1
|
Cavalari FC, da Rosa LA, Escott GM, Dourado T, de Castro AL, Kohek MBDF, Ribeiro MFM, Partata WA, de Fraga LS, Loss EDS. Epitestosterone- and testosterone-replacement in immature castrated rats changes main testicular developmental characteristics. Mol Cell Endocrinol 2018; 461:112-121. [PMID: 28870779 DOI: 10.1016/j.mce.2017.08.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 08/29/2017] [Accepted: 08/31/2017] [Indexed: 01/28/2023]
Abstract
Epitestosterone is the 17α-epimer of testosterone and has been described as an anti-androgen, since it inhibits the effects produced by testosterone and dihydrotestosterone via the nuclear androgen receptor (nAR). However, epitestosterone also displays an effect which is similar to the non-classical effect of testosterone, depolarizing the membrane potential of Sertoli cells and inducing a rapid Ca2+ uptake. This study aimed to investigate the effects of a treatment with epitestosterone on developmental parameters of immature rats. Animals were chemically castrated by using the gonadotropin-releasing hormone (GnRH) antagonist cetrorelix and then received a replacement of 7 days with epitestosterone or testosterone. Replacement with either epitestosterone or testosterone restored the anogenital distance (AGD) and testicular weight which had been reduced by chemical castration. The immunocontent of nAR and the nAR-immunoreactivity were reduced by epitestosterone treatment in the testis of both castrated and non-castrated animals. Furthermore, testosterone was unable of changing the membrane potential of Sertoli cells through its non-classical action in the group of animals castrated and replaced with epitestosterone. In conclusion, in relation to the level of protein expression of nAR epitestosterone acts as an anti-androgen. However, it acts in the same way as testosterone when genital development parameters are evaluated. Moreover, in castrated rats epitestosterone suppressed the non-classical response of testosterone, changing the pattern of testosterone signalling via a membrane mechanism in Sertoli cells.
Collapse
Affiliation(s)
- Fernanda Carvalho Cavalari
- Laboratório de Endocrinologia Experimental e Eletrofisiologia, Departamento de Fisiologia, PPG Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite 500, Sala 337, Porto Alegre, RS, Brazil.
| | - Luciana Abreu da Rosa
- Laboratório de Endocrinologia Experimental e Eletrofisiologia, Departamento de Fisiologia, PPG Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite 500, Sala 337, Porto Alegre, RS, Brazil.
| | - Gustavo Monteiro Escott
- Laboratório de Endocrinologia Experimental e Eletrofisiologia, Departamento de Fisiologia, PPG Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite 500, Sala 337, Porto Alegre, RS, Brazil.
| | - Tadeu Dourado
- Laboratório de Endocrinologia Experimental e Eletrofisiologia, Departamento de Fisiologia, PPG Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite 500, Sala 337, Porto Alegre, RS, Brazil.
| | - Alexandre Luz de Castro
- Centro Universitário Ritter dos Reis, UNIRITTER, Porto Alegre, RS, Brazil; Universidade Federal de Ciências da Saúde de Porto Alegre, UFCSPA, Porto Alegre, RS, Brazil.
| | | | - Maria Flávia Marques Ribeiro
- Laboratório de Interação Neuro-Humoral, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| | - Wania Aparecida Partata
- Laboratório de Neurobiologia Comparada, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| | - Luciano Stürmer de Fraga
- Laboratório de Endocrinologia Experimental e Eletrofisiologia, Departamento de Fisiologia, PPG Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite 500, Sala 337, Porto Alegre, RS, Brazil.
| | - Eloísa da Silveira Loss
- Laboratório de Endocrinologia Experimental e Eletrofisiologia, Departamento de Fisiologia, PPG Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite 500, Sala 337, Porto Alegre, RS, Brazil.
| |
Collapse
|
2
|
Soffientini U, Rebourcet D, Abel MH, Lee S, Hamilton G, Fowler PA, Smith LB, O'Shaughnessy PJ. Identification of Sertoli cell-specific transcripts in the mouse testis and the role of FSH and androgen in the control of Sertoli cell activity. BMC Genomics 2017; 18:972. [PMID: 29246116 PMCID: PMC5731206 DOI: 10.1186/s12864-017-4357-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 11/29/2017] [Indexed: 11/29/2022] Open
Abstract
Background The Sertoli cells act to induce testis differentiation and subsequent development in fetal and post-natal life which makes them key to an understanding of testis biology. As a major step towards characterisation of factors involved in Sertoli cell function we have identified Sertoli cell-specific transcripts in the mouse testis and have used the data to identify Sertoli cell-specific transcripts altered in mice lacking follicle-stimulating hormone receptors (FSHRKO) and/or androgen receptors (AR) in the Sertoli cells (SCARKO). Results Adult iDTR mice were injected with busulfan to ablate the germ cells and 50 days later they were treated with diphtheria toxin (DTX) to ablate the Sertoli cells. RNAseq carried out on testes from control, busulfan-treated and busulfan + DTX-treated mice identified 701 Sertoli-specific transcripts and 4302 germ cell-specific transcripts. This data was mapped against results from microarrays using testicular mRNA from 20 day-old FSHRKO, SCARKO and FSHRKO.SCARKO mice. Results show that of the 534 Sertoli cell-specific transcripts present on the gene chips, 85% were altered in the FSHRKO mice and 94% in the SCARKO mice (mostly reduced in both cases). In the FSHRKO.SCARKO mice additive or synergistic effects were seen for most transcripts. Age-dependent studies on a selected number of Sertoli cell-specific transcripts, showed that the marked effects in the FSHRKO at 20 days had largely disappeared by adulthood although synergistic effects of FSHR and AR knockout were seen. Conclusions These studies have identified the Sertoli cell-specific transcriptome in the mouse testis and have shown that most genes in the transcriptome are FSH- and androgen-dependent at puberty although the importance of FSH diminishes towards adulthood. Electronic supplementary material The online version of this article (10.1186/s12864-017-4357-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- U Soffientini
- Institute of Biodiversity, Animal Health & Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, G61 1QH, Glasgow, UK
| | - D Rebourcet
- Institute of Biodiversity, Animal Health & Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, G61 1QH, Glasgow, UK.,MRC Centre for Reproductive Health, University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - M H Abel
- Department of Physiology, Anatomy and Genetics, University of Oxford, Le Gros Clarke Building, Oxford, OX1 3QX, UK
| | - S Lee
- Department of Physiology, Anatomy and Genetics, University of Oxford, Le Gros Clarke Building, Oxford, OX1 3QX, UK
| | - G Hamilton
- Glasgow Polyomics, College of Medical, Veterinary and Life Sciences, University of Glasgow, G61 1QH, Glasgow, UK
| | - P A Fowler
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - L B Smith
- MRC Centre for Reproductive Health, University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK.,School of Environmental and Life Sciences, University of Newcastle, Callaghan, Newcastle, 2308, Australia
| | - P J O'Shaughnessy
- Institute of Biodiversity, Animal Health & Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, G61 1QH, Glasgow, UK.
| |
Collapse
|
3
|
Wang N, Xu Y, Zhou XQ, Wu YH, Li SL, Qiao X, Li YB, Sun ZW. Protective effects of testosterone propionate on reproductive toxicity caused by Endosulfan in male mice. ENVIRONMENTAL TOXICOLOGY 2016; 31:142-153. [PMID: 25077688 DOI: 10.1002/tox.22029] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 07/12/2014] [Accepted: 07/13/2014] [Indexed: 06/03/2023]
Abstract
To investigate the protective effect of testosterone propionate (TP) on reproductive toxicity caused by endosulfan in male mice, three group experiments were designed: the control group received 0 and 0, the endosulfan group received 0.8 and 0, and the endosulfan + TP group received 0.8 mg/kg/d endosulfan and 10 mg/kg/d TP, respectively. The results showed that TP significantly prevented the declines of concentration and motility rates in sperm, reduced the rate of sperm abnormalities in epididymis; and antagonized the decreases in spermatogenous cell and sperm numbers in testes induced by endosulfan. TP also decreased the numbers of cavities formed, prevented the decreases of plasma testosterone and androgen receptor (AR) mRNA in testicular tissue, alleviated the increase of LH induced by endosulfan. It is likely that TP relieve the reproductive toxicity by reversing the endosulfan-induced decreases in testosterone secretion and AR expression that resulted from the alteration of Leydig cell function.
Collapse
Affiliation(s)
- Na Wang
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
- Department of Laboratory Animal Science, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Ying Xu
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Xian-Qing Zhou
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Yan-Hua Wu
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Sheng-Li Li
- Department of Laboratory Animal Science, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Xin Qiao
- Department of Laboratory Animal Science, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Yan-Bo Li
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Zhi-Wei Sun
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| |
Collapse
|
4
|
O'Shaughnessy PJ. Hormonal control of germ cell development and spermatogenesis. Semin Cell Dev Biol 2014; 29:55-65. [DOI: 10.1016/j.semcdb.2014.02.010] [Citation(s) in RCA: 169] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 02/20/2014] [Accepted: 02/24/2014] [Indexed: 01/27/2023]
|
5
|
Li H, He Y, Zhang H, Miao G. Differential proteome and gene expression reveal response to carbon ion irradiation in pubertal mice testes. Toxicol Lett 2014; 225:433-44. [DOI: 10.1016/j.toxlet.2014.01.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2013] [Revised: 12/30/2013] [Accepted: 01/01/2014] [Indexed: 02/08/2023]
|
6
|
Walczak-Jędrzejowska R, Marchlewska K, Oszukowska E, Filipiak E, Słowikowska-Hilczer J, Kula K. Estradiol and testosterone inhibit rat seminiferous tubule development in a hormone-specific way. Reprod Biol 2013; 13:243-50. [DOI: 10.1016/j.repbio.2013.07.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Accepted: 01/23/2013] [Indexed: 11/29/2022]
|
7
|
Hazra R, Corcoran L, Robson M, McTavish KJ, Upton D, Handelsman DJ, Allan CM. Temporal role of Sertoli cell androgen receptor expression in spermatogenic development. Mol Endocrinol 2012; 27:12-24. [PMID: 23160479 DOI: 10.1210/me.2012-1219] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Sertoli cell (SC) androgen receptor (AR) activity is vital for spermatogenesis. We created a unique gain-of-function transgenic (Tg) mouse model to determine the temporal role of SCAR expression in testicular development. The SC-specific rat Abpa promoter directed human Tg AR [Tg SC-specific AR (TgSCAR)] expression, providing strong premature postnatal AR immunolocalized to SC nuclei. Independent Tg lines revealed that TgSCAR dose dependently reduced postnatal and mature testis size (to 60% normal), whereas androgen-dependent mature seminal vesicle weights and serum testosterone levels remained normal. Total SC numbers were reduced in developing and mature TgSCAR testes, despite normal or higher Fshr mRNA and circulating FSH levels. Postnatal TgSCAR testes exhibited elevated levels of AR-regulated Rhox5 and Spinlw1 transcripts, and precocious SC function was demonstrated by early seminiferous tubular lumen formation and up-regulated expression of crucial SC tight-junction (Cldn11 and Tjp1) and phagocytic (Elmo1) transcripts. Early postnatal Amh expression was elevated but declined to normal levels in peripubertal-pubertal TgSCAR vs. control testes, indicating differential age-related regulation featuring AR-independent Amh down-regulation. TgSCAR induced premature postnatal spermatogenic development, shown by increased levels of meiotic (Dmc1 and Spo11) and postmeiotic (Capza3 and Prm1) germ cell transcripts, elevated meiotic-postmeiotic germ:Sertoli cell ratios, and accelerated spermatid development. Meiotic germ:Sertoli cell ratios were further increased in adult TgSCAR mice, indicating predominant SCAR-mediated control of meiotic development. However, postmeiotic germ:Sertoli cell ratios declined below normal. Our unique TgSCAR paradigm reveals that atypical SC-specific temporal AR expression provides a direct molecular mechanism for induction of precocious testicular development, leading to reduced adult testis size and decreased postmeiotic development.
Collapse
Affiliation(s)
- Rasmani Hazra
- ANZAC Research Institute, Concord Hospital, Sydney, New South Wales 2139, Australia
| | | | | | | | | | | | | |
Collapse
|
8
|
O'Shaughnessy PJ, Monteiro A, Abel M. Testicular development in mice lacking receptors for follicle stimulating hormone and androgen. PLoS One 2012; 7:e35136. [PMID: 22514715 PMCID: PMC3325994 DOI: 10.1371/journal.pone.0035136] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Accepted: 03/13/2012] [Indexed: 12/12/2022] Open
Abstract
Post-natal testicular development is dependent on gonadotrophin and androgen stimulation. Follicle stimulating hormone (FSH) acts through receptors (FSHR) on the Sertoli cell to stimulate spermatogenesis while androgens promote testis growth through receptors (AR) on the Sertoli cells, Leydig cells and peritubular myoid cells. In this study we have examined the effects on testis development of ablating FSHRs (FSHRKO mice) and/or ARs ubiquitously (ARKO mice) or specifically on the Sertoli cells (SCARKO mice). Cell numbers were measured using stereological methods. In ARKO mice Sertoli cell numbers were reduced at all ages from birth until adulthood. FSHR ablation also caused small reductions in Sertoli cell numbers up to day 20 with more marked effects seen in the adult. Germ cell numbers were unaffected by FSHR and/or AR ablation at birth. By day 20 ubiquitous AR or FSHR ablation caused a marked reduction in germ cell numbers with a synergistic effect of losing both receptors (germ cell numbers in FSHRKO.ARKO mice were 3% of control). Germ cell numbers in SCARKO mice were less affected. By adulthood, in contrast, clear synergistic control of germ cell numbers had become established between the actions of FSH and androgen through the Sertoli cells. Leydig cell numbers were normal on day 1 and day 5 in all groups. By day 20 and in adult animals total AR or FSHR ablation significantly reduced Leydig cell numbers but Sertoli cell specific AR ablation had no effect. Results show that, prior to puberty, development of most testicular parameters is more dependent on FSH action than androgen action mediated through the Sertoli cells although androgen action through other cells types is crucial. Post-pubertally, germ cell numbers and spermatogenesis are dependent on FSH and androgen action through the Sertoli cells.
Collapse
Affiliation(s)
- Peter J O'Shaughnessy
- College of Medical, Veterinary and Life Sciences, Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom.
| | | | | |
Collapse
|