1
|
Moderate electric field-assisted hydro-distillation of thyme essential oil: Characterization of microstructural changes. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
2
|
El Barnossi A, Moussaid F, Iraqi Housseini A. Tangerine, banana and pomegranate peels valorisation for sustainable environment: A review. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2021; 29:e00574. [PMID: 33376681 PMCID: PMC7758358 DOI: 10.1016/j.btre.2020.e00574] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 10/01/2020] [Accepted: 11/30/2020] [Indexed: 12/16/2022]
Abstract
Over the last decade the world has been generating a high quantity of tangerine peel waste (TPW), pomegranate peel waste (PPW) and banana peel waste (BPW). These peels have several economic benefits but there is mismanagement or inappropriate valorisation that could present risks to environment and public health. In the current review, we discussed the use of TPW, PPW and BPW directly for animal feed, soil fertilization, specific compost production and bio-adsorbent. We also discussed the valorisation of these peels for manufacturing the value-added products including enzymes, essential oil and other products that can be used in human food, in medical and cosmetic industry. Additionally, recent studies concerning the valorisation of these peels by biorefinery for bioethanol, biogas and biohydrogen production have been discussed. In the same context some other recent studies about valorisation of microorganisms isolated from these peels for medical, agronomic and industrial interests have been also discussed.
Collapse
Affiliation(s)
- Azeddin El Barnossi
- Laboratory of Biotechnology, Environment, Agri-Food and Health, Faculty of Sciences Dhar El Mahraz, Sidi Mohammed Ben Abdellah University, Fez, Morocco
| | - Fatimazhrae Moussaid
- Laboratory of Biotechnology, Environment, Agri-Food and Health, Faculty of Sciences Dhar El Mahraz, Sidi Mohammed Ben Abdellah University, Fez, Morocco
| | - Abdelilah Iraqi Housseini
- Laboratory of Biotechnology, Environment, Agri-Food and Health, Faculty of Sciences Dhar El Mahraz, Sidi Mohammed Ben Abdellah University, Fez, Morocco
| |
Collapse
|
3
|
Galanakis CM. Functionality of Food Components and Emerging Technologies. Foods 2021; 10:128. [PMID: 33435589 PMCID: PMC7826514 DOI: 10.3390/foods10010128] [Citation(s) in RCA: 130] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 12/31/2020] [Accepted: 01/06/2021] [Indexed: 01/08/2023] Open
Abstract
This review article introduces nutrition and functional food ingredients, explaining the widely cited terms of bioactivity, bioaccessibility, and bioavailability. The factors affecting these critical properties of food components are analyzed together with their interaction and preservation during processing. Ultimately, the effect of emerging (non-thermal) technologies on different food components (proteins, carbohydrates, lipids, minerals, vitamins, polyphenols, glucosinolates, polyphenols, aroma compounds, and enzymes) is discussed in spite of preserving their functional properties. Non-thermal technologies can maintain the bioavailability of food components, improve their functional and technological properties, and increase the recovery yields from agricultural products. However, the optimization of operational parameters is vital to avoid degradation of macromolecules and the oxidation of labile compounds.
Collapse
Affiliation(s)
- Charis M. Galanakis
- Research & Innovation Department, Galanakis Laboratories, P.C. 73131 Chania, Greece;
- Food Waste Recovery Group, ISEKI Food Association, P.C. 1190 Vienna, Austria
| |
Collapse
|
4
|
Gavahian M, Mathad GN, Oliveira CAF, Mousavi Khaneghah A. Combinations of emerging technologies with fermentation: Interaction effects for detoxification of mycotoxins? Food Res Int 2021; 141:110104. [PMID: 33641971 DOI: 10.1016/j.foodres.2021.110104] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/09/2020] [Accepted: 01/02/2021] [Indexed: 11/30/2022]
Abstract
Consumption of foods containing mycotoxins, as crucial groups of naturally occurring toxic agents, could pose significant health risks. While the extensive scientific literature indicates that prevention of contamination by toxigenic fungi is one of the best ways to reduce mycotoxins, detoxifying strategies are useful for improving the safety of food products. Nowadays, the food and pharmaceutical industries are using the concept of combined technologies to enhance the product yield by implementing emerging techniques, such as ultrasound, ohmic heating, moderate electric field (MEF), pulsed electric field (PEF) and high-pressure processing, during the fermentation process. While the application of emerging technologies in improving the fermentation process is well explained in this literature, there is a lack of scientific texts discussing the possibility of mycotoxin degradation through the interaction effects of emerging technologies and fermentation. Therefore, this study was undertaken to provide deep insight into applying emerging processing technologies in fermentation, mechanisms and the prospects of innovative combinations of physical and biological techniques for mycotoxins' detoxification. Among various emerging technologies, ultrasound, ohmic heating, MEF, PEF, and cold plasma have shown significant positive effects on fermentation and mycotoxins detoxification, highlighting the possibility of interactions from such combinations to degrade mycotoxins in foods.
Collapse
Affiliation(s)
- Mohsen Gavahian
- Department of Food Science, National Pingtung University of Science and Technology, Neipu 91201, Pingtung, Taiwan, ROC.
| | - Girish N Mathad
- Department of Tropical Agriculture and International Co-operation, National Pingtung University of Science and Technology, Pingtung 912, Taiwan, ROC
| | - Carlos A F Oliveira
- Department of Food Engineering, School of Animal Science and Food Engineering, University of São Paulo, Av. Duque de Caxias Norte, 225, CEP 13635-900, Pirassununga, SP, Brazil.
| | - Amin Mousavi Khaneghah
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| |
Collapse
|
5
|
Tunç MT, Koca İ. Optimization of ohmic heating assisted hydrodistillation of cinnamon and bay leaf essential oil. J FOOD PROCESS ENG 2020. [DOI: 10.1111/jfpe.13635] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Merve Tuğçe Tunç
- Gümüşhane University Faculty of Engineering and Natural Sciences, Department of Food Engineering Gümüşhane Turkey
- Ondokuz Mayıs University Faculty of Engineering, Department of Food Engineering Samsun Turkey
| | - İlkay Koca
- Ondokuz Mayıs University Faculty of Engineering, Department of Food Engineering Samsun Turkey
| |
Collapse
|
6
|
Ohmic-assisted peeling of fruits: Understanding the mechanisms involved, effective parameters, and prospective applications in the food industry. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.10.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
7
|
Gavahian M, Tiwari BK. Moderate electric fields and ohmic heating as promising fermentation tools. INNOV FOOD SCI EMERG 2020. [DOI: 10.1016/j.ifset.2020.102422] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
8
|
Takahashi JA, Rezende FAGG, Moura MAF, Dominguete LCB, Sande D. Edible flowers: Bioactive profile and its potential to be used in food development. Food Res Int 2020; 129:108868. [DOI: 10.1016/j.foodres.2019.108868] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 11/21/2019] [Accepted: 11/26/2019] [Indexed: 12/12/2022]
|
9
|
Alirezalu K, Munekata PES, Parniakov O, Barba FJ, Witt J, Toepfl S, Wiktor A, Lorenzo JM. Pulsed electric field and mild heating for milk processing: a review on recent advances. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:16-24. [PMID: 31328265 DOI: 10.1002/jsfa.9942] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 07/17/2019] [Accepted: 07/17/2019] [Indexed: 06/10/2023]
Abstract
Pulsed electric field (PEF) treatment consists of exposing food to electrical fields between electrodes within a treatment chamber, which can improve the preservation of fresh-like products such as milk. Although several studies support the use of PEF technology to process milk at low temperature, these studies reported microbial reductions of around 3 log10 cycles and also indicated a limited impact of PEF on some endogenous and microbial enzymes. This scenario indicates that increasing the impact of PEF on both enzymes and microorganisms remains a major challenge for this technology in milk processing. More recently, combining PEF with mild heating (below pasteurization condition) has been explored as an alternative processing technology to enhance the safety and to preserve the quality of fresh milk and milk products. Mild heating with PEF enhanced the safety of milk and derived products (3 log10 -6 log10 cycles reduction on microbial load and drastic impact on the activity enzymes related to quality decay). Moreover, with this approach, there was minimal impact on enzymes of technological and safety relevance, proteins, milk fat globules, and nutrients (particularly for vitamins) and improvements in the shelf-life of milk and selected derived products were obtained. Finally, further experiments should consider the use of milk processed by PEF with mild heating on cheese-making. The combined approach of PEF with mild heating to process milk and derived products is very promising. The characteristics of current PEF systems (which is being used at an industrial level in several countries) and their use in the liquid food industry, particularly for milk and some milk products, could advance towards this strategy. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Kazem Alirezalu
- Department of Food Science and Technology, Ahar Faculty of Agriculture and Natural Resources, University of Tabriz, Tabriz, East Azerbaijan, Iran
| | - Paulo E S Munekata
- Centro Tecnológico de la Carne de Galicia, Parque Tecnológico de Galicia, Ourense, Spain
| | - Oleksii Parniakov
- Elea Vertriebs- und Vermarktungsgesellschaft mbH, Quakenbrück, Germany
| | - Francisco J Barba
- Faculty of Pharmacy, Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Nutrition and Food Science Area, Universitat de València, Valencia, Spain
| | - Julian Witt
- Elea Vertriebs- und Vermarktungsgesellschaft mbH, Quakenbrück, Germany
| | - Stefan Toepfl
- Elea Vertriebs- und Vermarktungsgesellschaft mbH, Quakenbrück, Germany
| | - Artur Wiktor
- Department of Food Engineering and Process Management, Warsaw University of Life Sciences (WULS-SGGW), Warsaw, Poland
| | - Jose M Lorenzo
- Centro Tecnológico de la Carne de Galicia, Parque Tecnológico de Galicia, Ourense, Spain
| |
Collapse
|
10
|
Zhao L, Fan H, Zhang M, Chitrakar B, Bhandari B, Wang B. Edible flowers: Review of flower processing and extraction of bioactive compounds by novel technologies. Food Res Int 2019; 126:108660. [DOI: 10.1016/j.foodres.2019.108660] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 09/06/2019] [Accepted: 09/09/2019] [Indexed: 02/07/2023]
|
11
|
Gavahian M, Sastry S, Farhoosh R, Farahnaky A. Ohmic heating as a promising technique for extraction of herbal essential oils: Understanding mechanisms, recent findings, and associated challenges. ADVANCES IN FOOD AND NUTRITION RESEARCH 2019; 91:227-273. [PMID: 32035597 DOI: 10.1016/bs.afnr.2019.09.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The applicability of ohmic heating, as a volumetric heating technique, has been explored in various sectors of the food industry. The use of ohmic heating for essential oil extraction is among its emerging applications. This chapter overviews the recent progress in this area of research, discusses the mechanisms involved in ohmic-based essential oil extraction processes, explains the effective process parameters, highlights their benefits, and explains the considerations to address the obstacles to industrial implementation. Ohmic-assisted hydrodistillation (OAHD) and ohmic-accelerated steam distillation (OASD) systems were proposed as alternatives to conventional hydrodistillation and steam distillation, respectively. These techniques have successfully extracted essential oils from several aromatic plants (e.g., thyme, peppermint, citronella, and lavender). Both OAHD and OASD possess a number of benefits, such as reducing the extraction time and energy consumption, compared to classical extraction methods. However, these techniques are in their infancy and further economic and upscaling studies are required for their industrial adaptation.
Collapse
Affiliation(s)
- Mohsen Gavahian
- Product and Process Research Center, Food Industry Research and Development Institute, Hsinchu, Taiwan, Republic of China.
| | - Sudhir Sastry
- Department of Food, Agricultural and Biological Engineering, The Ohio State University, Columbus, OH, United States
| | - Reza Farhoosh
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Asgar Farahnaky
- School of Science, RMIT University, Melbourne, VIC, Australia
| |
Collapse
|
12
|
Fadavi A, Salari S. Ohmic Heating of Lemon and Grapefruit Juices Under Vacuum Pressure- Comparison of Electrical Conductivity and Heating Rate. J Food Sci 2019; 84:2868-2875. [PMID: 31549408 DOI: 10.1111/1750-3841.14802] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 08/06/2019] [Accepted: 08/12/2019] [Indexed: 11/30/2022]
Abstract
Ohmic heating fundamentally depends on electrical conductivity. In this study, grapefruit and lemon juices were ohmically heated under vacuum conditions. The electrical conductivity was measured at voltage gradients (10, 20, and 30 V/cm) and vacuum pressure (0 [atmospheric pressure], -30, and -60 kPa) for four temperature ranges (30, 40, 50, and 60 °C), meanwhile the heating rate was also reported at the same level of pressure and voltage gradient. The electrical conductivity and heating rate considerably vary by voltage gradient relative to pressure. Grapefruit had considerably lower electrical conductivity (about 20%) relative to lemon juice for the same pressure-voltage gradient treatment, while the percent reduction of heating rate (grapefruit relative to lemon) varied from 19 to 32%. The multivariate linear regression of electrical conductivity, including temperature and voltage, was found to be a more suitable model. pH assessments showed that pressure significantly affected the pH of grapefruit and lemon juices (P < 0.01). The combination of different treatments, which created a shorter residence time, caused a greater decrease in pH.
Collapse
Affiliation(s)
- Ali Fadavi
- Dept. of Food Technology, College of Aburaihan, Univ. of Tehran, Tehran, Iran
| | - Saeed Salari
- Dept. of Food Science, Azad Univ. of Tehran, Tehran, Iran
| |
Collapse
|
13
|
Gavahian M, Khaneghah AM. Cold plasma as a tool for the elimination of food contaminants: Recent advances and future trends. Crit Rev Food Sci Nutr 2019; 60:1581-1592. [DOI: 10.1080/10408398.2019.1584600] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Mohsen Gavahian
- Product and Process Research Center, Food Industry Research and Development Institute, Hsinchu, Taiwan, Republic of China
| | - Amin Mousavi Khaneghah
- Department of Food Science, Faculty of Food Engineering, University of Campinas (UNICAMP), São Paulo, Brazil
- Department of Technology of Chemistry, Azerbaijan State Oil and Industry University, Baku, Azerbaijan
| |
Collapse
|
14
|
Gavahian M, Chu YH. Ohmic accelerated steam distillation of essential oil from lavender in comparison with conventional steam distillation. INNOV FOOD SCI EMERG 2018. [DOI: 10.1016/j.ifset.2018.10.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
15
|
Gavahian M, Chu YH, Lorenzo JM, Mousavi Khaneghah A, Barba FJ. Essential oils as natural preservatives for bakery products: Understanding the mechanisms of action, recent findings, and applications. Crit Rev Food Sci Nutr 2018; 60:310-321. [PMID: 30431327 DOI: 10.1080/10408398.2018.1525601] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Bakery products, as an important part of a healthy diet, are characterized by their limited shelf-life. Microbiological spoilage of these products not only affects the quality characteristics and result in the economic loss but also threatens consumer's health. Incorporation of chemical preservatives, as one of the most conventional preserving techniques, lost its popularity due to the increasing consumer's health awareness. Therefore, the bakery industry is seeking alternatives to harmful antimicrobial agents that can be accepted by health-conscious customers. In this regard, essential oils have been previously used as either a part of product ingredient or a part of the packaging system. Therefore, the antimicrobial aspect of essential oils and their ability in delaying the microbiological spoilage of bakery products have been reviewed. Several types of essential oils, including thyme, cinnamon, oregano, and lemongrass, can inhibit the growth of harmful microorganisms in bakery products, resulting in a product with extended shelf-life and enhanced safety. Research revealed that several bioactive compounds are involved in the antimicrobial activity of essential oils. However, some limitations, such as the possible negative effects of essential oils on sensory parameters, may limit their applications, especially in high concentrations. In this case, they can be used in combination with other preservation techniques such as using appropriate packaging materials. Further research regarding the commercial production of the bakery products formulated with essential oils is required in this area.
Collapse
Affiliation(s)
- Mohsen Gavahian
- Product and Process Research Center, Food Industry Research and Development Institute, Hsinchu, Taiwan, 30062, Republic of China
| | - Yan-Hwa Chu
- Product and Process Research Center, Food Industry Research and Development Institute, Hsinchu, Taiwan, 30062, Republic of China
| | - Jose M Lorenzo
- Centro Tecnológico de la Carne de Galicia, Ourense, Spain
| | - Amin Mousavi Khaneghah
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas, São Paulo, Brazil
| | - Francisco J Barba
- Nutrition and Food Science Area, Preventive Medicine and Public Health, Food Sciences, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Burjassot, València, Spain
| |
Collapse
|
16
|
Gavahian M, Chu Y, Mousavi Khaneghah A. Recent advances in orange oil extraction: an opportunity for the valorisation of orange peel waste a review. Int J Food Sci Technol 2018. [DOI: 10.1111/ijfs.13987] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Mohsen Gavahian
- Product and Process Research Center Food Industry Research and Development Institute No. 331 Shih‐Pin Road Hsinchu 30062 Taiwan
| | - Yan‐Hwa Chu
- Product and Process Research Center Food Industry Research and Development Institute No. 331 Shih‐Pin Road Hsinchu 30062 Taiwan
| | - Amin Mousavi Khaneghah
- Department of Food Science Faculty of Food Engineering University of Campinas (UNICAMP) Rua Monteiro Lobato 80, Campinas 13083‐862 São Paulo Brazil
- Department of Technology of Chemistry Azerbaijan State Oil and Industry University 16/21 Azadliq Ave Baku Azerbaijan
| |
Collapse
|
17
|
Gavahian M, Lee YT, Chu YH. Ohmic-assisted hydrodistillation of citronella oil from Taiwanese citronella grass: Impacts on the essential oil and extraction medium. INNOV FOOD SCI EMERG 2018. [DOI: 10.1016/j.ifset.2018.05.015] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
18
|
Pateiro M, Barba FJ, Domínguez R, Sant'Ana AS, Mousavi Khaneghah A, Gavahian M, Gómez B, Lorenzo JM. Essential oils as natural additives to prevent oxidation reactions in meat and meat products: A review. Food Res Int 2018; 113:156-166. [PMID: 30195508 DOI: 10.1016/j.foodres.2018.07.014] [Citation(s) in RCA: 174] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 06/11/2018] [Accepted: 07/05/2018] [Indexed: 12/14/2022]
Abstract
Oxidation reactions during manufacturing, distribution, and storage of meat and meat products result in undesirable physicochemical changes and aromas, which leads to detrimental effects on the product quality. This could be translated into the consumer dissatisfaction and economic loss. One of the most common practices to overcome this issue is the incorporation of synthetic antioxidants. However, the increasing health-consciousness of consumers and their preference for natural additives leads to the search of natural alternatives to synthetic antioxidants. A number of essential oils have strong antioxidant properties and are explored as potential alternatives to chemical antioxidants in the meat industry. These compounds are classified as Generally Recognized as Safe (GRAS), and their application single or combined with other essential oils, ingredients or preservation technologies have beneficial effects on meat products. Their activity depends on several parameters including their concentrations, their possible synergistic effects, and the extraction method used to obtain them. Although steam distillation is the most common industrial technique for essential oils extraction, novel technologies have been emerged to address the drawbacks of the traditional extraction method and to obtain high-quality essential oils. This paper provides an overview of the application of essential oils as potential substitutes for synthetic antioxidants in the meat industry, exploring their mechanism of action against oxidation reactions, and the effect of extraction methods on their effectiveness.
Collapse
Affiliation(s)
- Mirian Pateiro
- Centro Tecnológico de la Carne de Galicia, rúa Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas 32900, Ourense, Spain
| | - Francisco J Barba
- Nutrition and Food Science Area, Preventive Medicine and Public Health, Food Sciences, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Avda. Vicent Andrés Estellés, s/n, 46100 Burjassot, València, Spain
| | - Rubén Domínguez
- Centro Tecnológico de la Carne de Galicia, rúa Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas 32900, Ourense, Spain
| | - Anderson S Sant'Ana
- Department of Food Science, Faculty of Food Engineering, University of Campinas, 80 Monteiro Lobato St., 13083-862 Campinas, São Paulo, Brazil
| | - Amin Mousavi Khaneghah
- Department of Food Science, Faculty of Food Engineering, University of Campinas, 80 Monteiro Lobato St., 13083-862 Campinas, São Paulo, Brazil
| | - Mohsen Gavahian
- Product and Process Research Center, Food Industry Research and Development Institute, No. 331 Shih-Pin Rd., Hsinchu 30062, Taiwan, ROC
| | - Belén Gómez
- Centro Tecnológico de la Carne de Galicia, rúa Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas 32900, Ourense, Spain
| | - Jose M Lorenzo
- Centro Tecnológico de la Carne de Galicia, rúa Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas 32900, Ourense, Spain.
| |
Collapse
|
19
|
Gavahian M, Chu YH, Sastry S. Extraction from Food and Natural Products by Moderate Electric Field: Mechanisms, Benefits, and Potential Industrial Applications. Compr Rev Food Sci Food Saf 2018; 17:1040-1052. [DOI: 10.1111/1541-4337.12362] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 04/04/2018] [Accepted: 04/06/2018] [Indexed: 12/17/2022]
Affiliation(s)
- Mohsen Gavahian
- Product and Process Research Center; Food Industry Research and Development Inst.; No. 331 Shih-Pin Rd. Hsinchu 30062 Taiwan ROC
| | - Yan-Hwa Chu
- Product and Process Research Center; Food Industry Research and Development Inst.; No. 331 Shih-Pin Rd. Hsinchu 30062 Taiwan ROC
| | - Sudhir Sastry
- Dept. of Food, Agricultural and Biological Engineering; The Ohio State Univ.; 590 Woody Hayes Drive Columbus OH 43210 USA
| |
Collapse
|
20
|
Rocha CMR, Genisheva Z, Ferreira-Santos P, Rodrigues R, Vicente AA, Teixeira JA, Pereira RN. Electric field-based technologies for valorization of bioresources. BIORESOURCE TECHNOLOGY 2018; 254:325-339. [PMID: 29395742 DOI: 10.1016/j.biortech.2018.01.068] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 01/11/2018] [Accepted: 01/15/2018] [Indexed: 06/07/2023]
Abstract
This review provides an overview of recent research on electrotechnologies applied to the valorization of bioresources. Following a comprehensive summary of the current status of the application of well-known electric-based processing technologies, such as pulsed electric fields (PEF) and high voltage electrical discharges (HVED), the application of moderate electric fields (MEF) as an extraction or valorization technology will be considered in detail. MEF, known by its improved energy efficiency and claimed electroporation effects (allowing enhanced extraction yields), may also originate high heating rates - ohmic heating (OH) effect - allowing thermal stabilization of waste stream for other added-value applications. MEF is a simple technology that mostly makes use of green solvents (mainly water) and that can be used on functionalization of compounds of biological origin broadening their application range. The substantial increase of MEF-based plants installed in industries worldwide suggests its straightforward application for waste recovery.
Collapse
Affiliation(s)
- Cristina M R Rocha
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Zlatina Genisheva
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Pedro Ferreira-Santos
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Rui Rodrigues
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - António A Vicente
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - José A Teixeira
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Ricardo N Pereira
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| |
Collapse
|
21
|
|
22
|
Effects of Electrolyte Concentration and Ultrasound Pretreatment on Ohmic-Assisted Hydrodistillation of Essential Oils from Mentha piperita L. INTERNATIONAL JOURNAL OF FOOD ENGINEERING 2017. [DOI: 10.1515/ijfe-2017-0010] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractIn this study, the effects of salt concentration (1, 3 and 6% w/v) and ultrasound pretreatment (50 W for 5, 10 and 15 minutes) on extraction parameters and extracted essential oil from peppermint by ohmic-assisted hydrodistillation (OAHD), a recently innovated extraction technique, have been studied. The results showed that salt concentration significantly affected the extraction parameters of OAHD, while ultrasound pretreatment had negligible effect. Sudden eruption of essential oil glands was observed in scanning electron micrographs of all OAHDs mint leaves. GC-MS analysis did not indicate any noticeable change in the compounds of all the extracted essential oils. The results of this study showed that increase of electrolyte concentration could speed up OAHD process without any adverse effect on essential oil quality, while ultrasound pretreatment neither reduced process time nor increased extraction yield of OAHD.
Collapse
|
23
|
Hashemi SMB, Nikmaram N, Esteghlal S, Mousavi Khaneghah A, Niakousari M, Barba FJ, Roohinejad S, Koubaa M. Efficiency of Ohmic assisted hydrodistillation for the extraction of essential oil from oregano (Origanum vulgare subsp. viride) spices. INNOV FOOD SCI EMERG 2017. [DOI: 10.1016/j.ifset.2017.03.003] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
24
|
Gavahian M, Farahnaky A, Sastry S. Multiple effect concentration of ethanol by ohmic-assisted hydrodistillation. FOOD AND BIOPRODUCTS PROCESSING 2016. [DOI: 10.1016/j.fbp.2016.06.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
25
|
|
26
|
Gavahian M, Farahnaky A, Sastry S. Ohmic-assisted hydrodistillation: A novel method for ethanol distillation. FOOD AND BIOPRODUCTS PROCESSING 2016. [DOI: 10.1016/j.fbp.2015.11.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
27
|
Impact of ohmic-assisted hydrodistillation on kinetics data, physicochemical and biological properties of Prangos ferulacea Lindle. essential oil: Comparison with conventional hydrodistillation. INNOV FOOD SCI EMERG 2016. [DOI: 10.1016/j.ifset.2015.12.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
28
|
Effect of applied voltage and frequency on extraction parameters and extracted essential oils from Mentha piperita by ohmic assisted hydrodistillation. INNOV FOOD SCI EMERG 2015. [DOI: 10.1016/j.ifset.2015.02.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
29
|
Gavahian M, Farahnaky A, Farhoosh R, Javidnia K, Shahidi F. Extraction of essential oils from Mentha piperita using advanced techniques: Microwave versus ohmic assisted hydrodistillation. FOOD AND BIOPRODUCTS PROCESSING 2015. [DOI: 10.1016/j.fbp.2015.01.003] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
30
|
Waseem R, Low KH. Advanced analytical techniques for the extraction and characterization of plant-derived essential oils by gas chromatography with mass spectrometry. J Sep Sci 2015; 38:483-501. [DOI: 10.1002/jssc.201400724] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 10/22/2014] [Accepted: 11/06/2014] [Indexed: 11/10/2022]
Affiliation(s)
- Rabia Waseem
- Centre for Natural Product Research and Drug Discovery; Department of Chemistry; University of Malaya; Kuala Lumpur Malaysia
| | - Kah Hin Low
- Centre for Natural Product Research and Drug Discovery; Department of Chemistry; University of Malaya; Kuala Lumpur Malaysia
| |
Collapse
|
31
|
Gavahian M, Farahnaky A, Javidnia K, Majzoobi M. A novel technology for extraction of essential oil fromMyrtus communis: ohmic-assisted hydrodistillation. JOURNAL OF ESSENTIAL OIL RESEARCH 2013. [DOI: 10.1080/10412905.2013.775676] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
32
|
|
33
|
Gavahian M, Farahnaky A, Javidnia K, Majzoobi M. Comparison of ohmic-assisted hydrodistillation with traditional hydrodistillation for the extraction of essential oils from Thymus vulgaris L. INNOV FOOD SCI EMERG 2012. [DOI: 10.1016/j.ifset.2012.01.002] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
34
|
Preliminary Study: Kinetics of Oil Extraction from Citronella Grass by Ohmic Heated Hydro Distillation. ACTA ACUST UNITED AC 2012. [DOI: 10.1016/j.apcbee.2012.06.057] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|