1
|
Li X, Zhai Z, Hao Y, Zhang M, Hou C, He J, Shi S, Zhao Z, Sang Y, Ren F, Wang R. The plasmid-encoded lactose operon plays a vital role in the acid production rate of Lacticaseibacillus casei during milk beverage fermentation. Front Microbiol 2022; 13:1016904. [PMID: 36386630 DOI: 10.3389/fmicb.2022.1016904if:] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/13/2022] [Indexed: 07/26/2024] Open
Abstract
Lacticaseibacillus casei is used extensively in the fermented milk-beverage industry as a starter culture. Acid production capacity during fermentation is the main criterion for evaluating starters although it is strain-dependent. In this study, the acid production rates of 114 L. casei strains were determined and then classified into high acid (HC), medium acid (MC), and low acid (LC) groups. Comparative genomics analysis found that the lac operon genes encoding the phosphoenolpyruvate-lactose phosphotransferase system (PTSLac) were located on plasmids in the HC strains; however, it is notable that the corresponding operons were located on the chromosome in LC strains. Real-time PCR analysis showed that the copy numbers of lac operon genes in HC strains were between 3.1 and 9.3. To investigate the relationship between copy number and acid production rate, the lac operon cluster of the HC group was constitutively expressed in LC strains. The resulting copy numbers of lac operon genes were between 15.8 and 18.1; phospho-β-galactosidase activity increased by 1.68-1.99-fold; and the acid production rates increased by 1.24-1.40-fold, which enhanced the utilization rate of lactose from 17.5 to 42.6% in the recombinant strains. The markedly increased expression of lac operon genes increased lactose catabolism and thereby increased the acid production rate of L. casei.
Collapse
Affiliation(s)
- Xiaoxia Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Zhengyuan Zhai
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Yanling Hao
- Department of Nutrition and Health, Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, China Agricultural University, Beijing, China
| | - Ming Zhang
- School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Caiyun Hou
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Jingjing He
- Department of Nutrition and Health, Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, China Agricultural University, Beijing, China
| | - Shaoqi Shi
- Department of Nutrition and Health, Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, China Agricultural University, Beijing, China
| | - Zhi Zhao
- Department of Nutrition and Health, Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, China Agricultural University, Beijing, China
| | - Yue Sang
- Department of Nutrition and Health, Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, China Agricultural University, Beijing, China
| | - Fazheng Ren
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Department of Nutrition and Health, Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, China Agricultural University, Beijing, China
| | - Ran Wang
- Department of Nutrition and Health, Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, China Agricultural University, Beijing, China
| |
Collapse
|
2
|
Li X, Zhai Z, Hao Y, Zhang M, Hou C, He J, Shi S, Zhao Z, Sang Y, Ren F, Wang R. The plasmid-encoded lactose operon plays a vital role in the acid production rate of Lacticaseibacillus casei during milk beverage fermentation. Front Microbiol 2022; 13:1016904. [PMID: 36386630 PMCID: PMC9647812 DOI: 10.3389/fmicb.2022.1016904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/13/2022] [Indexed: 11/29/2022] Open
Abstract
Lacticaseibacillus casei is used extensively in the fermented milk-beverage industry as a starter culture. Acid production capacity during fermentation is the main criterion for evaluating starters although it is strain-dependent. In this study, the acid production rates of 114 L. casei strains were determined and then classified into high acid (HC), medium acid (MC), and low acid (LC) groups. Comparative genomics analysis found that the lac operon genes encoding the phosphoenolpyruvate-lactose phosphotransferase system (PTSLac) were located on plasmids in the HC strains; however, it is notable that the corresponding operons were located on the chromosome in LC strains. Real-time PCR analysis showed that the copy numbers of lac operon genes in HC strains were between 3.1 and 9.3. To investigate the relationship between copy number and acid production rate, the lac operon cluster of the HC group was constitutively expressed in LC strains. The resulting copy numbers of lac operon genes were between 15.8 and 18.1; phospho-β-galactosidase activity increased by 1.68–1.99-fold; and the acid production rates increased by 1.24–1.40-fold, which enhanced the utilization rate of lactose from 17.5 to 42.6% in the recombinant strains. The markedly increased expression of lac operon genes increased lactose catabolism and thereby increased the acid production rate of L. casei.
Collapse
Affiliation(s)
- Xiaoxia Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Zhengyuan Zhai
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Yanling Hao
- Department of Nutrition and Health, Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, China Agricultural University, Beijing, China
| | - Ming Zhang
- School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Caiyun Hou
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Jingjing He
- Department of Nutrition and Health, Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, China Agricultural University, Beijing, China
| | - Shaoqi Shi
- Department of Nutrition and Health, Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, China Agricultural University, Beijing, China
| | - Zhi Zhao
- Department of Nutrition and Health, Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, China Agricultural University, Beijing, China
| | - Yue Sang
- Department of Nutrition and Health, Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, China Agricultural University, Beijing, China
| | - Fazheng Ren
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Department of Nutrition and Health, Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, China Agricultural University, Beijing, China
- *Correspondence: Fazheng Ren, Ran Wang,
| | - Ran Wang
- Department of Nutrition and Health, Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, China Agricultural University, Beijing, China
- *Correspondence: Fazheng Ren, Ran Wang,
| |
Collapse
|
3
|
A Simple, Robust, and Convenient HPLC Assay for Urinary Lactulose and Mannitol in the Dual Sugar Absorption Test. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27092677. [PMID: 35566024 PMCID: PMC9101331 DOI: 10.3390/molecules27092677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/19/2022] [Accepted: 04/19/2022] [Indexed: 11/17/2022]
Abstract
Background: Heterogeneous laborious analytical methodologies for the determination of urinary lactulose and mannitol limit their utility in intestinal permeability testing. Methods: We developed an assay using a Shimadzu HPLC system, an Aminex HPX87C column, and refractive index detection. The test was calibrated using a series of dilutions from standard stock solutions of lactulose and mannitol ‘spiked’ into urine samples. The utility to quantify urinary excretion during the dual sugar absorption test over 6 h was also determined. Results: Lactulose and mannitol were eluted isocratically at 5.7 and 10.1 min, respectively, with water as a mobile phase at a flow rate of 0.3 mL min−1, 858 psi, 60 °C. The calibration curves for both sugars were linear up to 500 µg mL−1 with a limit of detection in standard solutions at 4 µg mL−1 and in ‘spiked’ urine samples at 15 µg mL−1. The intra-assay and inter-assay CVs were between 2.0–5.1% and 2.0–5.1% for lactulose and 2.5–4.4% and 2.8–3.9% for mannitol. The urinary profiles of the 6 h absorption of lactulose and mannitol showed similar peak-retention times to standard solutions and were well-resolved at 5.9 and 10.4 min, respectively. Conclusions: The assay was easy to automate, using commonly available equipment and convenient requiring no prior laborious sample derivatization. The simplicity, reproducibility, and robustness of this assay facilitates its use in routine clinical settings for the quantification of intestinal permeability.
Collapse
|
4
|
Francisquini JD, Nunes L, Martins E, Stephani R, Perrone ÍT, Carvalho AFD. How the heat treatment affects the constituents of infant formulas: a review. BRAZILIAN JOURNAL OF FOOD TECHNOLOGY 2020. [DOI: 10.1590/1981-6723.27219] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Abstract Breast milk as the children’s primary source of nutrition fulfills the babies’ needs and can also provide immune protection. In some cases, when mothers are not able to breastfeed, an equivalent substitute is required. Nowadays, the best substitutes of the human breast milk are infant formulas. Different technological routes may be designed to produce infant formulas according to the main challenges: the compromise between food safety and heat treatment damage. This article aimed to review the current scientific knowledge about how heat treatment affects the macro and micronutrients of milk, extrapolating the expected effects on infant formulas. The covered topics were: The definition and composition of infant formulas, industrial methods of infant formulas production, the effects of heat treatment on milk macro and micronutrients.
Collapse
|
5
|
Pazourek J. Rapid HPLC method for monitoring of lactulose production with a high yield. Carbohydr Res 2019; 484:107773. [PMID: 31404813 DOI: 10.1016/j.carres.2019.107773] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 07/25/2019] [Accepted: 08/05/2019] [Indexed: 01/19/2023]
Abstract
An HPLC method suitable for rapid monitoring of lactulose production by isomerization from lactose was developed. The separation of lactose and lactulose under hydrophilic interaction liquid chromatography (HILIC) mode was achieved with resolution 1.5 within 5 min. Since isocratic elution was used, there is no extra time necessary for the column equilibration. Application of the method was illustrated on monitoring lactulose isomerization with catalysis of sodium hydroxide in the presence of sodium tetraborate at 70 °C (pH = 11). The conversion yield obtained for lactulose was 86%, and corresponding purity 76%. For the first time, a polyhydroxy stationary phase for separation of lactose and lactulose is reported.
Collapse
Affiliation(s)
- Jiří Pazourek
- Department of Chemical Drugs, University of Veterinary and Pharmaceutical Sciences, Palackého 1946/1, CZ-612 42, Brno, Czech Republic.
| |
Collapse
|
6
|
Lactulose determination in UHT milk by CZE-UV with indirect detection. Food Chem 2018; 258:337-342. [DOI: 10.1016/j.foodchem.2018.03.069] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 12/06/2017] [Accepted: 03/17/2018] [Indexed: 01/08/2023]
|
7
|
Ritota M, Di Costanzo MG, Mattera M, Manzi P. New Trends for the Evaluation of Heat Treatments of Milk. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2017; 2017:1864832. [PMID: 29230345 PMCID: PMC5688360 DOI: 10.1155/2017/1864832] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 09/28/2017] [Indexed: 05/07/2023]
Abstract
Milk is generally very rich in nutrients and this may lead it to be an ideal growth environment for many microorganisms, including pathogens, so effective measurements aiming to ensure total microbiological safety of milk and minimize the risk to human health are needed. Milk heat treatments are the most common practices carried out to inhibit the microbial growth; therefore it is necessary to have analytical procedures that are more and more up-to-date and capable of detecting the effectiveness of the heat treatments. Most of the reference and official methods to assess heat treatment in milk are based on the evaluation of the modifications of some milk components following the thermal process, such as the determination of enzyme activities (alkaline phosphatase and lactoperoxidase), whey proteins, Maillard reaction compounds (generally furosine), and lactulose. Besides the most common techniques (liquid and gas chromatography, capillary electrophoresis, or spectroscopy) used for the detection of single thermal indicators, new approaches, such as chemometric studies or more recent techniques, including size-exclusion chromatography with online electrospray mass spectrometry or stable isotope ratio mass spectrometry, are discussed in this review in order to evaluate heat treatment in milk.
Collapse
Affiliation(s)
- Mena Ritota
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria (CREA), Centro di ricerca Alimenti e Nutrizione, Via Ardeatina 546, 00178 Rome, Italy
| | - Maria Gabriella Di Costanzo
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria (CREA), Centro di ricerca Alimenti e Nutrizione, Via Ardeatina 546, 00178 Rome, Italy
| | - Maria Mattera
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria (CREA), Centro di ricerca Alimenti e Nutrizione, Via Ardeatina 546, 00178 Rome, Italy
| | - Pamela Manzi
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria (CREA), Centro di ricerca Alimenti e Nutrizione, Via Ardeatina 546, 00178 Rome, Italy
| |
Collapse
|
8
|
Development, optimization and validation of an HPLC-ELSD method for the analysis of enzymatically generated lactulose and saccharide by-products. Food Chem 2017; 215:347-53. [DOI: 10.1016/j.foodchem.2016.07.184] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 07/13/2016] [Accepted: 07/31/2016] [Indexed: 11/21/2022]
|
9
|
Quantification of Lactulose and Epilactose in the Presence of Lactose in Milk using a dual HPLC analysis. FOOD ANAL METHOD 2016. [DOI: 10.1007/s12161-016-0405-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
10
|
Abstract
Heat treatment is applied to dairy products to ensure microbiological quality and increase the shelf life. However, a suitable control of this process is necessary to guarantee nutritional and sensory quality. The aim of this study is to adapt the high performance liquid chromatography (HPLC) method for determination of lactulose and lactose content in commercial samples of UHT and sweetened condensed milk. The HPLC method used showed a good resolution of the analytes evaluated. The analyzed UHT milk samples presented levels for lactulose in accordance with the limit recommended by the International Dairy Federation. There was no significant variation in lactulose concentration for sweetened condensed milk samples. However, one sweetened condensed milk sample showed lactose level lower than the established values (10–12%).
Collapse
|
11
|
Scampicchio M, Mimmo T, Capici C, Huck C, Innocente N, Drusch S, Cesco S. Identification of milk origin and process-induced changes in milk by stable isotope ratio mass spectrometry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:11268-73. [PMID: 23067147 DOI: 10.1021/jf302846j] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Stable isotope values were used to develop a new analytical approach enabling the simultaneous identification of milk samples either processed with different heating regimens or from different geographical origins. The samples consisted of raw, pasteurized (HTST), and ultrapasteurized (UHT) milk from different Italian origins. The approach consisted of the analysis of the isotope ratio of δ¹³C and δ¹⁵N for the milk samples and their fractions (fat, casein, and whey). The main finding of this work is that as the heat processing affects the composition of the milk fractions, changes in δ¹³C and δ¹⁵N were also observed. These changes were used as markers to develop pattern recognition maps based on principal component analysis and supervised classification models, such as linear discriminant analysis (LDA), multivariate regression (MLR), principal component regression (PCR), and partial least-squares (PLS). The results give proof of the concept that isotope ratio mass spectroscopy can discriminate simultaneously between milk samples according to their geographical origin and type of processing.
Collapse
|
12
|
Menezes CC, de Deus Souza Carneiro J, Borges SV, da Silva VSN, Brigagão MRPL, Azevedo L. Development of low-calorie guava preserves with prebiotics and evaluation of their effects on carcinogenesis biomarkers in rats. Food Chem Toxicol 2012; 50:3719-24. [DOI: 10.1016/j.fct.2012.07.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2011] [Revised: 06/22/2012] [Accepted: 07/17/2012] [Indexed: 12/31/2022]
|
13
|
|