1
|
Hu Y, Zhang F, Ikonomovic M, Yang T. The Role of NRF2 in Cerebrovascular Protection: Implications for Vascular Cognitive Impairment and Dementia (VCID). Int J Mol Sci 2024; 25:3833. [PMID: 38612642 PMCID: PMC11012233 DOI: 10.3390/ijms25073833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/20/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024] Open
Abstract
Vascular cognitive impairment and dementia (VCID) represents a broad spectrum of cognitive decline secondary to cerebral vascular aging and injury. It is the second most common type of dementia, and the prevalence continues to increase. Nuclear factor erythroid 2-related factor 2 (NRF2) is enriched in the cerebral vasculature and has diverse roles in metabolic balance, mitochondrial stabilization, redox balance, and anti-inflammation. In this review, we first briefly introduce cerebrovascular aging in VCID and the NRF2 pathway. We then extensively discuss the effects of NRF2 activation in cerebrovascular components such as endothelial cells, vascular smooth muscle cells, pericytes, and perivascular macrophages. Finally, we summarize the clinical potential of NRF2 activators in VCID.
Collapse
Affiliation(s)
- Yizhou Hu
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15216, USA; (Y.H.); (F.Z.); (M.I.)
- Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh, Pittsburgh, PA 15216, USA
- Department of Internal Medicine, University of Pittsburgh Medical Center (UPMC) McKeesport, McKeesport, PA 15132, USA
| | - Feng Zhang
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15216, USA; (Y.H.); (F.Z.); (M.I.)
- Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh, Pittsburgh, PA 15216, USA
| | - Milos Ikonomovic
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15216, USA; (Y.H.); (F.Z.); (M.I.)
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15216, USA
- Geriatric Research Education and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh, PA 15240, USA
| | - Tuo Yang
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15216, USA; (Y.H.); (F.Z.); (M.I.)
- Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh, Pittsburgh, PA 15216, USA
- Department of Internal Medicine, University of Pittsburgh Medical Center (UPMC), Pittsburgh, PA 15216, USA
| |
Collapse
|
2
|
Reid VJM, McLoughlin WKX, Pandya K, Stott H, Iškauskienė M, Šačkus A, Marti JA, Kurian D, Wishart TM, Lucatelli C, Peters D, Gray GA, Baker AH, Newby DE, Hadoke PWF, Tavares AAS, MacAskill MG. Assessment of the alpha 7 nicotinic acetylcholine receptor as an imaging marker of cardiac repair-associated processes using NS14490. EJNMMI Res 2024; 14:7. [PMID: 38206500 PMCID: PMC10784260 DOI: 10.1186/s13550-023-01058-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 12/12/2023] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND Cardiac repair and remodeling following myocardial infarction (MI) is a multifactorial process involving pro-reparative inflammation, angiogenesis and fibrosis. Noninvasive imaging using a radiotracer targeting these processes could be used to elucidate cardiac wound healing mechanisms. The alpha7 nicotinic acetylcholine receptor (ɑ7nAChR) stimulates pro-reparative macrophage activity and angiogenesis, making it a potential imaging biomarker in this context. We investigated this by assessing in vitro cellular expression of ɑ7nAChR, and by using a tritiated version of the PET radiotracer [18F]NS14490 in tissue autoradiography studies. RESULTS ɑ7nAChR expression in human monocyte-derived macrophages and vascular cells showed the highest relative expression was within macrophages, but only endothelial cells exhibited a proliferation and hypoxia-driven increase in expression. Using a mouse model of inflammatory angiogenesis following sponge implantation, specific binding of [3H]NS14490 increased from 3.6 ± 0.2 µCi/g at day 3 post-implantation to 4.9 ± 0.2 µCi/g at day 7 (n = 4, P < 0.01), followed by a reduction at days 14 and 21. This peak matched the onset of vessel formation, macrophage infiltration and sponge fibrovascular encapsulation. In a rat MI model, specific binding of [3H]NS14490 was low in sham and remote MI myocardium. Specific binding within the infarct increased from day 14 post-MI (33.8 ± 14.1 µCi/g, P ≤ 0.01 versus sham), peaking at day 28 (48.9 ± 5.1 µCi/g, P ≤ 0.0001 versus sham). Histological and proteomic profiling of ɑ7nAChR positive tissue revealed strong associations between ɑ7nAChR and extracellular matrix deposition, and rat cardiac fibroblasts expressed ɑ7nAChR protein under normoxic and hypoxic conditions. CONCLUSION ɑ7nAChR is highly expressed in human macrophages and showed proliferation and hypoxia-driven expression in human endothelial cells. While NS14490 imaging displays a pattern that coincides with vessel formation, macrophage infiltration and fibrovascular encapsulation in the sponge model, this is not the case in the MI model where the ɑ7nAChR imaging signal was strongly associated with extracellular matrix deposition which could be explained by ɑ7nAChR expression in fibroblasts. Overall, these findings support the involvement of ɑ7nAChR across several processes central to cardiac repair, with fibrosis most closely associated with ɑ7nAChR following MI.
Collapse
Affiliation(s)
- Victoria J M Reid
- Centre for Cardiovascular Science, The University of Edinburgh, Edinburgh, UK
- Edinburgh Imaging, The University of Edinburgh, Edinburgh, UK
| | | | - Kalyani Pandya
- Centre for Cardiovascular Science, The University of Edinburgh, Edinburgh, UK
- Edinburgh Imaging, The University of Edinburgh, Edinburgh, UK
| | - Holly Stott
- Centre for Cardiovascular Science, The University of Edinburgh, Edinburgh, UK
| | - Monika Iškauskienė
- Department of Organic Chemistry, Kaunas University of Technology, Kaunas, Lithuania
| | - Algirdas Šačkus
- Department of Organic Chemistry, Kaunas University of Technology, Kaunas, Lithuania
| | - Judit A Marti
- Proteomics and Metabolomics Facility, The Roslin Institute, University of Edinburgh, Edinburgh, UK
| | - Dominic Kurian
- Proteomics and Metabolomics Facility, The Roslin Institute, University of Edinburgh, Edinburgh, UK
| | - Thomas M Wishart
- Proteomics and Metabolomics Facility, The Roslin Institute, University of Edinburgh, Edinburgh, UK
| | | | - Dan Peters
- DanPET AB, Malmo, Sweden
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Gillian A Gray
- Centre for Cardiovascular Science, The University of Edinburgh, Edinburgh, UK
| | - Andrew H Baker
- Centre for Cardiovascular Science, The University of Edinburgh, Edinburgh, UK
| | - David E Newby
- Centre for Cardiovascular Science, The University of Edinburgh, Edinburgh, UK
| | - Patrick W F Hadoke
- Centre for Cardiovascular Science, The University of Edinburgh, Edinburgh, UK
| | - Adriana A S Tavares
- Centre for Cardiovascular Science, The University of Edinburgh, Edinburgh, UK
- Edinburgh Imaging, The University of Edinburgh, Edinburgh, UK
| | - Mark G MacAskill
- Centre for Cardiovascular Science, The University of Edinburgh, Edinburgh, UK.
- Edinburgh Imaging, The University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
3
|
Martín-Bórnez M, Falcón D, Morrugares R, Siegfried G, Khatib AM, Rosado JA, Galeano-Otero I, Smani T. New Insights into the Reparative Angiogenesis after Myocardial Infarction. Int J Mol Sci 2023; 24:12298. [PMID: 37569674 PMCID: PMC10418963 DOI: 10.3390/ijms241512298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/23/2023] [Accepted: 07/29/2023] [Indexed: 08/13/2023] Open
Abstract
Myocardial infarction (MI) causes massive loss of cardiac myocytes and injury to the coronary microcirculation, overwhelming the limited capacity of cardiac regeneration. Cardiac repair after MI is finely organized by complex series of procedures involving a robust angiogenic response that begins in the peri-infarcted border area of the infarcted heart, concluding with fibroblast proliferation and scar formation. Efficient neovascularization after MI limits hypertrophied myocytes and scar extent by the reduction in collagen deposition and sustains the improvement in cardiac function. Compelling evidence from animal models and classical in vitro angiogenic approaches demonstrate that a plethora of well-orchestrated signaling pathways involving Notch, Wnt, PI3K, and the modulation of intracellular Ca2+ concentration through ion channels, regulate angiogenesis from existing endothelial cells (ECs) and endothelial progenitor cells (EPCs) in the infarcted heart. Moreover, cardiac repair after MI involves cell-to-cell communication by paracrine/autocrine signals, mainly through the delivery of extracellular vesicles hosting pro-angiogenic proteins and non-coding RNAs, as microRNAs (miRNAs). This review highlights some general insights into signaling pathways activated under MI, focusing on the role of Ca2+ influx, Notch activated pathway, and miRNAs in EC activation and angiogenesis after MI.
Collapse
Affiliation(s)
- Marta Martín-Bórnez
- Group of Cardiovascular Pathophysiology, Institute of Biomedicine of Seville, University Hospital of Virgen del Rocío/University of Seville/CSIC, Avenida Manuel Siurot s/n, 41013 Seville, Spain; (M.M.-B.); (D.F.); (R.M.)
- Department of Medical Physiology and Biophysics, Faculty of Medicine, University of Seville, 41009 Seville, Spain
| | - Débora Falcón
- Group of Cardiovascular Pathophysiology, Institute of Biomedicine of Seville, University Hospital of Virgen del Rocío/University of Seville/CSIC, Avenida Manuel Siurot s/n, 41013 Seville, Spain; (M.M.-B.); (D.F.); (R.M.)
- Department of Medical Physiology and Biophysics, Faculty of Medicine, University of Seville, 41009 Seville, Spain
| | - Rosario Morrugares
- Group of Cardiovascular Pathophysiology, Institute of Biomedicine of Seville, University Hospital of Virgen del Rocío/University of Seville/CSIC, Avenida Manuel Siurot s/n, 41013 Seville, Spain; (M.M.-B.); (D.F.); (R.M.)
- Department of Medical Physiology and Biophysics, Faculty of Medicine, University of Seville, 41009 Seville, Spain
- Department of Cell Biology, Physiology and Immunology, Universidad de Córdoba, 14071 Córdoba, Spain
| | - Geraldine Siegfried
- RyTME, Bordeaux Institute of Oncology (BRIC)-UMR1312 Inserm, B2 Ouest, Allée Geoffroy St Hilaire CS50023, 33615 Pessac, France (A.-M.K.)
| | - Abdel-Majid Khatib
- RyTME, Bordeaux Institute of Oncology (BRIC)-UMR1312 Inserm, B2 Ouest, Allée Geoffroy St Hilaire CS50023, 33615 Pessac, France (A.-M.K.)
| | - Juan A. Rosado
- Cellular Physiology Research Group, Department of Physiology, Institute of Molecular Pathology Biomarkers (IMPB), University of Extremadura, 10003 Caceres, Spain;
| | - Isabel Galeano-Otero
- Group of Cardiovascular Pathophysiology, Institute of Biomedicine of Seville, University Hospital of Virgen del Rocío/University of Seville/CSIC, Avenida Manuel Siurot s/n, 41013 Seville, Spain; (M.M.-B.); (D.F.); (R.M.)
- Department of Medical Physiology and Biophysics, Faculty of Medicine, University of Seville, 41009 Seville, Spain
| | - Tarik Smani
- Group of Cardiovascular Pathophysiology, Institute of Biomedicine of Seville, University Hospital of Virgen del Rocío/University of Seville/CSIC, Avenida Manuel Siurot s/n, 41013 Seville, Spain; (M.M.-B.); (D.F.); (R.M.)
- Department of Medical Physiology and Biophysics, Faculty of Medicine, University of Seville, 41009 Seville, Spain
| |
Collapse
|
4
|
Wrublewsky S, Glas J, Carlein C, Nalbach L, Hoffmann MDA, Pack M, Vilas-Boas EA, Ribot N, Kappl R, Menger MD, Laschke MW, Ampofo E, Roma LP. The loss of pancreatic islet NADPH oxidase (NOX)2 improves islet transplantation. Redox Biol 2022; 55:102419. [PMID: 35933903 PMCID: PMC9357848 DOI: 10.1016/j.redox.2022.102419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 10/31/2022] Open
Abstract
Islet transplantation is a promising treatment strategy for type 1 diabetes mellitus (T1DM) patients. However, oxidative stress-induced graft failure due to an insufficient revascularization is a major problem of this therapeutic approach. NADPH oxidase (NOX)2 is an important producer of reactive oxygen species (ROS) and several studies have already reported that this enzyme plays a crucial role in the endocrine function and viability of β-cells. Therefore, we hypothesized that targeting islet NOX2 improves the outcome of islet transplantation. To test this, we analyzed the cellular composition and viability of isolated wild-type (WT) and Nox2-/- islets by immunohistochemistry as well as different viability assays. Ex vivo, the effect of Nox2 deficiency on superoxide production, endocrine function and anti-oxidant protein expression was studied under hypoxic conditions. In vivo, we transplanted WT and Nox2-/- islets into mouse dorsal skinfold chambers and under the kidney capsule of diabetic mice to assess their revascularization and endocrine function, respectively. We found that the loss of NOX2 does not affect the cellular composition and viability of isolated islets. However, decreased superoxide production, higher glucose-stimulated insulin secretion as well as expression of nuclear factor erythroid 2-related factor (Nrf)2, heme oxygenase (HO)-1 and superoxide dismutase 1 (SOD1) was detected in hypoxic Nox2-/- islets when compared to WT islets. Moreover, we detected an early revascularization, a higher take rate and restoration of normoglycemia in diabetic mice transplanted with Nox2-/- islets. These findings indicate that the suppression of NOX2 activity represents a promising therapeutic strategy to improve engraftment and function of isolated islets.
Collapse
Affiliation(s)
- Selina Wrublewsky
- Institute for Clinical and Experimental Surgery, Saarland University, 66421, Homburg, Germany
| | - Julia Glas
- Institute for Clinical and Experimental Surgery, Saarland University, 66421, Homburg, Germany
| | - Christopher Carlein
- Department of Biophysics, Center for Human and Molecular Biology (ZHMB), Saarland University, 66421, Homburg, Germany
| | - Lisa Nalbach
- Institute for Clinical and Experimental Surgery, Saarland University, 66421, Homburg, Germany
| | | | - Mandy Pack
- Medical Biochemistry and Molecular Biology, Saarland University, 66421, Homburg, Germany
| | - Eloisa Aparecida Vilas-Boas
- Department of Biophysics, Center for Human and Molecular Biology (ZHMB), Saarland University, 66421, Homburg, Germany; Department of Biochemistry, Institute of Chemistry, University of São Paulo (USP), São Paulo, 05508-900, Brazil
| | - Nathan Ribot
- Department of Biophysics, Center for Human and Molecular Biology (ZHMB), Saarland University, 66421, Homburg, Germany
| | - Reinhard Kappl
- Department of Biophysics, Center for Human and Molecular Biology (ZHMB), Saarland University, 66421, Homburg, Germany
| | - Michael D Menger
- Institute for Clinical and Experimental Surgery, Saarland University, 66421, Homburg, Germany
| | - Matthias W Laschke
- Institute for Clinical and Experimental Surgery, Saarland University, 66421, Homburg, Germany
| | - Emmanuel Ampofo
- Institute for Clinical and Experimental Surgery, Saarland University, 66421, Homburg, Germany
| | - Leticia Prates Roma
- Department of Biophysics, Center for Human and Molecular Biology (ZHMB), Saarland University, 66421, Homburg, Germany.
| |
Collapse
|
5
|
Baghaiee B, Bayatmakoo R, Karimi P, Pescatello LS. Moderate Aerobic Training Inhibits Middle-Aged Induced Cardiac Calcineurin-NFAT Signaling by Improving TGF-ß, NPR-A, SERCA2, and TRPC6 in Wistar Rats. CELL JOURNAL 2021; 23:756-762. [PMID: 34979065 PMCID: PMC8753105 DOI: 10.22074/cellj.2021.7531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 04/15/2020] [Indexed: 12/03/2022]
Abstract
OBJECTIVE The purpose of this study was to investigate the effect of moderate-intensity training on the calcineurin/ nuclear factor of activated t-cells (NFAT) pathway and factors affecting it in the middle-age Wistar rats. MATERIALS AND METHODS In this experimental study, 40 young (n=10, 4-month-old) and middle-aged (n=30, 13-15 months old) Wistar rats were included in this experimental study. All young and 10 middle-aged rats did not training and served as a control comparision; while the remaining 20 middle-aged rats were trained at moderate intensity for 4-weeks (n=10) or 8-weeks (n=10) on a treadmill (speed: 16 m/minutes, slope: 0%, distance: 830 m, duration: 54 minutes). RESULTS Calcineurin tissue expression was increased in the middle-aged control rats compared to the young control rats (P=0.001). Expression of sarco/endoplasmic reticulum Ca2+-ATPase (SERC2A), natriuretic peptide receptor-A (NPR-A), phospholamban (PLB), plasma membrane Ca2+ ATPase (PMCA4b), and p-AKT was significantly decreased in the heart tissue of middle-aged control compared to the young control rats (P=0.001). Furthermore, transforming growth factor beta (TGF-β), including transient receptor potential canonical 6 (TRPC6), were up-regulated in the heart tissue of middle-aged control compared to the young control rats (P=0.001). However, aerobic training inhibited this pathway and reversed all changes in the trained middle-aged rats. CONCLUSION Aerobic training effectively inhibited the calcineurin/NFATc pathway and modulated intracellular Ca2+ levels at least partially by restoring NPR-A, SERCA2, p-PLB, and p-AKT, and decreasing TRPC6 and TGF-β levels.
Collapse
Affiliation(s)
- Behrouz Baghaiee
- Department of Physical Education and Sport Science, Jolfa Branch, Islamic Azad University, Jolfa, Iran
| | - Roshanak Bayatmakoo
- Department of Biochemistry, School of Medicine, Tabriz Branch, Islamic Azad University, Tabriz, Iran,P.O.Box: 5157944533Department of BiochemistrySchool of MedicineTabriz BranchIslamic Azad UniversityTabrizIran
| | - Pouran Karimi
- Neuroscience Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Linda Shannon Pescatello
- Department of Kinesiology, College of Agriculture, Health and Natural Resources, University of Connecticut, Connecticut, USA
| |
Collapse
|
6
|
Wang J, Lin B, Zhang Y, Ni L, Hu L, Yang J, Xu L, Shi D, Chen YH. The Regulatory Role of Histone Modification on Gene Expression in the Early Stage of Myocardial Infarction. Front Cardiovasc Med 2020; 7:594325. [PMID: 33330655 PMCID: PMC7734124 DOI: 10.3389/fcvm.2020.594325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 10/20/2020] [Indexed: 02/03/2023] Open
Abstract
Myocardial infarction (MI) is a fatal heart disease with high morbidity and mortality. Various studies have demonstrated that a series of relatively specific biological events occur within 24 h of MI. However, the roles of histone modifications in this pathological process are still poorly understood. To investigate the regulation of histone modifications on gene expression in early MI, we performed RNA sequencing (RNA-seq) and chromatin immunoprecipitation sequencing (ChIP-seq) on myocardial tissues 24 h after the onset of MI. The genome-wide profiles of five histone marks (H3K27ac, H3K9ac, H3K4me3, H3K9me3, and H3K27me3) were explored through ChIP-seq. RNA-seq identified 1,032 differentially expressed genes (DEGs) between the MI and sham groups. ChIP-seq analysis found that 195 upregulated DEGs were modified by change of at least one of the three active histone marks (H3K27ac, H3K9ac, and H3K4me3), and the biological processes and pathways analysis showed that these DEGs were significantly enriched in cardiomyocyte differentiation and development, inflammation, angiogenesis, and metabolism. In the transcriptional regulatory network, Ets1, Etv1, and Etv2 were predicted to be involved in gene expression regulation. In addition, by integrating super-enhancers (SEs) with RNA-seq data, 76 DEGs were associated with H3K27ac-enriched SEs in the MI group, and the functions of these SE-associated DEGs were mainly related to angiogenesis. Our results suggest that histone modifications may play important roles in the regulation of gene expression in the early stage of MI, and the early angiogenesis response may be initiated by SEs.
Collapse
Affiliation(s)
- Jinyu Wang
- Department of Physiology, Shanxi Medical University, Taiyuan, China.,Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Bowen Lin
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yanping Zhang
- Department of Cardiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Le Ni
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lingjie Hu
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jian Yang
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Liang Xu
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Dan Shi
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yi-Han Chen
- Department of Physiology, Shanxi Medical University, Taiyuan, China.,Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Pathology and Pathophysiology, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
7
|
Xu F, Gao J, Munkhsaikhan U, Li N, Gu Q, Pierre JF, Starlard-Davenport A, Towbin JA, Cui Y, Purevjav E, Lu L. The Genetic Dissection of Ace2 Expression Variation in the Heart of Murine Genetic Reference Population. Front Cardiovasc Med 2020; 7:582949. [PMID: 33330645 PMCID: PMC7714829 DOI: 10.3389/fcvm.2020.582949] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/02/2020] [Indexed: 12/12/2022] Open
Abstract
Background: A high inflammatory and cytokine burden that induces vascular inflammation, myocarditis, cardiac arrhythmias, and myocardial injury is associated with a lethal outcome in COVID-19. The SARS-CoV-2 virus utilizes the ACE2 receptor for cell entry in a similar way to SARS-CoV. This study investigates the regulation, gene network, and associated pathways of ACE2 that may be involved in inflammatory and cardiovascular complications of COVID-19. Methods: Cardiovascular traits were determined in the one of the largest mouse genetic reference populations: BXD recombinant inbred strains using blood pressure, electrocardiography, and echocardiography measurements. Expression quantitative trait locus (eQTL) mapping, genetic correlation, and functional enrichment analysis were used to identify Ace2 regulation, gene pathway, and co-expression networks. Results: A wide range of variation was found in expression of Ace2 among the BXD strains. Levels of Ace2 expression are negatively correlated with cardiovascular traits, including systolic and diastolic blood pressure and P wave duration and amplitude. Ace2 co-expressed genes are significantly involved in cardiac- and inflammatory-related pathways. The eQTL mapping revealed that Cyld is a candidate upstream regulator for Ace2. Moreover, the protein-protein interaction (PPI) network analysis inferred several potential key regulators (Cul3, Atf2, Vcp, Jun, Ppp1cc, Npm1, Mapk8, Set, Dlg1, Mapk14, and Hspa1b) for Ace2 co-expressed genes in the heart. Conclusions: Ace2 is associated with blood pressure, atrial morphology, and sinoatrial conduction in BXD mice. Ace2 co-varies with Atf2, Cyld, Jun, Mapk8, and Mapk14 and is enriched in the RAS, TGFβ, TNFα, and p38α signaling pathways, involved in inflammation and cardiac damage. We suggest that all these novel Ace2-associated genes and pathways may be targeted for preventive, diagnostic, and therapeutic purposes in cardiovascular damage in patients with systemic inflammation, including COVID-19 patients.
Collapse
Affiliation(s)
- Fuyi Xu
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Jun Gao
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Undral Munkhsaikhan
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, United States
- Children's Foundation Research Institute, Le Bonheur Children's Hospital, Memphis, TN, United States
| | - Ning Li
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, United States
- Children's Foundation Research Institute, Le Bonheur Children's Hospital, Memphis, TN, United States
- Department of Cardiology, Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Qingqing Gu
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, United States
- Department of Cardiology, The Affiliated Hospital of Nantong University, Nantong, China
| | - Joseph F. Pierre
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, United States
- Children's Foundation Research Institute, Le Bonheur Children's Hospital, Memphis, TN, United States
| | - Athena Starlard-Davenport
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Jeffrey A. Towbin
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, United States
- Children's Foundation Research Institute, Le Bonheur Children's Hospital, Memphis, TN, United States
- Pediatric Cardiology, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Yan Cui
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Enkhsaikhan Purevjav
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, United States
- Children's Foundation Research Institute, Le Bonheur Children's Hospital, Memphis, TN, United States
| | - Lu Lu
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
8
|
Hitscherich P, Lee EJ. Crosstalk Between Cardiac Cells and Macrophages Postmyocardial Infarction: Insights from In Vitro Studies. TISSUE ENGINEERING PART B-REVIEWS 2020; 27:475-485. [PMID: 33096955 DOI: 10.1089/ten.teb.2020.0198] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Cardiovascular disease, including myocardial infarction (MI), is the leading cause of death in the western world. Following MI, a large number of cardiomyocytes are lost and inflammatory cells such as monocytes and macrophages migrate into the damaged region to remove dead cells and tissue. These inflammatory cells secrete growth factors to induce degradation of the extracellular matrix in the myocardium and recruit cardiac fibroblasts. However, the contribution of specific macrophage subsets on cardiac cell function and survival in the steady state as well as in the diseased state is not well known. There is an increasing demand for in vitro cardiac disease models to bridge the critical missing link in the existing experimental methods. In this review, studies using in vitro models to examine the interaction between macrophages and cardiac cells, including cardiomyocytes, endothelial cells, and fibroblasts, are summarized to better understand the complex inflammatory cascade post-MI. The current challenges and the future directions of in vitro cardiac models are also discussed. Detailed and more mechanistic insights into macrophages and cardiac cell interactions during the multiphase repair process could potentially revolutionize the development of treatments and diagnostic alternatives. Impact statement The inflammatory cascade postmyocardial infarction (MI) is very complex. In vitro cardiac disease model studies bridge the critical missing link in the existing experimental methods and provide insights, including multicellular interaction post-MI. Detailed and more mechanistic insights into macrophages and cardiac cell interactions during the multiphase repair process could potentially revolutionize in developing treatments and diagnostic alternatives.
Collapse
Affiliation(s)
- Pamela Hitscherich
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey, USA
| | - Eun Jung Lee
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey, USA
| |
Collapse
|
9
|
Wang Z, Yang J, Qi J, Jin Y, Tong L. Activation of NADPH/ROS pathway contributes to angiogenesis through JNK signaling in brain endothelial cells. Microvasc Res 2020; 131:104012. [PMID: 32428522 DOI: 10.1016/j.mvr.2020.104012] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/06/2020] [Accepted: 05/10/2020] [Indexed: 01/01/2023]
Abstract
Recent evidences have shown that reactive oxygen species (ROS) are involved in regulating angiogenesis and preventing tissue injury. However, the precise molecular mechanisms behind ROS-induced angiogenesis are still unknown. The aim of the present study was to investigate the effects of ROS-induced angiogenesis in rat brain microvessel endothelial cells (rBMECs) and identify involving the signal pathways. For initial experiments, the rBMECs were incubated with different concentrations of hydrogen peroxide (H2O2). For the second experiments, the rBMECs were respectively treated with ROS scavenger dimethylthiourea (DMTU), NADPH oxidase (Nox) inhibitor apocynin, small interfering RNAs-mediated knock down Nox2 or Nox4, or pretreated with c-Jun N-terminal kinase (JNK) inhibitor SP600125. The cell proliferation, migration, tube formation, and the expressions of several important neuroangiogenic factors including vascular endothelial growth factor (VEGF), brain derived neurotrophic factor (BDNF), matrix metalloproteinase (MMP) -9 and phos-JNK were measured. Low level of H2O2 significantly promoted endothelial cell (EC) proliferation, migration and tube formation and upregulated levels of VEGF, BDNF, MMP-9 and phos-JNK. DMTU and apocynin significantly inhibited endothelial angiogenesis and downregulated these protein levels. As expected, knockdown of Nox2 or Nox4 expression blocked endothelial angiogenesis and downregulated the expressions of pro-neuroangiogenic factors. Furthermore, H2O2-induced endothelial angiogenesis and high expressions of pro-neuroangiogenic factors were decreased by SP600125. In conclusion, Nox-derived ROS were required for endothelial angiogenesis. Low level of ROS may activate JNK signaling pathway and upregulate pro-neuroangiogenic factors, ultimately mediating endothelial angiogenesis.
Collapse
Affiliation(s)
- Zairan Wang
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei Province, China
| | - Jiping Yang
- Department of Medical Imaging, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei Province, China.
| | - Jinchong Qi
- Department of Medical Imaging, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei Province, China
| | - Yonghui Jin
- Department of Medical Imaging, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei Province, China
| | - Liyan Tong
- Department of Medical Imaging, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei Province, China
| |
Collapse
|
10
|
Emerging Roles of Redox-Mediated Angiogenesis and Oxidative Stress in Dermatoses. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:2304018. [PMID: 31178954 PMCID: PMC6501144 DOI: 10.1155/2019/2304018] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 02/14/2019] [Accepted: 03/14/2019] [Indexed: 12/24/2022]
Abstract
Angiogenesis is the process of new vessel formation, which sprouts from preexisting vessels. This process is highly complex and primarily involves several key steps, including stimulation of endothelial cells by growth factors, degradation of the extracellular matrix by proteolytic enzymes, migration and proliferation of endothelial cells, and capillary tube formation. Currently, it is considered that multiple cytokines play a vital role in this process, which consist of proangiogenic factors (e.g., vascular endothelial growth factor, fibroblast growth factors, and angiopoietins) and antiangiogenic factors (e.g., endostatin, thrombospondin, and angiostatin). Angiogenesis is essential for most physiological events, such as body growth and development, tissue repair, and wound healing. However, uncontrolled neovascularization may contribute to angiogenic disorders. In physiological conditions, the above promoters and inhibitors function in a coordinated way to induce and sustain angiogenesis within a limited period of time. Conversely, the imbalance between proangiogenic and antiangiogenic factors could cause pathological angiogenesis and trigger several diseases. With insights into the molecular mechanisms of angiogenesis, increasing reports have shown that a close relationship exists between angiogenesis and oxidative stress (OS) in both physiological and pathological conditions. OS, an imbalance between prooxidant and antioxidant systems, is a cause and consequence of many vascular complains and serves as one of the biomarkers for these diseases. Furthermore, emerging evidence supports that OS and angiogenesis play vital roles in many dermatoses, such as psoriasis, atopic dermatitis, and skin tumor. This review summarizes recent findings on the role of OS as a trigger of angiogenesis in skin disorders, highlights newly identified mechanisms, and introduces the antiangiogenic and antioxidant therapeutic strategies.
Collapse
|
11
|
Choi HY, Yang GM, Dayem AA, Saha SK, Kim K, Yoo Y, Hong K, Kim JH, Yee C, Lee KM, Cho SG. Hydrodynamic shear stress promotes epithelial-mesenchymal transition by downregulating ERK and GSK3β activities. Breast Cancer Res 2019; 21:6. [PMID: 30651129 PMCID: PMC6335853 DOI: 10.1186/s13058-018-1071-2] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 10/26/2018] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Epithelial-mesenchymal transition (EMT) occurs in the tumor microenvironment and presents an important mechanism of tumor cell intravasation, stemness acquisition, and metastasis. During metastasis, tumor cells enter the circulation to gain access to distant tissues, but how this fluid microenvironment influences cancer cell biology is poorly understood. METHODS AND RESULTS Here, we present both in vivo and in vitro evidence that EMT-like transition also occurs in circulating tumor cells (CTCs) as a result of hydrodynamic shear stress (+SS), which promotes conversion of CD24middle/CD44high/CD133middle/CXCR4low/ALDH1low primary patient epithelial tumor cells into specific high sphere-forming CD24low/CD44low/CD133high/CXCR4high/ALDH1high cancer stem-like cells (CSLCs) or tumor-initiating cells (TICs) with elevated tumor progression and metastasis capacity in vitro and in vivo. We demonstrate that conversion of CSLCs/TICs from epithelial tumor cells via +SS is dependent on reactive oxygen species (ROS)/nitric oxide (NO) generation, and suppression of extracellular signal-related kinase (ERK)/glycogen synthase kinase (GSK)3β, a mechanism similar to that operating in embryonic stem cells to prevent their differentiation while promoting self-renewal. CONCLUSION Fluid shear stress experienced during systemic circulation of human breast tumor cells can lead to specific acquisition of mesenchymal stem cell (MSC)-like potential that promotes EMT, mesenchymal-epithelial transition, and metastasis to distant organs. Our data revealed that biomechanical forces appeared to be important microenvironmental factors that not only drive hematopoietic development but also lead to acquisition of CSLCs/TIC potential in cancer metastasis. Our data highlight that +SS is a critical factor that promotes the conversion of CTCs into distinct TICs in blood circulation by endowing plasticity to these cells and by maintaining their self-renewal signaling pathways.
Collapse
Affiliation(s)
- Hye Yeon Choi
- Department of Stem Cell & Regenerative Biotechnology and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Gwang-Mo Yang
- Department of Stem Cell & Regenerative Biotechnology and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Ahmed Abdal Dayem
- Department of Stem Cell & Regenerative Biotechnology and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Subbroto Kumar Saha
- Department of Stem Cell & Regenerative Biotechnology and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Kyeongseok Kim
- Department of Stem Cell & Regenerative Biotechnology and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Youngbum Yoo
- Department of Surgery, Konkuk University School of Medicine, Seoul, 05030, Republic of Korea
| | - Kwonho Hong
- Department of Stem Cell & Regenerative Biotechnology and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Jin-Hoi Kim
- Department of Stem Cell & Regenerative Biotechnology and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Cassian Yee
- Department of Melanoma Medical Oncology, MD Anderson Cancer Center, Houston, TX, 77054, USA
| | - Kyung-Mi Lee
- Department of Biochemistry and Molecular Biology, Korea University College of Medicine, 26-1 Anam-dong, Sungbuk-gu, Seoul, 02841, Republic of Korea.
| | - Ssang-Goo Cho
- Department of Stem Cell & Regenerative Biotechnology and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea.
| |
Collapse
|
12
|
Modification of Cardiac Progenitor Cell-Derived Exosomes by miR-322 Provides Protection against Myocardial Infarction through Nox2-Dependent Angiogenesis. Antioxidants (Basel) 2019; 8:antiox8010018. [PMID: 30634641 PMCID: PMC6356993 DOI: 10.3390/antiox8010018] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 01/05/2019] [Indexed: 02/06/2023] Open
Abstract
Myocardial infarction (MI) is the primary cause of cardiovascular mortality, and therapeutic strategies to prevent or mitigate the consequences of MI are a high priority. Cardiac progenitor cells (CPCs) have been used to treat cardiac injury post-MI, and despite poor engraftment, they have been shown to inhibit apoptosis and to promote angiogenesis through poorly understood paracrine effects. We previously reported that the direct injection of exosomes derived from CPCs (CPCexo) into mouse hearts provides protection against apoptosis in a model of acute ischemia/reperfusion injury. Moreover, we and others have reported that reactive oxygen species (ROS) derived from NADPH oxidase (NOX) can enhance angiogenesis in endothelial cells (ECs). Here we examined whether bioengineered CPCexo transfected with a pro-angiogenic miR-322 (CPCexo-322) can improve therapeutic efficacy in a mouse model of MI as compared to CPCexo. Systemic administration of CPCexo-322 in mice after ischemic injury provided greater protection post-MI than control CPCexo, in part, through enhanced angiogenesis in the border zones of infarcted hearts. Mechanistically, the treatment of cultured human ECs with CPCexo-322 resulted in a greater angiogenic response, as determined by increased EC migration and capillary tube formation via increased Nox2-derived ROS. Our study reveals that the engineering of CPCexo via microRNA (miR) programing can enhance angiogenesis, and this may be an effective therapeutic strategy for the treatment of ischemic cardiovascular diseases.
Collapse
|
13
|
Yang J. The role of reactive oxygen species in angiogenesis and preventing tissue injury after brain ischemia. Microvasc Res 2018; 123:62-67. [PMID: 30594490 DOI: 10.1016/j.mvr.2018.12.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 12/24/2018] [Accepted: 12/26/2018] [Indexed: 02/06/2023]
Abstract
Oxidative stress, which is defined as an imbalance between proxidant and antioxidant systems, is the essential mechanism involving in the ischemic process. During the early stage of brain ischemia, reactive oxygen species (ROS) are increased. Increased ROS are thought of a consequence of brain ischemia and exacerbating disease due to inducing cell death, apoptosis and senescence by oxidative stress. During brain tissue repair, ROS are act as signaling molecules and may be benefical for regulating angiogenesis and preventing tissue injury. New blood vessel formation is essentially required for rescuing tissue from brain ischemia. In ischemic conditions, ROS promotes angiogenesis, either directly or via the generation of active oxidation products. ROS-induced angiogenesis involves several signaling pathways. This paper reviewed current understanding of the role of ROS as a mediator and modulator of angiogenesis in brain ischemia.
Collapse
Affiliation(s)
- Jiping Yang
- Department of Medical Imaging, The Second Hospital of Hebei Medical University, 215 West Heping Road, Shijiazhuang 050000, Hebei Province, China.
| |
Collapse
|
14
|
Zhao W, Zhao T, Chen Y, Bhattacharya SK, Lu L, Sun Y. Differential Expression of Hypertensive Phenotypes in BXD Mouse Strains in Response to Angiotensin II. Am J Hypertens 2017; 31:108-114. [PMID: 29036574 PMCID: PMC5861568 DOI: 10.1093/ajh/hpx144] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 04/28/2017] [Accepted: 09/12/2017] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Besides environmental risk factors, genetic factors play a crucial role in the pathogenesis of primary hypertension. The current study is to unravel whether hypertensive phenotypes vary in mice with different genetic background. METHODS Hypertension was induced in C57BL/6J (B6), DBA/2J (D2), and 25 BXD strains by administrating angiotensin (Ang)II (2.5 mg/kg/day infused by osmotic minipump) for 4 weeks. Systolic blood pressure was monitored before (baseline) and after 4 weeks of AngII treatment by tail cuff. Cardiac and renal fibrosis was evaluated by picrosirius red staining and collagen volume fraction (CVF) was quantitated using imaging analyzing system; cardiac transforming growth factor (TGF)-β gene expression was monitored by RT-PCR, and inflammatory response was detected by immunohistochemical ED-1 staining. RESULTS AngII infusion caused hypertension in all strains. However, blood pressure elevation was more evident in the D2 strain than the B6 group, while it was widely variable among BXD strains. Furthermore, chronic AngII treatment lead to development of hypertensive cardiac and renal diseases. Cardiac and renal CVF levels in the D2 strain was significantly higher than the B6 cohort, whereas these varied vastly across BXD strains. Moreover, cardiac TGF-β mRNA levels were markedly diverse among various mouse strains. CONCLUSION Our study unequivocally demonstrates that in response to AngII, BXDs with different genetic background expressed hypertension phenotypes with varied degree in severity. It implicates that genomics contribute to pathogenesis of primary hypertension. Building upon the genotype and hypertensive phenotypes, the BXD cohort can be further exploited experimentally to identify genes that influence blood pressure.
Collapse
Affiliation(s)
- Wenyuan Zhao
- Division of Cardiovascular Diseases, Department of Medicine, University of Tennessee Health Science Center, USA
| | - Tieqiang Zhao
- Division of Cardiovascular Diseases, Department of Medicine, University of Tennessee Health Science Center, USA
| | - Yuanjian Chen
- Division of Cardiovascular Diseases, Department of Medicine, University of Tennessee Health Science Center, USA
| | - Syamal K Bhattacharya
- Division of Cardiovascular Diseases, Department of Medicine, University of Tennessee Health Science Center, USA
| | - Lu Lu
- Division of Cardiovascular Diseases, Department of Medicine, University of Tennessee Health Science Center, USA
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, USA
| | - Yao Sun
- Division of Cardiovascular Diseases, Department of Medicine, University of Tennessee Health Science Center, USA
| |
Collapse
|
15
|
Barahooee Khajeahmad M, Mogharnasi M, Salehikia A, Foadoddini M, Bayat J. The Long-Term Effects of Colostrum Supplementation and Sprint-Endurance Training on Plasma VEGF Levels in Male Wistar Rats. INTERNATIONAL JOURNAL OF BASIC SCIENCE IN MEDICINE 2017. [DOI: 10.15171/ijbsm.2017.28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
16
|
Manuneedhi Cholan P, Cartland SP, Kavurma MM. NADPH Oxidases, Angiogenesis, and Peripheral Artery Disease. Antioxidants (Basel) 2017; 6:antiox6030056. [PMID: 28704938 PMCID: PMC5618084 DOI: 10.3390/antiox6030056] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 07/07/2017] [Accepted: 07/09/2017] [Indexed: 01/08/2023] Open
Abstract
Peripheral artery disease (PAD) is caused by narrowing of arteries in the limbs, normally occurring in the lower extremities, with severe cases resulting in amputation of the foot or leg. A potential approach for treatment is to stimulate the formation of new blood vessels to restore blood flow to limb tissues. This is a process called angiogenesis and involves the proliferation, migration, and differentiation of endothelial cells. Angiogenesis can be stimulated by reactive oxygen species (ROS), with NADPH oxidases (NOX) being a major source of ROS in endothelial cells. This review summarizes the recent evidence implicating NOX isoforms in their ability to regulate angiogenesis in vascular endothelial cells in vitro, and in PAD in vivo. Increasing our understanding of the involvement of the NOX isoforms in promoting therapeutic angiogenesis may lead to new treatment options to slow or reverse PAD.
Collapse
Affiliation(s)
- Pradeep Manuneedhi Cholan
- Heart Research Institute, Sydney 2042, Australia.
- Sydney Medical School, the University of Sydney, Sydney 2006, Australia.
| | - Siân P Cartland
- Heart Research Institute, Sydney 2042, Australia.
- Sydney Medical School, the University of Sydney, Sydney 2006, Australia.
| | - Mary M Kavurma
- Heart Research Institute, Sydney 2042, Australia.
- Sydney Medical School, the University of Sydney, Sydney 2006, Australia.
| |
Collapse
|
17
|
Lassen TR, Nielsen JM, Johnsen J, Ringgaard S, Bøtker HE, Kristiansen SB. Effect of paroxetine on left ventricular remodeling in an in vivo rat model of myocardial infarction. Basic Res Cardiol 2017; 112:26. [PMID: 28349259 DOI: 10.1007/s00395-017-0614-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 03/22/2017] [Indexed: 01/08/2023]
Abstract
Left ventricular (LV) remodeling following a myocardial infarction (MI) involves formation of reactive oxygen species (ROS). Paroxetine, a selective serotonin reuptake inhibitor, has an antioxidant effect in the vascular wall. We investigated whether paroxetine reduces myocardial ROS formation and LV remodeling following a MI. In a total of 32 Wistar rats, MI was induced by a 30-min ligation of the left anterior descending artery followed by 7- or 28-day reperfusion. During the 28 days of reperfusion, LV remodeling was evaluated by magnetic resonance imaging (MRI) and echocardiography (n = 20). After 28 days of reperfusion, the susceptibility to ventricular tachycardia was evaluated prior to sacrifice and histological assessment of myocyte cross-sectional area, fibrosis, and presence of myofibroblasts. Myocardial ROS formation was measured with dihydroethidium after 7 days of reperfusion in separate groups (n = 12). Diastolic LV volume, evaluated by MRI (417 ± 60 vs. 511 ± 64 µL, p < 0.05), and echocardiography (515 ± 80 vs. 596 ± 83 µL, p < 0.05) as well as diastolic LV internal diameter evaluated with echocardiography (7.2 ± 0.6 vs. 8.1 ± 0.7 mm, p < 0.05) were lower in the paroxetine group than in controls. Furthermore, myocyte cross-sectional area was reduced in the paroxetine group compared with controls (277 ± 26 vs. 354 ± 23 mm3, p < 0.05) and ROS formation was reduced in the remote myocardium (0.415 ± 0.19 normalized to controls, p < 0.05). However, no differences in the presence of fibrosis or myofibroblasts were observed. Finally, paroxetine reduced the susceptibility to ventricular tachycardia (induced in 2/11 vs. 6/8 rats, p < 0.05). Paroxetine treatment following MI decreases LV remodeling and susceptibility to arrhythmias, probably by reducing ROS formation.
Collapse
Affiliation(s)
- Thomas Ravn Lassen
- Department of Cardiology, Aarhus University Hospital, Skejby, Palle Juul-Jensens Boulevard 99, 8200, Aarhus, Denmark. .,Institute of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark.
| | - Jan Møller Nielsen
- Department of Cardiology, Aarhus University Hospital, Skejby, Palle Juul-Jensens Boulevard 99, 8200, Aarhus, Denmark
| | - Jacob Johnsen
- Department of Cardiology, Aarhus University Hospital, Skejby, Palle Juul-Jensens Boulevard 99, 8200, Aarhus, Denmark
| | - Steffen Ringgaard
- Department of Cardiology, Aarhus University Hospital, Skejby, Palle Juul-Jensens Boulevard 99, 8200, Aarhus, Denmark.,MR Research Center, Aarhus University Hospital, Aarhus, Denmark
| | - Hans Erik Bøtker
- Department of Cardiology, Aarhus University Hospital, Skejby, Palle Juul-Jensens Boulevard 99, 8200, Aarhus, Denmark.,Institute of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Steen Buus Kristiansen
- Department of Cardiology, Aarhus University Hospital, Skejby, Palle Juul-Jensens Boulevard 99, 8200, Aarhus, Denmark
| |
Collapse
|
18
|
The Innate Immune Response in Myocardial Infarction, Repair, and Regeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1003:251-272. [PMID: 28667562 DOI: 10.1007/978-3-319-57613-8_12] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Following myocardial infarction (MI), resident innate immune cells such as macrophages, innate lymphoid cells, and mast cells rapidly coordinate their function to contain inflammation by removing dying cells and promoting cardiomyocyte replenishment. To sustain local tissue repair functions, hematopoietic progenitors are mobilized from the bone marrow to the spleen to generate subsequent myeloid cells such as monocytes and neutrophils, which are rapidly recruited at the site of MI. A finely tuned balance between local adaptation and recruitment controls the overall outcome of the cardiac tissue regeneration versus repair and scar formation.In this chapter, the (potential) roles of the innate immune system residing in the heart are discussed in the context of recent findings about macrophage ontogeny and their homeostasis with circulating monocytes during cardiac tissue growth and after myocardial infarction. Their interactions with other members of the innate immune system are also discussed with a particular emphasis on the potential involvement of mast cells and innate lymphoid cells during MI, largely underestimated until recently. Understanding the development and the functions of the different protagonists responding to MI as well as their potential cross talk could help design new strategies for regenerative medicine intervention.
Collapse
|
19
|
House SL, Castro AM, Lupu TS, Weinheimer C, Smith C, Kovacs A, Ornitz DM. Endothelial fibroblast growth factor receptor signaling is required for vascular remodeling following cardiac ischemia-reperfusion injury. Am J Physiol Heart Circ Physiol 2016; 310:H559-71. [PMID: 26747503 DOI: 10.1152/ajpheart.00758.2015] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 01/01/2016] [Indexed: 11/22/2022]
Abstract
Fibroblast growth factor (FGF) signaling is cardioprotective in various models of myocardial infarction. FGF receptors (FGFRs) are expressed in multiple cell types in the adult heart, but the cell type-specific FGFR signaling that mediates different cardioprotective endpoints is not known. To determine the requirement for FGFR signaling in endothelium in cardiac ischemia-reperfusion injury, we conditionally inactivated the Fgfr1 and Fgfr2 genes in endothelial cells with Tie2-Cre (Tie2-Cre, Fgfr1(f/f), Fgfr2(f/f) DCKO mice). Tie2-Cre, Fgfr1(f/f), Fgfr2(f/f) DCKO mice had normal baseline cardiac morphometry, function, and vessel density. When subjected to closed-chest, regional cardiac ischemia-reperfusion injury, Tie2-Cre, Fgfr1(f/f), Fgfr2(f/f) DCKO mice showed a significantly increased hypokinetic area at 7 days, but not 1 day, after reperfusion. Tie2-Cre, Fgfr1(f/f), Fgfr2(f/f) DCKO mice also showed significantly worsened cardiac function compared with controls at 7 days but not 1 day after reperfusion. Pathophysiological analysis showed significantly decreased vessel density, increased endothelial cell apoptosis, and worsened tissue hypoxia in the peri-infarct area at 7 days following reperfusion. Notably, Tie2-Cre, Fgfr1(f/f), Fgfr2(f/f) DCKO mice showed no impairment in the cardiac hypertrophic response. These data demonstrate an essential role for FGFR1 and FGFR2 in endothelial cells for cardiac functional recovery and vascular remodeling following in vivo cardiac ischemia-reperfusion injury, without affecting the cardiac hypertrophic response. This study suggests the potential for therapeutic benefit from activation of endothelial FGFR pathways following ischemic injury to the heart.
Collapse
Affiliation(s)
- Stacey L House
- Division of Emergency Medicine, Washington University in St. Louis School of Medicine, St. Louis, Missouri; Department of Developmental Biology, Washington University in St. Louis School of Medicine, St. Louis, Missouri
| | - Angela M Castro
- Department of Developmental Biology, Washington University in St. Louis School of Medicine, St. Louis, Missouri
| | - Traian S Lupu
- Division of Emergency Medicine, Washington University in St. Louis School of Medicine, St. Louis, Missouri; Department of Developmental Biology, Washington University in St. Louis School of Medicine, St. Louis, Missouri
| | - Carla Weinheimer
- Center for Cardiovascular Research, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, Missouri; and
| | - Craig Smith
- Department of Developmental Biology, Washington University in St. Louis School of Medicine, St. Louis, Missouri
| | - Attila Kovacs
- Center for Cardiovascular Research, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, Missouri; and
| | - David M Ornitz
- Department of Developmental Biology, Washington University in St. Louis School of Medicine, St. Louis, Missouri
| |
Collapse
|
20
|
Yoshioka K, Otani H, Shimazu T, Fujita M, Iwasaka T, Shiojima I. Sepiapterin prevents left ventricular hypertrophy and dilatory remodeling induced by pressure overload in rats. Am J Physiol Heart Circ Physiol 2015; 309:H1782-91. [PMID: 26408540 DOI: 10.1152/ajpheart.00417.2015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 09/22/2015] [Indexed: 01/01/2023]
Abstract
Uncoupling of nitric oxide (NO) synthase (NOS) has been implicated in left ventricular (LV) hypertrophy (LVH) and dilatory remodeling induced by pressure overload. We investigated whether administration of sepiapterin, a substrate of the salvage pathway of tetrahydrobiopterin synthesis, prevents LVH and dilatory LV remodeling by inhibiting NOS uncoupling and increasing bioavailable NO. Pressure overload was induced in rats by transverse aortic constriction (TAC). Concentric LVH developed during 8 wk after TAC, and dilatory LV remodeling and dysfunction developed between 8 and 16 wk after TAC associated with a decrease in capillary density. Oral administration of sepiapterin or the superoxide/peroxynitrite scavenger N-(2-mercaptopropionyl)-glycine for 8 wk after TAC inhibited oxidative stress, but only sepiapterin increased bioavailable NO and inhibited cardiomyocyte hypertrophy associated with a further increase in capillary density. When sepiapterin was administered between 8 and 16 wk after TAC, cardiomyocyte hypertrophy was regressed and capillary density was restored. This was associated with the inhibition of interstitial fibrosis and dilatory LV remodeling. N-nitro-l-arginine methyl ester abrogated all the beneficial effects of sepiapterin in rats with TAC. These results suggest that sepiapterin prevents concentric LVH and dilatory remodeling after TAC primarily by increasing the bioavailability of NO.
Collapse
MESH Headings
- Animals
- Aorta/surgery
- Biopterins/analogs & derivatives
- Biopterins/biosynthesis
- Capillaries/pathology
- Cell Size
- Constriction
- Dilatation, Pathologic/diagnostic imaging
- Dilatation, Pathologic/metabolism
- Enzyme Inhibitors/pharmacology
- Glycine/analogs & derivatives
- Glycine/pharmacology
- Heart/drug effects
- Hypertrophy, Left Ventricular/diagnostic imaging
- Hypertrophy, Left Ventricular/metabolism
- Hypertrophy, Left Ventricular/pathology
- Male
- Myocardium/metabolism
- Myocardium/pathology
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- NG-Nitroarginine Methyl Ester/pharmacology
- Nitric Oxide/metabolism
- Nitric Oxide Synthase/drug effects
- Nitric Oxide Synthase/metabolism
- Organ Size
- Oxidative Stress/drug effects
- Pressure
- Pterins/pharmacology
- Rats
- Rats, Sprague-Dawley
- Sulfhydryl Compounds/pharmacology
- Ultrasonography
- Ventricular Dysfunction, Left/diagnostic imaging
- Ventricular Dysfunction, Left/metabolism
- Ventricular Dysfunction, Left/pathology
- Ventricular Remodeling/drug effects
Collapse
Affiliation(s)
- Kei Yoshioka
- Department of Internal Medicine II, Kansai Medical University, Moriguchi City, Japan
| | - Hajime Otani
- Department of Internal Medicine II, Kansai Medical University, Moriguchi City, Japan
| | - Takayuki Shimazu
- Department of Internal Medicine II, Kansai Medical University, Moriguchi City, Japan
| | - Masanori Fujita
- Department of Internal Medicine II, Kansai Medical University, Moriguchi City, Japan
| | - Toshiji Iwasaka
- Department of Internal Medicine II, Kansai Medical University, Moriguchi City, Japan
| | - Ichiro Shiojima
- Department of Internal Medicine II, Kansai Medical University, Moriguchi City, Japan
| |
Collapse
|
21
|
Cellular Immunity and Cardiac Remodeling After Myocardial Infarction: Role of Neutrophils, Monocytes, and Macrophages. Curr Heart Fail Rep 2015; 12:247-54. [DOI: 10.1007/s11897-015-0255-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
22
|
Cai B, Wang N, Mao W, You T, Lu Y, Li X, Ye B, Li F, Xu H. Deletion of FoxO1 leads to shortening of QRS by increasing Na(+) channel activity through enhanced expression of both cardiac NaV1.5 and β3 subunit. J Mol Cell Cardiol 2014; 74:297-306. [PMID: 24956219 PMCID: PMC4158923 DOI: 10.1016/j.yjmcc.2014.06.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Revised: 06/10/2014] [Accepted: 06/12/2014] [Indexed: 12/19/2022]
Abstract
Our in vitro studies revealed that a transcription factor, Forkhead box protein O1 (FoxO1), negatively regulates the expression of NaV1.5, a main α subunit of the cardiac Na(+) channel, by altering the promoter activity of SCN5a in HL-1 cardiomyocytes. The in vivo role of FoxO1 in the regulation of cardiac NaV1.5 expression remains unknown. The present study aimed to define the role of FoxO1 in the regulation of NaV1.5 expression and cardiac Na(+) channel activity in mouse ventricular cardiomyocytes and assess the cardiac electrophysiological phenotype of mice with cardiac FoxO1 deletion. Tamoxifen-induced and cardiac-specific FoxO1 deletion was confirmed by polymerase chain reaction (PCR). Cardiac FoxO1 deletion failed to result in either cardiac functional changes or hypertrophy as assessed by echocardiography and individual ventricular cell capacitances, respectively. Western blotting showed that FoxO1 was significantly decreased while NaV1.5 protein level was significantly increased in mouse hearts with FoxO1 deletion. Reverse transcription-PCR (RT-PCR) revealed that FoxO1 deletion led to an increase in NaV1.5 and Na(+) channel subunit β3 mRNA, but not β1, 2, and 4, or connexin 43. Whole patch-clamp recordings demonstrated that cardiac Na(+) currents were significantly augmented by FoxO1 deletion without affecting the steady-state activation and inactivation, leading to accelerated depolarization of action potentials in mouse ventricular cardiomyocytes. Electrocardiogram recordings showed that the QRS complex was significantly shortened and the P wave amplitude was significantly increased in conscious and unrestrained mice with cardiac FoxO1 deletion. NaV1.5 expression was decreased in the peri-infarct (border-zone) of mice with myocardial infarction and FoxO1 accumulated in the cardiomyocyte nuclei of chronic ischemic human hearts. Our findings indicate that FoxO1 plays an important role in the regulation of NaV1.5 and β3 subunit expressions as well as Na(+) channel activity in the heart and that FoxO1 is involved in the modulation of NaV1.5 expression in ischemic heart disease.
Collapse
Affiliation(s)
- Benzhi Cai
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Ning Wang
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA; Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Weike Mao
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Tao You
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Yan Lu
- Aab Cardiovascular Research Institute, University of Rochester Medical Center, Rochester, NY, USA; Division of Cardiology, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Xiang Li
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Bo Ye
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Faqian Li
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Haodong Xu
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA; Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA; Aab Cardiovascular Research Institute, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
23
|
Zhao YZ, Tian XQ, Zhang M, Cai L, Ru A, Shen XT, Jiang X, Jin RR, Zheng L, Hawkins K, Charkrabarti S, Li XK, Lin Q, Yu WZ, Ge S, Lu CT, Wong HL. Functional and pathological improvements of the hearts in diabetes model by the combined therapy of bFGF-loaded nanoparticles with ultrasound-targeted microbubble destruction. J Control Release 2014; 186:22-31. [PMID: 24815422 DOI: 10.1016/j.jconrel.2014.04.054] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 04/22/2014] [Accepted: 04/23/2014] [Indexed: 11/16/2022]
Abstract
Diabetic cardiomyopathy (DCM) is the leading cause of morbidity and mortality among the diabetic patients and currently there is no effective means to reverse its pathological progress. Basic fibroblast growth factor (bFGF) has shown promise as a molecular therapy for DCM, but its delivery is inefficient and non-specific. In the present study, a therapy combining nanoparticle (NP) carrier and ultrasound-targeted microbubble destruction (UTMD) was reported the first time for bFGF delivery to the heart of diabetic rats. bFGF-loaded NP (bFGF-NP) were prepared with Poloxamer 188-grafted heparin copolymer using water-in-water technique, and the morphology, encapsulation efficiency, and bioactivity of bFGF-NP were studied. The cellular uptake and cytotoxicity of bFGF-NP were evaluated with primary cultures of the left ventricular (LV) cardiomyocytes in vitro. Therapeutic effects of bFGF-NP/UTMD on the heart of DCM rats were studied by measuring LV systolic and diastolic functions, hemodynamic characteristics and indicators of cardiac remodeling including myocardial collagen volume fraction and capillary density. Results demonstrated that bFGF-NP showed good round morphology, efficient bFGF encapsulation and stable bioactivity of bFGF in vitro. bFGF-NP/UTMD combined treatment significantly enhanced the efficiency of bFGF cellular uptake (P<0.05) without obvious cytotoxicity. Significant improvements (P<0.05) in both cardiac functions and tissue morphology in the DCM rats were observed in bFGF-NP/UTMD group. These were not achievable using free bFGF, bFGF-NP or UTMD treatment alone. Our results show that combining a non-viral vector with UTMD technique is an effective strategy to deliver bFGF to the heart, and the resulting growth factor therapy has demonstrated potential to reverse the progress of DCM by restoring the cardiac functions and even the structure of damaged cardiac tissues.
Collapse
Affiliation(s)
- Ying-Zheng Zhao
- Wenzhou Medical University, Wenzhou, Zhejiang Province 325035, China
| | - Xin-Qiao Tian
- Department of Ultrasonography, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Ming Zhang
- Wenzhou Medical University, Wenzhou, Zhejiang Province 325035, China
| | - Lu Cai
- The KCHRI at the Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Ao Ru
- Ultrasound Department, The First People's Hospital of Huzhou, Huzhou City, Zhejiang Province 313000, China
| | - Xiao-Tong Shen
- Wenzhou Medical University, Wenzhou, Zhejiang Province 325035, China
| | - Xi Jiang
- Wenzhou Medical University, Wenzhou, Zhejiang Province 325035, China
| | - Rong-Rong Jin
- Wenzhou Medical University, Wenzhou, Zhejiang Province 325035, China
| | - Lei Zheng
- Department of Ultrasonography, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Kyle Hawkins
- The KCHRI at the Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Subrata Charkrabarti
- Department of Pathology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Xiao-Kun Li
- Wenzhou Medical University, Wenzhou, Zhejiang Province 325035, China
| | - Qian Lin
- Wenzhou Medical University, Wenzhou, Zhejiang Province 325035, China
| | - Wen-Ze Yu
- Wenzhou Medical University, Wenzhou, Zhejiang Province 325035, China
| | - Shuping Ge
- St. Christopher's Hospital for Children/Drexel University College of Medicine, Philadelphia, PA, USA
| | - Cui-Tao Lu
- Wenzhou Medical University, Wenzhou, Zhejiang Province 325035, China; Department of Ultrasonography, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Ho Lun Wong
- School of Pharmacy, Temple University, Philadelphia, PA 19140, USA.
| |
Collapse
|
24
|
Predictors of coronary collaterals in patients with non ST-elevated acute coronary syndrome: the paradox of the leukocytes. Cent Eur J Immunol 2014; 39:83-90. [PMID: 26155105 PMCID: PMC4439991 DOI: 10.5114/ceji.2014.42130] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 03/24/2014] [Indexed: 12/21/2022] Open
Abstract
Aim of the study Atherosclerosis represents active inflammation in which leukocytes play significant role. Coronary collateral development is a response to myocardial ischaemia. In this study we aimed to investigate the association of the leukocytes with coronary collateral development in patients with non ST-elevated acute coronary syndromes (NST-ACS). Material and methods A total of 251 consecutive patients were hospitalized in our hospital with a diagnosis of NST-ACS. The blood samples were collected 1-hour after admission to the hospital and peripheral leukocytes (neutrophils, monocytes and lymphocytes) were examined. All patients underwent coronary angiography. The coronary collateral vessels (CCV) are graded according to the Rentrop scoring system. Results Group 1 consisted of 146 patients with Rentrop 0 and Group 2 consisted of 105 patients with Rentrop 1, 2 and 3. The presence of CCV was significantly associated with neutrophil count, lymphocyte count, monocyte count and neutrophil-lymphocyte ratio (NLR). In subgroup analyses, higher NLR was significantly associated with good CCV development in patients with NST-ACS. Conclusions Higher neutrophil count, monocyte count and NLR and lower lymphocyte count on admission, were associated with the presence of CCV in patients with NST-ACS. High NLR may predict good collateral development in patients with NST-ACS.
Collapse
|
25
|
Ma Y, Yabluchanskiy A, Lindsey ML. Neutrophil roles in left ventricular remodeling following myocardial infarction. FIBROGENESIS & TISSUE REPAIR 2013; 6:11. [PMID: 23731794 PMCID: PMC3681584 DOI: 10.1186/1755-1536-6-11] [Citation(s) in RCA: 145] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2012] [Accepted: 04/11/2013] [Indexed: 12/20/2022]
Abstract
Polymorphonuclear granulocytes (PMNs; neutrophils) serve as key effector cells in the innate immune system and provide the first line of defense against invading microorganisms. In addition to producing inflammatory cytokines and chemokines and undergoing a respiratory burst that stimulates the release of reactive oxygen species, PMNs also degranulate to release components that kill pathogens. Recently, neutrophil extracellular traps have been shown to be an alternative way to trap microorganisms and contain infection. PMN-derived granule components are also involved in multiple non-infectious inflammatory processes, including the response to myocardial infarction (MI). In this review, we will discuss the biological characteristics, recruitment, activation, and removal of PMNs, as well as the roles of PMN-derived granule proteins in inflammation and innate immunity, focusing on the MI setting when applicable. We also discuss future perspectives that will direct research in PMN biology.
Collapse
Affiliation(s)
- Yonggang Ma
- San Antonio Cardiovascular Proteomics Center, San Antonio, TX, USA.
| | | | | |
Collapse
|
26
|
Zhao W, Zhao T, Chen Y, Qu Y, Gerling IC, Sun Y. Modification of oxidative stress on gene expression profiling in the rat infarcted heart. Mol Cell Biochem 2013; 379:243-53. [PMID: 23716180 DOI: 10.1007/s11010-013-1646-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 03/28/2013] [Indexed: 11/29/2022]
Abstract
Cardiac oxidative stress is developed following myocardial infarction (MI) particularly in the first week of MI. The influence of reactive oxygen species (ROS) on gene expression profiling and molecular pathways in the infarcted myocardium remains uncertain and is explored in the present study. Rats with MI were treated with or without antioxidants for 1 week. Normal rats served as controls. Cardiac oxidative stress and gene profiling were investigated. Compared to normal hearts, malondialdehyde, a marker of oxidative stress, was significantly increased in the infarcted myocardium, which was significantly suppressed by antioxidants. Microarray assay showed that over a thousand genes were differentially expressed in the infarcted myocardium. Antioxidants significantly altered the expression of 159 genes compared to untreated MI rats. Ingenuity pathway analysis indicated that multiple pathway networks were affected by antioxidants, including those related to cell movement, growth/development, death, and inflammatory/fibrotic responses. IPA further identified that these changes were primarily related to NFκB, p38 MAPK, and ERκ1/2 pathways. Hub genes were identified in the associated gene networks. This study reveals the gene networks associated with cardiac oxidative stress postMI. These observations indicate that ROS regulate various molecular and cellular actions related to cardiac repair/remodeling through multiple gene networks.
Collapse
Affiliation(s)
- Wenyuan Zhao
- Division of Cardiovascular Diseases, Department of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | | | | | | | | | | |
Collapse
|
27
|
Inflammation and oxidative stress in angiogenesis and vascular disease. J Mol Med (Berl) 2013; 91:323-8. [PMID: 23430240 DOI: 10.1007/s00109-013-1007-3] [Citation(s) in RCA: 174] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 01/29/2013] [Accepted: 01/31/2013] [Indexed: 01/24/2023]
Abstract
Recent evidence suggests that processes of inflammation and angiogenesis are interconnected, especially in human pathologies. Newly formed blood vessels enable the continuous recruitment of inflammatory cells, which release a variety of proangiogenic cytokines, chemokines, and growth factors and further promote angiogenesis. These series of positive feedback loops ultimately create a vicious cycle that exacerbates inflammation, transforming it into the chronic process. Recently, this concept of reciprocity of angiogenesis and inflammation has been expanded to include oxidative stress as a novel mechanistic connection between inflammation-driven oxidation and neovascularization. Production of reactive oxygen species results from activation of immune cells by proinflammatory stimuli. As oxidative stress can lead to chronic inflammation by activating a variety of transcription factors including NF-κB, AP-1, and PPAR-γ, inflammation itself has a reciprocal relationship with oxidative stress. This review discusses the recent findings in the area bridging neovascularization and oxidation and highlights novel mechanisms of inflammation- and oxidative stress-driven angiogenesis.
Collapse
|
28
|
Zhao T, Zhao W, Chen Y, Liu L, Ahokas RA, Sun Y. Differential expression of vascular endothelial growth factor isoforms and receptor subtypes in the infarcted heart. Int J Cardiol 2012; 167:2638-45. [PMID: 22818386 DOI: 10.1016/j.ijcard.2012.06.127] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Revised: 06/15/2012] [Accepted: 06/24/2012] [Indexed: 02/06/2023]
Abstract
AIMS The vascular endothelial growth factor (VEGF) family contains four major isoforms and three receptor subtypes. The expressions of each VEGF isoform and receptor subtype in cardiac repair/remodeling after myocardial infarction (MI) remain uncertain and are investigated in the current study. METHODS AND RESULTS Temporal and spatial expressions of VEGF isoforms and VEGFR subtypes were examined in the infarcted rat heart. Sham-operated rats served as controls. We found that the normal myocardium expressed all VEGF isoforms. Following MI, VEGF-A was only increased in the border zone at day 1 and was significantly decreased in the infarcted heart during the 42 day observation period afterwards. VEGF-B was significantly suppressed in the infarcted heart. VEGF-C and VEGF-D were markedly increased in the infarcted heart in both early and late stages of MI. VEGFR-1 and 2 were significantly decreased in the infarcted heart, while VEGFR-3 was significantly increased, which was primarily expressed in blood vessels and myofibroblasts (myoFb). CONCLUSIONS VEGF isoforms and VEGFR subtypes are differentially expressed in the infarcted heart. Increased VEGF-A in the very early stage of MI suggests the potential role in initiating the cardiac angiogenic response. Suppressed cardiac VEGF-B postMI suggests that it may not be critical to cardiac repair. The presence of enhanced VEGF-C and VEGF-D along with its receptor, VEGFR-3, in various cell types of the infarcted heart suggest that these isoforms may regulate multiple responses during cardiac repair/remodeling.
Collapse
Affiliation(s)
- Tieqiang Zhao
- Division of Cardiovascular Diseases, Department of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | | | | | | | | | | |
Collapse
|
29
|
Adluri RS, Thirunavukkarasu M, Zhan L, Dunna NR, Akita Y, Selvaraju V, Otani H, Sanchez JA, Ho YS, Maulik N. Glutaredoxin-1 overexpression enhances neovascularization and diminishes ventricular remodeling in chronic myocardial infarction. PLoS One 2012; 7:e34790. [PMID: 22523530 PMCID: PMC3327713 DOI: 10.1371/journal.pone.0034790] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Accepted: 03/08/2012] [Indexed: 12/17/2022] Open
Abstract
Oxidative stress plays a critical role in the pathophysiology of cardiac failure, including the modulation of neovascularization following myocardial infarction (MI). Redox molecules thioredoxin (Trx) and glutaredoxin (Grx) superfamilies actively maintain intracellular thiol-redox homeostasis by scavenging reactive oxygen species. Among these two superfamilies, the pro-angiogenic function of Trx-1 has been reported in chronic MI model whereas similar role of Grx-1 remains uncertain. The present study attempts to establish the role of Grx-1 in neovascularization and ventricular remodeling following MI. Wild-type (WT) and Grx-1 transgenic (Grx-1(Tg/+)) mice were randomized into wild-type sham (WTS), Grx-1(Tg/+) Sham (Grx-1(Tg/+)S), WTMI, Grx-1(Tg/+)MI. MI was induced by permanent occlusion of the LAD coronary artery. Sham groups underwent identical time-matched surgical procedures without LAD ligation. Significant increase in arteriolar density was observed 7 days (d) after surgical intervention in the Grx-1(Tg/+)MI group as compared to the WTMI animals. Further, improvement in myocardial functional parameters 30 d after MI was observed including decreased LVIDs, LVIDd, increased ejection fraction and, fractional shortening was also observed in the Grx-1(Tg/+)MI group as compared to the WTMI animals. Moreover, attenuation of oxidative stress and apoptotic cardiomyocytes was observed in the Grx-1(Tg/+)MI group as compared to the WTMI animals. Increased expression of p-Akt, VEGF, Ang-1, Bcl-2, survivin and DNA binding activity of NF-κB were observed in the Grx-1(Tg/+)MI group when compared to WTMI animals as revealed by Western blot analysis and Gel-shift analysis, respectively. These results are the first to demonstrate that Grx-1 induces angiogenesis and diminishes ventricular remodeling apparently through neovascularization mediated by Akt, VEGF, Ang-1 and NF-κB as well as Bcl-2 and survivin-mediated anti-apoptotic pathway in the infarcted myocardium.
Collapse
Affiliation(s)
- Ram Sudheer Adluri
- Molecular Cardiology and Angiogenesis Laboratory, Department of Surgery, Health Center, University of Connecticut, Farmington, Connecticut, United States of America
| | - Mahesh Thirunavukkarasu
- Molecular Cardiology and Angiogenesis Laboratory, Department of Surgery, Health Center, University of Connecticut, Farmington, Connecticut, United States of America
| | - Lijun Zhan
- Molecular Cardiology and Angiogenesis Laboratory, Department of Surgery, Health Center, University of Connecticut, Farmington, Connecticut, United States of America
| | - Nageswara Rao Dunna
- Molecular Cardiology and Angiogenesis Laboratory, Department of Surgery, Health Center, University of Connecticut, Farmington, Connecticut, United States of America
| | - Yuzo Akita
- Molecular Cardiology and Angiogenesis Laboratory, Department of Surgery, Health Center, University of Connecticut, Farmington, Connecticut, United States of America
| | - Vaithinathan Selvaraju
- Molecular Cardiology and Angiogenesis Laboratory, Department of Surgery, Health Center, University of Connecticut, Farmington, Connecticut, United States of America
| | - Hajime Otani
- Second Department of Internal Medicine, Kansai Medical University, Moriguchi, Japan
| | - Juan A. Sanchez
- Molecular Cardiology and Angiogenesis Laboratory, Department of Surgery, Health Center, University of Connecticut, Farmington, Connecticut, United States of America
| | - Ye-Shih Ho
- Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan, United States of America
| | - Nilanjana Maulik
- Molecular Cardiology and Angiogenesis Laboratory, Department of Surgery, Health Center, University of Connecticut, Farmington, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
30
|
Mao W, You T, Ye B, Li X, Dong HH, Hill JA, Li F, Xu H. Reactive oxygen species suppress cardiac NaV1.5 expression through Foxo1. PLoS One 2012; 7:e32738. [PMID: 22400069 PMCID: PMC3293505 DOI: 10.1371/journal.pone.0032738] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Accepted: 01/30/2012] [Indexed: 12/17/2022] Open
Abstract
Na(V)1.5 is a cardiac voltage-gated Na(+) channel αsubunit and is encoded by the SCN5a gene. The activity of this channel determines cardiac depolarization and electrical conduction. Channel defects, including mutations and decrease of channel protein levels, have been linked to the development of cardiac arrhythmias. The molecular mechanisms underlying the regulation of Na(V)1.5 expression are largely unknown. Forkhead box O (Foxo) proteins are transcriptional factors that bind the consensus DNA sequences in their target gene promoters and regulate the expression of these genes. Comparative analysis revealed conserved DNA sequences, 5'-CAAAACA-3' (insulin responsive element, IRE), in rat, mouse and human SCN5a promoters with the latter two containing two overlapping Foxo protein binding IREs, 5'-CAAAACAAAACA-3'. This finding led us to hypothesize that Foxo1 regulates Na(V)1.5 expression by directly binding the SCN5a promoter and affecting its transcriptional activity. In the present study, we determined whether Foxo1 regulates Na(V)1.5 expression at the transcriptional level and also defined the role of Foxo1 in hydrogen peroxide (H(2)O(2))-mediated Na(V)1.5 suppression in HL-1 cardiomyocytes using chromatin immunoprecipitation (ChIP), constitutively nuclear Foxo1 expression, and RNAi Foxo1 knockdown as well as whole cell voltage-clamp recordings. ChIP with anti-Foxo1 antibody and follow-up semi-quantitative PCR with primers flanking Foxo1 binding sites in the proximal SCN5a promoter region clearly demonstrated enrichment of DNA, confirming Foxo1 recruitment to this consensus sequence. Foxo1 mutant (T24A/S319A-GFP, Foxo1-AA-GFP) was retained in nuclei, leading to a decrease of Na(V)1.5 expression and Na(+) current, while silencing of Foxo1 expression by RNAi resulted in the augmentation of Na(V)1.5 expression. H(2)O(2) significantly reduced Na(V)1.5 expression by promoting Foxo1 nuclear localization and this reduction was prevented by RNAi silencing Foxo1 expression. These studies indicate that Foxo1 negatively regulates Na(V)1.5 expression in cardiomyocytes and reactive oxygen species suppress Na(V)1.5 expression through Foxo1.
Collapse
Affiliation(s)
- Weike Mao
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Tao You
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York, United States of America
- Division of Cardiology, Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Bo Ye
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Xiang Li
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Henry H. Dong
- Division of Immunogenetics, Rangoes Research Center, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania, United States of America
| | - Joseph A. Hill
- Division of Cardiology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Faqian Li
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Haodong Xu
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York, United States of America
- Aab Cardiovascular Research Institute, University of Rochester Medical Center, Rochester, New York, United States of America
- * E-mail:
| |
Collapse
|
31
|
Zhao W, Zhao T, Huang V, Chen Y, Ahokas RA, Sun Y. Platelet-derived growth factor involvement in myocardial remodeling following infarction. J Mol Cell Cardiol 2011; 51:830-8. [PMID: 21767547 DOI: 10.1016/j.yjmcc.2011.06.023] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Revised: 06/15/2011] [Accepted: 06/30/2011] [Indexed: 12/31/2022]
Abstract
Cardiac remodeling occurs in the infarcted heart (MI). The underlying regulatory mechanisms are under investigation. Platelet-derived growth factor (PDGF) is a family of growth factors that stimulates cell growth, differentiation and migration. Herein, we sought to determine whether PDGF is involved in cardiac repair/remodeling following MI. The temporal and spatial expressions of PDGF isoforms (A, B, C and D) and PDGF receptor (PDGFR)-α and β as well as cell types expressing PDGF were examined in the infarcted rat heart. Sham-operated rats served as controls. We found that the normal myocardium expressed all PDGF isoforms, and cell types expressing PDGF were primarily interstitial cells. Following MI, PDGF-A and D were significantly increased in the infarcted myocardium during 6 weeks of the observation period and cells expressing PDGF-A and D were primarily endothelial cells, macrophages and myofibroblasts (myoFb). PDGF-B and C expressions were, however, reduced in the infarcted heart. In the noninfarcted myocardium, PDGF-D expression was increased in the late stage of MI and cells expressing PDGF-D were predominantly fibroblasts. Both PDGFR-α and β were significantly increased in the infarcted myocardium in the early and late stages of MI and in the noninfarcted myocardium in the late stage of MI. Enhanced PDGF-A, PDGF-D and PDGFR are coincident with angiogenesis, and inflammatory and fibrogenic responses in the infarcted myocardium, suggesting their regulation on cardiac repair. Elevated PDGF-D in the noninfarcted myocardium suggests its involvement in the development of interstitial fibrosis that appears in the late stage of MI.
Collapse
Affiliation(s)
- Wenyuan Zhao
- Division of Cardiovascular Diseases, Department of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | | | | | | | | | | |
Collapse
|
32
|
Béguin PC, El-Helou V, Gillis MA, Duquette N, Gosselin H, Brugada R, Villeneuve L, Lauzier D, Tanguay JF, Ribuot C, Calderone A. Nestin(+) stem cells independently contribute to neural remodelling of the ischemic heart. J Cell Physiol 2011; 226:1157-65. [DOI: 10.1002/jcp.22441] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
33
|
N-benzyl-5-phenyl-1H-pyrazole-3-carboxamide promotes vascular endothelial cell angiogenesis and migration in the absence of serum and FGF-2. Acta Pharmacol Sin 2011; 32:209-16. [PMID: 21293473 DOI: 10.1038/aps.2010.201] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
AIM To investigate the effect of N-benzyl-5-phenyl-1H-pyrazole-3-carboxamide (BPC) on angiogenesis in human umbilical vein endothelial cells (HUVECs). METHODS Capillary-like tube formation on matrigel and cell migration analyses were performed in the absence of serum and fibroblast growth factor (FGF-2). Reactive oxygen species (ROS) were measured using a fluorescent probe, 2', 7'- dichlorodihydrofluorescein (DCHF). The nitric oxide (NO) production of HUVECs was examined using a NO detection kit. Morphological observation under a phase contrast microscope, a viability assay using 3-[4, 5-dimethylthiazol-2-yl]-2, 5-diphenyl-tetrazolium (MTT) and a lactate dehydrogenase (LDH) activity analysis by a detection kit were performed to evaluate the toxicity of BPC on HUVECs in the presence of serum and FGF-2. The level of hypoxia-inducible factor 1α (HIF-1α) and the release of vascular endothelial growth factor (VEGF) were measured by Western blot and ELISA, respectively. RESULTS In the absence of serum and FGF-2, cells treated with BPC (5-20 μmol/L) rapidly aligned with one another and formed tube-like structures within 12 h. In the presence of serum and FGF-2, cells treated with BPC for 24, 48 and 72 h had no changes in morphology, viability or LDH release compared with the control group. Cell migration in the BPC-treated group was significantly increased compared with the control group. During this process, NO production and ROS level were elevated dramatically, and the levels of HIF-1α and VEGF were increased dependent on the generation of ROS. CONCLUSION BPC most effectively promoted angiogenesis and migration in HUVECs in the absence of FGF-2 and serum.
Collapse
|
34
|
Zhao T, Zhao W, Chen Y, Ahokas RA, Sun Y. Acidic and basic fibroblast growth factors involved in cardiac angiogenesis following infarction. Int J Cardiol 2010; 152:307-13. [PMID: 20674996 DOI: 10.1016/j.ijcard.2010.07.024] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2010] [Revised: 05/25/2010] [Accepted: 07/04/2010] [Indexed: 12/15/2022]
Abstract
Acidic and basic fibroblast growth factors (FGF-1/FGF-2) promote angiogenesis in cancer. Angiogenesis is integral to cardiac repair following myocardial infarction (MI). The potential regulation of FGF-1/FGF-2 in cardiac angiogenesis postMI remains unexplored. Herein, we examined the temporal and spatial expression of FGF-1/FGF-2 and FGF receptors (FGFR) in the infarcted rat heart at days 1, 3, 7, and 14 postMI. FGF-1/-2 gene and protein expression, cells expressing FGF-1/-2 and FGFR expression were examined by quantitative in situ hybridization, RT-PCR; western blot, immunohistochemistry and quantitative in vitro autoradiography. Compared to the normal heart, we found that in the border zone and infarcted myocardium 1) FGF-1 gene expression was increased in the first week postMI and returned to control levels at week 2; FGF-1 protein levels were, however, largely reduced at day 1, then elevated at day 3 peaked at day 7 and declined at day 14; and cells expressing FGF-1 were primarily inflammatory cells; 2) FGF-2 gene expression was significantly elevated from day 1 to day 14; the increase in FGF-2 protein level was most evident at day 7 and cells expressing FGF-2 were primarily endothelial cells; 3) FGFR expression started to increase at day 3 and remained elevated thereafter; and 4) FGF-1/FGF-2 and FGFR expression remained unchanged in the noninfarcted myocardium. Thus, FGF-1/FGF-2 and FGFR expression are enhanced in the infarcted myocardium in the early stage after MI, which is spatially and temporally coincident with angiogenesis, suggesting that FGF-1/FGF-2 are involved in regulating cardiac angiogenesis and repair.
Collapse
Affiliation(s)
- Tieqiang Zhao
- Division of Cardiovascular Diseases, Department of Medicine, University of Tennessee Health Science Center, 956 Court Ave., Rm B324, Memphis, TN 38163, United States
| | | | | | | | | |
Collapse
|
35
|
Zhao T, Zhao W, Chen Y, Ahokas RA, Sun Y. Vascular endothelial growth factor (VEGF)-A: role on cardiac angiogenesis following myocardial infarction. Microvasc Res 2010; 80:188-94. [PMID: 20362592 DOI: 10.1016/j.mvr.2010.03.014] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Revised: 03/18/2010] [Accepted: 03/26/2010] [Indexed: 11/19/2022]
Abstract
The current study is to determine the regulatory role of VEGF-A in cardiac angiogenesis following myocardial infarction (MI). Cardiac angiogenic response and temporal/spatial expression of VEGF-A/VEGF receptors (VEGFR) were examined at 1, 2, 6, 12 h and 1, 2, 3, 4, 7, 14, and 28 days postMI. We found that following MI, newly formed vessels first appeared at the border zone between noninfarcted and infarcted myocardium as early as day 3 and subsequently in the infarcted myocardium. Vascular density in the infarcted myocardium peaked at day 7 and then gradually declined. VEGF-A mRNA started to increase at the border zone at 2 h postMI, reached peak at 12 h, declined at day 1, and returned to normal levels at day 2 and thereafter. VEGF-A protein levels at the border zone were only increased during day 1 postMI. VEGF-A within the infarcted myocardium levels, however, was persistently suppressed postMI. VEGFR expression was significantly increased only at the border zone at day 1, but not in the later stages. The expression of VEGF-A/VEGFR remained unchanged in the noninfarcted myocardium. Thus, the early rise of VEGF-A/VEGFR at the border zone suggests that VEGF-A initiates the cardiac angiogenic response postMI, but short-lived VEGF-A/VEGFR activation at the border zone and consistently suppressed VEGF-A within the infarcted myocardium suggests that VEGF-A may not be crucial to the later stages of angiogenesis.
Collapse
Affiliation(s)
- Tieqiang Zhao
- Division of Cardiovascular Diseases, Department of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | | | | | | | | |
Collapse
|