florent Chuffart
- CNRS UMR 5309, Inserm U1209, Université Grenoble Alpes, Institute for Advanced Biosciences, Grenoble, 38700, France
| | - Mohammad Ali Sadighi-Gilani
- Department of Andrology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Yohann Couté
- Université Grenoble Alpes; Inserm, CEA, UMR BioSanté U1292, CNRS CEA FR2048, Grenoble, 38000, France
| | - Poopak Eftekhari-Yazdi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Saadi Khochbin
- CNRS UMR 5309, Inserm U1209, Université Grenoble Alpes, Institute for Advanced Biosciences, Grenoble, 38700, France
| | - Sophie Rousseaux
- CNRS UMR 5309, Inserm U1209, Université Grenoble Alpes, Institute for Advanced Biosciences, Grenoble, 38700, France
| | - Mehdi Totonchi
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| |
Collapse
|
4
|
Protamine Characterization by Top-Down Proteomics: Boosting Proteoform Identification with DBSCAN. Proteomes 2021; 9:proteomes9020021. [PMID: 33946530 PMCID: PMC8162566 DOI: 10.3390/proteomes9020021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/25/2021] [Accepted: 04/27/2021] [Indexed: 12/12/2022] Open
Abstract
Protamines replace histones as the main nuclear protein in the sperm cells of many species and play a crucial role in compacting the paternal genome. Human spermatozoa contain protamine 1 (P1) and the family of protamine 2 (P2) proteins. Alterations in protamine PTMs or the P1/P2 ratio may be associated with male infertility. Top-down proteomics enables large-scale analysis of intact proteoforms derived from alternative splicing, missense or nonsense genetic variants or PTMs. In contrast to current gold standard techniques, top-down proteomics permits a more in-depth analysis of protamine PTMs and proteoforms, thereby opening up new perspectives to unravel their impact on male fertility. We report on the analysis of two normozoospermic semen samples by top-down proteomics. We discuss the difficulties encountered with the data analysis and propose solutions as this step is one of the current bottlenecks in top-down proteomics with the bioinformatics tools currently available. Our strategy for the data analysis combines two software packages, ProSight PD (PS) and TopPIC suite (TP), with a clustering algorithm to decipher protamine proteoforms. We identified up to 32 protamine proteoforms at different levels of characterization. This in-depth analysis of the protamine proteoform landscape of normozoospermic individuals represents the first step towards the future study of sperm pathological conditions opening up the potential personalized diagnosis of male infertility.
Collapse
|
5
|
The impact of cryopreservation on the morphology of spermatozoa in men with oligoasthenoteratozoospermia. Cryobiology 2021; 100:117-124. [PMID: 33667435 DOI: 10.1016/j.cryobiol.2021.02.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 02/26/2021] [Accepted: 02/26/2021] [Indexed: 11/21/2022]
Abstract
The cryopreservation of ejaculate can reduce the viability, motility, and morphological characteristics of the spermatozoa of infertile men. Oligoasthenoteratozoospermia (OAT) is the most common cause of male subfertility. The aim of this study was to evaluate the morphological characteristics and viability of progressive motile sperm fraction before and after cryopreservation, and to determine whether cryopreservation of progressive motile sperm fraction is effective in eliminating morphologically abnormal sperm in men with OAT. An increased proportion of spermatozoa with normal morphology in fresh progressive motile sperm fraction compared with fresh ejaculate has been observed. After cryopreservation, the motility was 65.5 ± 8.8%; the proportion of spermatozoa with normal morphology increased non-significantly compared with freshly prepared motile sperm fraction (35.6 ± 5.5%). Concurrently, the proportion of cryopreserved spermatozoa with head defects increased significantly by 1.7 times (to 38.4 ± 4.7%) and the proportion of almost all morphologically abnormal sperm cells, particularly spermatozoa with multiple abnormalities, was reduced significantly. These data appear to be a novel finding in the context of patients with OAT. Using such spermatozoa for in vitro fertilization leads to a significant decrease in both a number of embryos at the cleavage stage and the blastocysts formation rate. High-magnification sperm morphology examination and selection, IMSI, post-cryopreservation significantly increased the likelihood of successful oocyte fertilization and subsequent embryo development.
Collapse
|
6
|
Luense LJ, Donahue G, Lin-Shiao E, Rangel R, Weller AH, Bartolomei MS, Berger SL. Gcn5-Mediated Histone Acetylation Governs Nucleosome Dynamics in Spermiogenesis. Dev Cell 2019; 51:745-758.e6. [PMID: 31761669 DOI: 10.1016/j.devcel.2019.10.024] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 07/12/2019] [Accepted: 10/21/2019] [Indexed: 12/16/2022]
Abstract
During mammalian spermatogenesis, germ cell chromatin undergoes dramatic histone acetylation-mediated reorganization, whereby 90%-99% of histones are evicted. Given the potential role of retained histones in fertility and embryonic development, the genomic location of retained nucleosomes is of great interest. However, the ultimate position and mechanisms underlying nucleosome eviction or retention are poorly understood, including several studies utilizing micrococcal-nuclease sequencing (MNase-seq) methodologies reporting remarkably dissimilar locations. We utilized assay for transposase accessible chromatin sequencing (ATAC-seq) in mouse sperm and found nucleosome enrichment at promoters but also retention at inter- and intragenic regions and repetitive elements. We further generated germ-cell-specific, conditional knockout mice for the key histone acetyltransferase Gcn5, which resulted in abnormal chromatin dynamics leading to increased sperm histone retention and severe reproductive phenotypes. Our findings demonstrate that Gcn5-mediated histone acetylation promotes chromatin accessibility and nucleosome eviction in spermiogenesis and that loss of histone acetylation leads to defects that disrupt male fertility and potentially early embryogenesis.
Collapse
Affiliation(s)
- Lacey J Luense
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Greg Donahue
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Enrique Lin-Shiao
- Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Biomedical Sciences Graduate Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Richard Rangel
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Angela H Weller
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Marisa S Bartolomei
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Shelley L Berger
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
7
|
Abstract
Infertility affects nearly 15 per cent of all couples within the reproductive age worldwide, with about 50 per cent being exhibited in the male, called male factor infertility. Successful reproduction is dependent on sperm chromatin integrity. Spermatozoa are highly specialized cells that aim to transmit the paternal genomic blueprint to the oocyte. The spermatozoon is regulated by redox mechanisms during its epididymal transit to acquire fertilizing ability. While, at physiological levels, the production of reactive oxygen species (ROS) supports the spermatozoon to acquire its fertilizing ability, at high concentrations, it affects sperm function leading to infertility. Emerging proteomic technologies provide an opportunity to address these key issues that may solve many fertility-associated problems resulting from oxidative stress (OS). This review highlights the need for an efficient therapeutic approach to male infertility with the application of high-throughput OS-mediated proteomic technology, and also addresses the question as to whether targeting these altered sperm-specific proteins may help in designing an efficient and reversible male contraceptive.
Collapse
Affiliation(s)
- Gayatri Mohanty
- Department of Zoology, Redox Biology Laboratory, Ravenshaw University, Cuttack, India
| | - Luna Samanta
- Department of Zoology, Redox Biology Laboratory, Ravenshaw University, Cuttack, India
| |
Collapse
|
8
|
Schon SB, Luense LJ, Wang X, Bartolomei MS, Coutifaris C, Garcia BA, Berger SL. Histone modification signatures in human sperm distinguish clinical abnormalities. J Assist Reprod Genet 2018; 36:267-275. [PMID: 30397898 DOI: 10.1007/s10815-018-1354-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 10/22/2018] [Indexed: 12/29/2022] Open
Abstract
PURPOSE Alternations to the paternal epigenome, specifically the components of sperm chromatin, can lead to infertility in humans and potentially transmit aberrant information to the embryo. One key component of sperm chromatin is the post-translational modification of histones (PTMs). We previously identified a comprehensive profile of histone PTMs in normozoospermic sperm; however, only specific histone PTMs have been identified in abnormal sperm by antibody-based approaches and comprehensive changes to histone PTM profiles remain unknown. Here, we investigate if sperm with abnormalities of total motility, progressive motility, and morphology have altered histone PTM profiles compared to normozoospermic sperm samples. METHODS Discarded semen samples from 31 men with normal or abnormal semen parameters were analyzed for relative abundance of PTMs on histone H3 and H4 by "bottom-up" nano-liquid chromatography-tandem mass spectrometry. RESULTS Asthenoteratozoospermic samples (abnormal motility, forward progression, and morphology, n = 6) displayed overall decreased H4 acetylation (p = 0.001) as well as alterations in H4K20 (p = 0.003) and H3K9 methylation (p < 0.04) when compared to normozoospermic samples (n = 8). Asthenozoospermic samples (abnormal motility and progression, n = 5) also demonstrated decreased H4 acetylation (p = 0.04) and altered H4K20 (p = 0.005) and H3K9 methylation (p < 0.04). Samples with isolated abnormal progression (n = 6) primarily demonstrated decreased acetylation on H4 (p < 0.02), and teratozoospermic samples (n = 6) appeared similar to normozoospermic samples (n = 8). CONCLUSION Sperm samples with combined and isolated abnormalities of total motility, progressive motility, and morphology display distinct and altered histone PTM signatures compared to normozoospermic sperm. This provides evidence that alterations in histone PTMs may be important for normal sperm function and fertility.
Collapse
Affiliation(s)
- Samantha B Schon
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, University of Pennsylvania, 3701 Market Street, Suite 800, Philadelphia, PA, 19104, USA. .,Division of Reproductive Endocrinology & Infertility, Department of Obstetrics and Gynecology, University of Michigan Medical School, L4000 UH-South, 1500 E. Medical Center Drive, Ann Arbor, MI, 48109, USA.
| | - Lacey J Luense
- Department of Cell and Developmental Biology, Perelman School of Medicine, 9-125 Smilow Center for Translational Research, University of Pennsylvania, 3400 Civic Center Blvd, Bldg 421, Philadelphia, PA, 19104-6058, USA.,Epigenetics Institute, Perelman School of Medicine, 9-125 Smilow Center for Translational Research, University of Pennsylvania, 3400 Civic Center Blvd, Bldg 421, Philadelphia, PA, 19104-6058, USA
| | - Xiaoshi Wang
- Epigenetics Institute, Perelman School of Medicine, 9-125 Smilow Center for Translational Research, University of Pennsylvania, 3400 Civic Center Blvd, Bldg 421, Philadelphia, PA, 19104-6058, USA.,Department of Biochemistry and Molecular Biophysics, Perelman School of Medicine, 9-125 Smilow Center for Translational Research, University of Pennsylvania, 3400 Civic Center Blvd, Bldg 421, Philadelphia, PA, 19104, USA
| | - Marisa S Bartolomei
- Department of Cell and Developmental Biology, Perelman School of Medicine, 9-125 Smilow Center for Translational Research, University of Pennsylvania, 3400 Civic Center Blvd, Bldg 421, Philadelphia, PA, 19104-6058, USA.,Epigenetics Institute, Perelman School of Medicine, 9-125 Smilow Center for Translational Research, University of Pennsylvania, 3400 Civic Center Blvd, Bldg 421, Philadelphia, PA, 19104-6058, USA
| | - Christos Coutifaris
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, University of Pennsylvania, 3701 Market Street, Suite 800, Philadelphia, PA, 19104, USA
| | - Benjamin A Garcia
- Epigenetics Institute, Perelman School of Medicine, 9-125 Smilow Center for Translational Research, University of Pennsylvania, 3400 Civic Center Blvd, Bldg 421, Philadelphia, PA, 19104-6058, USA.,Department of Biochemistry and Molecular Biophysics, Perelman School of Medicine, 9-125 Smilow Center for Translational Research, University of Pennsylvania, 3400 Civic Center Blvd, Bldg 421, Philadelphia, PA, 19104, USA
| | - Shelley L Berger
- Department of Cell and Developmental Biology, Perelman School of Medicine, 9-125 Smilow Center for Translational Research, University of Pennsylvania, 3400 Civic Center Blvd, Bldg 421, Philadelphia, PA, 19104-6058, USA. .,Epigenetics Institute, Perelman School of Medicine, 9-125 Smilow Center for Translational Research, University of Pennsylvania, 3400 Civic Center Blvd, Bldg 421, Philadelphia, PA, 19104-6058, USA.
| |
Collapse
|
9
|
Cabrillana ME, Monclus MDLÁ, Lancellotti TES, Boarelli PV, Vincenti AE, Fornés MM, Sanabria EA, Fornés MW. Thiols of flagellar proteins are essential for progressive motility in human spermatozoa. Reprod Fertil Dev 2018; 29:1435-1446. [PMID: 27363428 DOI: 10.1071/rd16225] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 06/04/2016] [Indexed: 11/23/2022] Open
Abstract
Male infertility is a disorder of the reproductive system defined by the failure to achieve a clinical pregnancy after 12 months or more of regular unprotected sexual intercourse. The presence of low-motile or immotile spermatozoa is one of many causes of infertility; however, this observation provides little or no information regarding the pathogenesis of the malfunction. Good sperm motility depends on correct assembly of the sperm tail in the testis and efficient maturation during epididymal transit. Thiols of flagellar proteins, such as outer dense fibre protein 1 (ODF1), are oxidised to form disulfides during epididymal transit and the spermatozoa become motile. This study was designed to determine how oxidative changes in protein thiol status affect progressive motility in human spermatozoa. Monobromobimane (mBBr) was used as a specific thiol marker and disruptor of sperm progressive motility. When mBBr was blocked by dithiothreitol it did not promote motility changes. The analysis of mBBr-treated spermatozoa revealed a reduction of progressive motility and an increased number of spermatozoa with non-progressive motility without affecting ATP production. Laser confocal microscopy and western blot analysis showed that one of the mBBr-positive proteins reacted with an antibody to ODF1. Monobromobimane fluorescence intensity of the sperm tail was lower in normozoospermic than asthenozoospermic men, suggesting that thiol oxidation in spermatozoa of asthenozoospermic men is incomplete. Our findings indicate that mBBr affects the thiol status of ODF1 in human spermatozoa and interferes with progressive motility.
Collapse
Affiliation(s)
- María Eugenia Cabrillana
- Andrologic Research Laboratory of Mendoza (LIAM), Histology and Embryology Institute of Mendoza (IHEM), Histology and Embryology Area, Department of Morphology and Physiology, School of Medicine, National University of Cuyo and CCT-Mendoza, CONICET, Mendoza, Argentina
| | - María de Los Ángeles Monclus
- Andrologic Research Laboratory of Mendoza (LIAM), Histology and Embryology Institute of Mendoza (IHEM), Histology and Embryology Area, Department of Morphology and Physiology, School of Medicine, National University of Cuyo and CCT-Mendoza, CONICET, Mendoza, Argentina
| | - Tania Estefania Sáez Lancellotti
- Andrologic Research Laboratory of Mendoza (LIAM), Histology and Embryology Institute of Mendoza (IHEM), Histology and Embryology Area, Department of Morphology and Physiology, School of Medicine, National University of Cuyo and CCT-Mendoza, CONICET, Mendoza, Argentina
| | - Paola Vanina Boarelli
- Andrologic Research Laboratory of Mendoza (LIAM), Histology and Embryology Institute of Mendoza (IHEM), Histology and Embryology Area, Department of Morphology and Physiology, School of Medicine, National University of Cuyo and CCT-Mendoza, CONICET, Mendoza, Argentina
| | - Amanda Edith Vincenti
- Andrologic Research Laboratory of Mendoza (LIAM), Histology and Embryology Institute of Mendoza (IHEM), Histology and Embryology Area, Department of Morphology and Physiology, School of Medicine, National University of Cuyo and CCT-Mendoza, CONICET, Mendoza, Argentina
| | | | - Eduardo Alfredo Sanabria
- Basic Science Institute, Facultad de Ciencias Exactas, Físicas y Naturales, Av. Ignacio de la Roza 590 (O), Complejo Universitario "Islas Malvinas", Rivadavia, National University of San Juan and CCT-CONICET, San Juan, Argentina
| | - Miguel Walter Fornés
- Andrologic Research Laboratory of Mendoza (LIAM), Histology and Embryology Institute of Mendoza (IHEM), Histology and Embryology Area, Department of Morphology and Physiology, School of Medicine, National University of Cuyo and CCT-Mendoza, CONICET, Mendoza, Argentina
| |
Collapse
|
10
|
Alhathal N, San Gabriel M, Zini A. Beneficial effects of microsurgical varicocoelectomy on sperm maturation, DNA fragmentation, and nuclear sulfhydryl groups: a prospective trial. Andrology 2016; 4:1204-1208. [DOI: 10.1111/andr.12256] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 05/28/2016] [Accepted: 06/22/2016] [Indexed: 11/30/2022]
Affiliation(s)
| | | | - A. Zini
- McGill University; Montreal QC Canada
| |
Collapse
|
11
|
Luense LJ, Wang X, Schon SB, Weller AH, Lin Shiao E, Bryant JM, Bartolomei MS, Coutifaris C, Garcia BA, Berger SL. Comprehensive analysis of histone post-translational modifications in mouse and human male germ cells. Epigenetics Chromatin 2016; 9:24. [PMID: 27330565 PMCID: PMC4915177 DOI: 10.1186/s13072-016-0072-6] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 05/26/2016] [Indexed: 01/01/2023] Open
Abstract
Background During the process of spermatogenesis, male germ cells undergo dramatic chromatin reorganization, whereby most histones are replaced by protamines, as part of the pathway to compact the genome into the small nuclear volume of the sperm head. Remarkably, approximately 90 % (human) to 95 % (mouse) of histones are evicted during the process. An intriguing hypothesis is that post-translational modifications (PTMs) decorating histones play a critical role in epigenetic regulation of spermatogenesis and embryonic development following fertilization. Although a number of specific histone PTMs have been individually studied during spermatogenesis and in mature mouse and human sperm, to date, there is a paucity of comprehensive identification of histone PTMs and their dynamics during this process. Results Here we report systematic investigation of sperm histone PTMs and their dynamics during spermatogenesis. We utilized “bottom-up” nanoliquid chromatography–tandem mass spectrometry (nano-LC–MS/MS) to identify histone PTMs and to determine their relative abundance in distinct stages of mouse spermatogenesis (meiotic, round spermatids, elongating/condensing spermatids, and mature sperm) and in human sperm. We detected peptides and histone PTMs from all four canonical histones (H2A, H2B, H3, and H4), the linker histone H1, and multiple histone isoforms of H1, H2A, H2B, and H3 in cells from all stages of mouse spermatogenesis and in mouse sperm. We found strong conservation of histone PTMs for histone H3 and H4 between mouse and human sperm; however, little conservation was observed between H1, H2A, and H2B. Importantly, across eight individual normozoospermic human semen samples, little variation was observed in the relative abundance of nearly all histone PTMs. Conclusion In summary, we report the first comprehensive and unbiased analysis of histone PTMs at multiple time points during mouse spermatogenesis and in mature mouse and human sperm. Furthermore, our results suggest a largely uniform histone PTM signature in sperm from individual humans. Electronic supplementary material The online version of this article (doi:10.1186/s13072-016-0072-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lacey J Luense
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104 USA.,Epigenetics Program, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Xiaoshi Wang
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104 USA.,Epigenetics Program, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Samantha B Schon
- Department of Reproductive Endocrinology and Infertility, Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, PA 19104 USA.,Epigenetics Program, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Angela H Weller
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104 USA.,Epigenetics Program, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Enrique Lin Shiao
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104 USA.,Epigenetics Program, University of Pennsylvania, Philadelphia, PA 19104 USA.,Biomedical Sciences Graduate Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Jessica M Bryant
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104 USA.,Epigenetics Program, University of Pennsylvania, Philadelphia, PA 19104 USA.,Biomedical Sciences Graduate Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA.,Institute Pasteur, 75724 Paris, France
| | - Marisa S Bartolomei
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104 USA.,Epigenetics Program, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Christos Coutifaris
- Department of Reproductive Endocrinology and Infertility, Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Benjamin A Garcia
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104 USA.,Epigenetics Program, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Shelley L Berger
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104 USA.,Epigenetics Program, University of Pennsylvania, Philadelphia, PA 19104 USA
| |
Collapse
|
12
|
Castillo J, Estanyol JM, Ballescá JL, Oliva R. Human sperm chromatin epigenetic potential: genomics, proteomics, and male infertility. Asian J Androl 2016; 17:601-9. [PMID: 25926607 PMCID: PMC4492051 DOI: 10.4103/1008-682x.153302] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The classical idea about the function of the mammalian sperm chromatin is that it serves to transmit a highly protected and transcriptionally inactive paternal genome, largely condensed by protamines, to the next generation. In addition, recent sperm chromatin genome-wide dissection studies indicate the presence of a differential distribution of the genes and repetitive sequences in the protamine-condensed and histone-condensed sperm chromatin domains, which could be potentially involved in regulatory roles after fertilization. Interestingly, recent proteomic studies have shown that sperm chromatin contains many additional proteins, in addition to the abundant histones and protamines, with specific modifications and chromatin affinity features which are also delivered to the oocyte. Both gene and protein signatures seem to be altered in infertile patients and, as such, are consistent with the potential involvement of the sperm chromatin landscape in early embryo development. This present work reviews the available information on the composition of the human sperm chromatin and its epigenetic potential, with a particular focus on recent results derived from high-throughput genomic and proteomic studies. As a complement, we provide experimental evidence for the detection of phosphorylations and acetylations in human protamine 1 using a mass spectrometry approach. The available data indicate that the sperm chromatin is much more complex than what it was previously thought, raising the possibility that it could also serve to transmit crucial paternal epigenetic information to the embryo.
Collapse
Affiliation(s)
| | | | | | - Rafael Oliva
- Human Genetics Research Group, IDIBAPS, Faculty of Medicine, University of Barcelona, Casanova 143; Biochemistry and Molecular Genetics Service, Biomedical Diagnostic Centre, Hospital Clinic, Villarroel 170, 08036 Barcelona, Spain
| |
Collapse
|
13
|
The "omics" of human male infertility: integrating big data in a systems biology approach. Cell Tissue Res 2015; 363:295-312. [PMID: 26661835 DOI: 10.1007/s00441-015-2320-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 10/26/2015] [Indexed: 12/11/2022]
Abstract
Spermatogenesis is a complex process in which >2300 genes are temporally and spatially regulated to form a terminally differentiated sperm cell that must maintain the ability to contribute to a totipotent embryo which can successfully differentiate into a healthy individual. This process is dependent on fidelity of the genome, epigenome, transcriptome, and proteome of the spermatogonia, supporting cells, and the resulting sperm cell. Infertility and/or disease risk may increase in the offspring if abnormalities are present. This review highlights the recent advances in our understanding of these processes in light of the "omics revolution". We briefly review each of these areas, as well as highlight areas of future study and needs to advance further.
Collapse
|
14
|
Yang Q, Zhang N, Zhao F, Zhao W, Dai S, Liu J, Bukhari I, Xin H, Niu W, Sun Y. Processing of semen by density gradient centrifugation selects spermatozoa with longer telomeres for assisted reproduction techniques. Reprod Biomed Online 2015; 31:44-50. [DOI: 10.1016/j.rbmo.2015.02.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 02/11/2015] [Accepted: 02/24/2015] [Indexed: 11/17/2022]
|
15
|
de Boer P, de Vries M, Ramos L. A mutation study of sperm head shape and motility in the mouse: lessons for the clinic. Andrology 2014; 3:174-202. [PMID: 25511638 DOI: 10.1111/andr.300] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 09/19/2014] [Accepted: 09/24/2014] [Indexed: 12/11/2022]
Abstract
Mouse mutants that show effects on sperm head shape, the sperm tail (flagellum), and motility were analysed in a systematic way. This was achieved by grouping mutations in the following classes: manchette, acrosome, Sertoli cell contact, chromatin remodelling, and mutations involved in complex regulations such as protein (de)phosphorylation and RNA stability, and flagellum/motility mutations. For all mutant phenotypes, flagellum function (motility) was affected. Head shape, including the nucleus, was also affected in spermatozoa of most mouse models, though with considerable variation. For the mutants that were categorized in the flagellum/motility group, generally normal head shapes were found, even when the flagellum did not develop or only poorly so. Most mutants are sterile, an occasional one semi-sterile. For completeness, the influence of the sex chromosomes on sperm phenotype is included. Functionally, the genes involved can be categorized as regulators of spermiogenesis. When extrapolating these data to human sperm samples, in vivo selection for motility would be the tool for weeding out the products of suboptimal spermiogenesis and epididymal sperm maturation. The striking dependency of motility on proper sperm head development is not easy to understand, but likely is of evolutionary benefit. Also, sperm competition after mating can never act against the long-term multi-generation interest of genetic integrity. Hence, it is plausible to suggest that short-term haplophase fitness i.e., motility, is developmentally integrated with proper nucleus maturation, including genetic integrity to protect multi-generation fitness. We hypothesize that, when the prime defect is in flagellum formation, apparently a feedback loop was not necessary as head morphogenesis in these mutants is mostly normal. Extrapolating to human-assisted reproductive techniques practice, this analysis would supply the arguments for the development of tools to select for motility as a continuous (non-discrete) parameter.
Collapse
Affiliation(s)
- P de Boer
- Department of Obstetrics and Gynaecology, Radboud University Medical Centre, Nijmegen, The Netherlands
| | | | | |
Collapse
|
16
|
Azpiazu R, Amaral A, Castillo J, Estanyol JM, Guimerà M, Ballescà JL, Balasch J, Oliva R. High-throughput sperm differential proteomics suggests that epigenetic alterations contribute to failed assisted reproduction. Hum Reprod 2014; 29:1225-37. [PMID: 24781426 DOI: 10.1093/humrep/deu073] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
STUDY QUESTION Are there quantitative alterations in the proteome of normozoospermic sperm samples that are able to complete IVF but whose female partner does not achieve pregnancy? SUMMARY ANSWER Normozoospermic sperm samples with different IVF outcomes (pregnancy versus no pregnancy) differed in the levels of at least 66 proteins. WHAT IS KNOWN ALREADY The analysis of the proteome of sperm samples with distinct fertilization capacity using low-throughput proteomic techniques resulted in the detection of a few differential proteins. Current high-throughput mass spectrometry approaches allow the identification and quantification of a substantially higher number of proteins. STUDY DESIGN, SIZE, DURATION This was a case-control study including 31 men with normozoospermic sperm and their partners who underwent IVF with successful fertilization recruited between 2007 and 2008. PARTICIPANTS/MATERIALS, SETTING, METHODS Normozoospermic sperm samples from 15 men whose female partners did not achieve pregnancy after IVF (no pregnancy) and 16 men from couples that did achieve pregnancy after IVF (pregnancy) were included in this study. To perform the differential proteomic experiments, 10 no pregnancy samples and 10 pregnancy samples were separately pooled and subsequently used for tandem mass tags (TMT) protein labelling, sodium dodecyl sulphate-polyacrylamide gel electrophoresis, liquid chromatography tandem mass spectrometry (LC-MS/MS) identification and peak intensity relative protein quantification. Bioinformatic analyses were performed using UniProt Knowledgebase, DAVID and Reactome. Individual samples (n = 5 no pregnancy samples; n = 6 pregnancy samples) and aliquots from the above TMT pools were used for western blotting. MAIN RESULTS AND THE ROLE OF CHANCE By using TMT labelling and LC-MS/MS, we have detected 31 proteins present at lower abundance (ratio no pregnancy/pregnancy < 0.67) and 35 at higher abundance (ratio no pregnancy/pregnancy > 1.5) in the no pregnancy group. Bioinformatic analyses showed that the proteins with differing abundance are involved in chromatin assembly and lipoprotein metabolism (P values < 0.05). In addition, the differential abundance of one of the proteins (SRSF protein kinase 1) was further validated by western blotting using independent samples (P value < 0.01). LIMITATIONS, REASONS FOR CAUTION For individual samples the amount of recovered sperm not used for IVF was low and in most of the cases insufficient for MS analysis, therefore pools of samples had to be used to this end. WIDER IMPLICATIONS OF THE FINDINGS Alterations in the proteins involved in chromatin assembly and metabolism may result in epigenetic errors during spermatogenesis, leading to inaccurate sperm epigenetic signatures, which could ultimately prevent embryonic development. These sperm proteins may thus possibly have clinical relevance. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by the Spanish Ministry of Economy and Competitiveness (Ministerio de Economia y Competividad; FEDER BFU 2009-07118 and PI13/00699) and Fundación Salud 2000 SERONO13-015. There are no competing interests to declare.
Collapse
Affiliation(s)
- Rubén Azpiazu
- Human Genetics Research Group, IDIBAPS, Faculty of Medicine, University of Barcelona, Casanova 143, Barcelona 08036, Spain
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Castillo J, Amaral A, Oliva R. Sperm nuclear proteome and its epigenetic potential. Andrology 2013; 2:326-38. [PMID: 24327354 DOI: 10.1111/j.2047-2927.2013.00170.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 11/08/2013] [Accepted: 11/11/2013] [Indexed: 11/29/2022]
Abstract
The main function of the sperm cell is to transmit the paternal genetic message and epigenetic information to the embryo. Importantly, the majority of the genes in the sperm chromatin are highly condensed by protamines, whereas genes potentially needed in the initial stages of development are associated with histones, representing a form of epigenetic marking. However, so far little attention has been devoted to other sperm chromatin-associated proteins that, in addition to histones and protamines, may also have an epigenetic role. Therefore, with the goal of contributing to cover this subject we have compiled, reviewed and report a list of 581 chromatin or nuclear proteins described in the human sperm cell. Furthermore, we have analysed their Gene Ontology Biological Process enriched terms and have grouped them into different functional categories. Remarkably, we show that 56% of the sperm nuclear proteins have a potential epigenetic activity, being involved in at least one of the following functions: chromosome organization, chromatin organization, protein-DNA complex assembly, DNA packaging, gene expression, transcription, chromatin modification and histone modification. In addition, we have also included and compared the sperm cell proteomes of different model species, demonstrating the existence of common trends in the chromatin composition in the mammalian mature male gamete. Taken together, our analyses suggest that the mammalian sperm cell delivers to the offspring a rich combination of histone variants, transcription factors, chromatin-associated and chromatin-modifying proteins which have the potential to encode and transmit an extremely complex epigenetic information.
Collapse
Affiliation(s)
- J Castillo
- Human Genetics Research Group, IDIBAPS, Faculty of Medicine, University of Barcelona, Barcelona, Spain; Biochemistry and Molecular Genetics Service, Hospital Clinic, Barcelona, Spain
| | | | | |
Collapse
|
18
|
Amaral A, Castillo J, Ramalho-Santos J, Oliva R. The combined human sperm proteome: cellular pathways and implications for basic and clinical science. Hum Reprod Update 2013; 20:40-62. [DOI: 10.1093/humupd/dmt046] [Citation(s) in RCA: 184] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
19
|
de Vries M, Ramos L, Lacroix R, D'Hauwers K, Hendriks J, Kremer J, van der Vlag J, de Boer P. Chromatin remodelling initiation in spermatids: differences among human males. Andrology 2013; 1:421-30. [DOI: 10.1111/j.2047-2927.2013.00079.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 01/28/2013] [Accepted: 02/01/2013] [Indexed: 12/01/2022]
Affiliation(s)
- M. de Vries
- Department of Obstetrics and Gynaecology; Radboud University Nijmegen Medical Centre; Nijmegen; The Netherlands
| | - L. Ramos
- Department of Obstetrics and Gynaecology; Radboud University Nijmegen Medical Centre; Nijmegen; The Netherlands
| | - R. Lacroix
- Department of Obstetrics and Gynaecology; Radboud University Nijmegen Medical Centre; Nijmegen; The Netherlands
| | - K. D'Hauwers
- Department of Urology; Radboud University Nijmegen Medical Centre; Nijmegen; The Netherlands
| | - J.C.M. Hendriks
- Department for Health Evidence; Radboud University Nijmegen Medical Centre; Nijmegen; The Netherlands
| | - J.A.M. Kremer
- Department of Obstetrics and Gynaecology; Radboud University Nijmegen Medical Centre; Nijmegen; The Netherlands
| | - J. van der Vlag
- Nephrology Research Laboratory; Department of Nephrology; Nijmegen Centre for Molecular Life Sciences; Nijmegen; The Netherlands
| | - P. de Boer
- Department of Obstetrics and Gynaecology; Radboud University Nijmegen Medical Centre; Nijmegen; The Netherlands
| |
Collapse
|
20
|
Abstract
Proteomics is the study of the proteins of cells or tissues. Sperm proteomics aims at the identification of the proteins that compose the sperm cell and the study of their function. The recent developments in mass spectrometry (MS) have markedly increased the throughput for the identification and study of the sperm proteins. Catalogues of spermatozoal proteins in human and in model species are becoming available laying the groundwork for subsequent research, diagnostic applications, and the development of patient-specific treatments. A wide range of MS techniques is also rapidly becoming available for researchers. This chapter describes a methodological option to study the sperm cell using MS and provides a detailed protocol to identify the proteins extracted from a Percoll-purified human sperm population and separated by two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) using LC-MS/MS.
Collapse
Affiliation(s)
- Sara de Mateo
- Human Genetics Research Group, IDIBAPS, University of Barcelona, and Biochemistry and Molecular Genetics Service, Hospital Clínic i Provincial, Barcelona, Spain
| | | | | |
Collapse
|
21
|
Zandemami M, Qujeq D, Akhondi MM, Kamali K, Raygani M, Lakpour N, Shiraz ES, Sadeghi MR. Correlation of CMA3 Staining with Sperm Quality and Protamine Deficiency. Lab Med 2012. [DOI: 10.1309/lmb42f9qxykfljng] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
22
|
De Vries M, Ramos L, Housein Z, De Boer P. Chromatin remodelling initiation during human spermiogenesis. Biol Open 2012; 1:446-57. [PMID: 23213436 PMCID: PMC3507207 DOI: 10.1242/bio.2012844] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
During the last phase of spermatogenesis, spermiogenesis, haploid round spermatids metamorphose towards spermatozoa. Extensive cytoplasmic reduction and chromatin remodelling together allow a dramatic decrease of cellular, notably nuclear volume. DNA packing by a nucleosome based chromatin structure is largely replaced by a protamine based one. At the cytoplasmic level among others the acrosome and perinuclear theca (PNT) are formed. In this study we describe the onset of chromatin remodelling to occur concomitantly with acrosome and PNT development. In spread human round spermatid nuclei, we show development of a DAPI-intense doughnut-like structure co-localizing with the acrosomal sac and sub acrosomal PNT. At this structure we observe the first gradual decrease of nucleosomes and several histones. Histone post-translational modifications linked to chromatin remodelling such as H4K8ac and H4K16ac also delineate the doughnut, that is furthermore marked by H3K9me2. During the capping phase of acrosome development, the size of the doughnut-like chromatin domain increases, and this area often is marked by uniform nucleosome loss and the first appearance of transition protein 2 and protamine 1. In the acrosome phase at nuclear elongation, chromatin remodelling follows the downward movement of the marginal ring of the acrosome. Our results indicate that acrosome development and chromatin remodelling are interacting processes. In the discussion we relate chromatin remodelling to the available data on the nuclear envelope and the linker of nucleoskeleton and cytoskeleton (LINC) complex of spermatids, suggesting a signalling route for triggering chromatin remodelling.
Collapse
Affiliation(s)
- Marieke De Vries
- Department of Obstetrics and Gynaecology, Radboud University Nijmegen Medical Centre , P.O. Box 9101, 6500 HB Nijmegen , Netherlands
| | | | | | | |
Collapse
|
23
|
de Vries M, Vosters S, Merkx G, D'Hauwers K, Wansink DG, Ramos L, de Boer P. Human male meiotic sex chromosome inactivation. PLoS One 2012; 7:e31485. [PMID: 22355370 PMCID: PMC3280304 DOI: 10.1371/journal.pone.0031485] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Accepted: 01/09/2012] [Indexed: 11/30/2022] Open
Abstract
In mammalian male gametogenesis the sex chromosomes are distinctive in both gene activity and epigenetic strategy. At first meiotic prophase the heteromorphic X and Y chromosomes are placed in a separate chromatin domain called the XY body. In this process, X,Y chromatin becomes highly phosphorylated at S139 of H2AX leading to the repression of gonosomal genes, a process known as meiotic sex chromosome inactivation (MSCI), which has been studied best in mice. Post-meiotically this repression is largely maintained. Disturbance of MSCI in mice leads to harmful X,Y gene expression, eventuating in spermatocyte death and sperm heterogeneity. Sperm heterogeneity is a characteristic of the human male. For this reason we were interested in the efficiency of MSCI in human primary spermatocytes. We investigated MSCI in pachytene spermatocytes of seven probands: four infertile men and three fertile controls, using direct and indirect in situ methods. A considerable degree of variation in the degree of MSCI was detected, both between and within probands. Moreover, in post-meiotic stages this variation was observed as well, indicating survival of spermatocytes with incompletely inactivated sex chromosomes. Furthermore, we investigated the presence of H3K9me3 posttranslational modifications on the X and Y chromatin. Contrary to constitutive centromeric heterochromatin, this heterochromatin marker did not specifically accumulate on the XY body, with the exception of the heterochromatic part of the Y chromosome. This may reflect the lower degree of MSCI in man compared to mouse. These results point at relaxation of MSCI, which can be explained by genetic changes in sex chromosome composition during evolution and candidates as a mechanism behind human sperm heterogeneity.
Collapse
Affiliation(s)
- Marieke de Vries
- Department of Obstetrics and Gynaecology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Sanne Vosters
- Department of Obstetrics and Gynaecology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Gerard Merkx
- Department of Human Genetics, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Kathleen D'Hauwers
- Department of Urology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Derick G. Wansink
- Department of Cell Biology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Liliana Ramos
- Department of Obstetrics and Gynaecology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Peter de Boer
- Department of Obstetrics and Gynaecology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
- * E-mail:
| |
Collapse
|
24
|
Oliva R, Castillo J. Proteomics and the genetics of sperm chromatin condensation. Asian J Androl 2010; 13:24-30. [PMID: 21042303 DOI: 10.1038/aja.2010.65] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Spermatogenesis involves extremely marked cellular, genetic and chromatin changes resulting in the generation of the highly specialized sperm cell. Proteomics allows the identification of the proteins that compose the spermatogenic cells and the study of their function. The recent developments in mass spectrometry (MS) have markedly increased the throughput to identify and to study the sperm proteins. Catalogs of thousands of testis and spermatozoan proteins in human and different model species are becoming available, setting up the basis for subsequent research, diagnostic applications and possibly the future development of specific treatments. The present review intends to summarize the key genetic and chromatin changes at the different stages of spermatogenesis and in the mature sperm cell and to comment on the presently available proteomic studies.
Collapse
Affiliation(s)
- Rafael Oliva
- Human Genetics Research Group, IDIBAPS, Department of Ciencias Fisiológicas I, Faculty of Medicine, University of Barcelona, Barcelona 08036, Spain.
| | | |
Collapse
|